Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Partitioning of soil respiration.

Articles de revues sur le sujet « Partitioning of soil respiration »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Partitioning of soil respiration ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Skinner, R. Howard. "Partitioning Soil Respiration during Pasture Regrowth." Crop Science 53, no. 4 (2013): 1791–98. http://dx.doi.org/10.2135/cropsci2012.10.0572.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jovani-Sancho, A. Jonay, Thomas Cummins, and Kenneth A. Byrne. "Soil respiration partitioning in afforested temperate peatlands." Biogeochemistry 141, no. 1 (2018): 1–21. http://dx.doi.org/10.1007/s10533-018-0496-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Neogi, S., P. K. Dash, P. Bhattacharyya, S. R. Padhy, K. S. Roy, and A. K. Nayak. "Partitioning of total soil respiration into root, rhizosphere and basal-soil CO2 fluxes in contrasting rice production systems." Soil Research 58, no. 6 (2020): 592. http://dx.doi.org/10.1071/sr20006.

Texte intégral
Résumé :
Soil respiration contributes significantly to ecosystem respiration and is vital in the context of climate change research. In a season-long experiment we studied total soil respiration (TSR) and its partitioning into root respiration, rhizospheric respiration (RhR) and basal-soil respiration in four contrasting rice production systems: irrigated lowland (IL) (cv. Gayatri); organic nutrient managed irrigated lowland (OIL) (cv. Geetanjali); system of rice intensification (SRI) (cv. Swarna); and aerobic rice system (Aerobic) (cv. APO). We considered TSR to be the sum of root respiration, RhR and
Styles APA, Harvard, Vancouver, ISO, etc.
4

An, Peng, Wen-Feng Wang, Xi Chen, Jing Qian, and Yunzhu Pan. "Introducing a Chaotic Component in the Control System of Soil Respiration." Complexity 2020 (August 26, 2020): 1–8. http://dx.doi.org/10.1155/2020/5310247.

Texte intégral
Résumé :
Chaos theory has been proved to be of great significance in a series of critical applications although, until now, its applications in analyzing soil respiration have not been addressed. This study aims to introduce a chaotic component in the control system of soil respiration and explain control complexity of this nonlinear chaotic system. This also presents a theoretical framework for better understanding chaotic components of soil respiration in arid land. A concept model of processes and mechanisms associated with subterranean CO2 evolution are developed, and dynamics of the chaotic system
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wunderlich, S., and W. Borken. "Partitioning of soil CO<sub>2</sub> efflux in un-manipulated and experimentally flooded plots of a temperate fen." Biogeosciences Discussions 9, no. 5 (2012): 5287–319. http://dx.doi.org/10.5194/bgd-9-5287-2012.

Texte intégral
Résumé :
Abstract. Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen, Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was a
Styles APA, Harvard, Vancouver, ISO, etc.
6

Comeau, Louis-Pierre, Derrick Y. F. Lai, Jane Jinglan Cui, and Jenny Farmer. "Separation of soil respiration: a site-specific comparison of partition methods." SOIL 4, no. 2 (2018): 141–52. http://dx.doi.org/10.5194/soil-4-141-2018.

Texte intégral
Résumé :
Abstract. Without accurate data on soil heterotrophic respiration (Rh), assessments of soil carbon (C) sequestration rate and C balance are challenging to produce. Accordingly, it is essential to determine the contribution of the different sources of the total soil CO2 efflux (Rs) in different ecosystems, but to date, there are still many uncertainties and unknowns regarding the soil respiration partitioning procedures currently available. This study compared the suitability and relative accuracy of five different Rs partitioning methods in a subtropical forest: (1) regression between root bio
Styles APA, Harvard, Vancouver, ISO, etc.
7

Baggs, E. M. "Partitioning the components of soil respiration: a research challenge." Plant and Soil 284, no. 1-2 (2006): 1–5. http://dx.doi.org/10.1007/s11104-006-0047-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Klosterhalfen, Anne, Alexander Graf, Nicolas Brüggemann, et al. "Source partitioning of H<sub>2</sub>O and CO<sub>2</sub> fluxes based on high-frequency eddy covariance data: a comparison between study sites." Biogeosciences 16, no. 6 (2019): 1111–32. http://dx.doi.org/10.5194/bg-16-1111-2019.

Texte intégral
Résumé :
Abstract. For an assessment of the roles of soil and vegetation in the climate system, a further understanding of the flux components of H2O and CO2 (e.g., transpiration, soil respiration) and their interaction with physical conditions and physiological functioning of plants and ecosystems is necessary. To obtain magnitudes of these flux components, we applied source partitioning approaches after Scanlon and Kustas (2010; SK10) and after Thomas et al. (2008; TH08) to high-frequency eddy covariance measurements of 12 study sites covering different ecosystems (croplands, grasslands, and forests)
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wunderlich, S., and W. Borken. "Partitioning of soil CO<sub>2</sub> efflux in un-manipulated and experimentally flooded plots of a temperate fen." Biogeosciences 9, no. 8 (2012): 3477–89. http://dx.doi.org/10.5194/bg-9-3477-2012.

Texte intégral
Résumé :
Abstract. Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen in Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bond-Lamberty, B., and A. Thomson. "A global database of soil respiration data." Biogeosciences Discussions 7, no. 1 (2010): 1321–44. http://dx.doi.org/10.5194/bgd-7-1321-2010.

Texte intégral
Résumé :
Abstract. Soil respiration – RS, the flux of autotropically- and heterotrophically-generated CO2 from the soil to the atmosphere – remains the least well-constrained component of the terrestrial C cycle. Here we introduce the SRDB database, a near-universal compendium of published RS data, and make it available to the scientific community both as a traditional static archive and as a dynamic community database that will be updated over time by interested users. The database encompasses all published studies that report one of the following data measured in the field (not laboratory): annual RS
Styles APA, Harvard, Vancouver, ISO, etc.
11

Bond-Lamberty, B., and A. Thomson. "A global database of soil respiration data." Biogeosciences 7, no. 6 (2010): 1915–26. http://dx.doi.org/10.5194/bg-7-1915-2010.

Texte intégral
Résumé :
Abstract. Soil respiration – RS, the flux of CO2 from the soil to the atmosphere – is probably the least well constrained component of the terrestrial carbon cycle. Here we introduce the SRDB database, a near-universal compendium of published RS data, and make it available to the scientific community both as a traditional static archive and as a dynamic community database that may be updated over time by interested users. The database encompasses all published studies that report one of the following data measured in the field (not laboratory): annual RS, mean seasonal RS, a seasonal or annual
Styles APA, Harvard, Vancouver, ISO, etc.
12

LI, Wei-Jing, Shi-Ping CHEN, Bing-Wei ZHANG, Xing-Ru TAN, Shan-Shan WANG, and Cui-Hai YOU. "Partitioning of soil respiration components and evaluating the mycorrhizal contribution to soil respiration in a semiarid grassland." Chinese Journal of Plant Ecology 42, no. 8 (2018): 850–62. http://dx.doi.org/10.17521/cjpe.2018.0068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Wordell-Dietrich, Patrick, Anja Wotte, Janet Rethemeyer, et al. "Vertical partitioning of CO<sub>2</sub> production in a forest soil." Biogeosciences 17, no. 24 (2020): 6341–56. http://dx.doi.org/10.5194/bg-17-6341-2020.

Texte intégral
Résumé :
Abstract. Large amounts of total organic carbon are temporarily stored in soils, which makes soil respiration one of the major sources of terrestrial CO2 fluxes within the global carbon cycle. More than half of global soil organic carbon (SOC) is stored in subsoils (below 30 cm), which represent a significant carbon (C) pool. Although several studies and models have investigated soil respiration, little is known about the quantitative contribution of subsoils to total soil respiration or about the sources of CO2 production in subsoils. In a 2-year field study in a European beech forest in nort
Styles APA, Harvard, Vancouver, ISO, etc.
14

Cropper Jr., Wendell P., and Henry L. Gholz. "Insitu needle and fine root respiration in mature slash pine (Pinuselliottii) trees." Canadian Journal of Forest Research 21, no. 11 (1991): 1589–95. http://dx.doi.org/10.1139/x91-221.

Texte intégral
Résumé :
Respiration of needles and surface fine roots was measured in a north central Florida slash pine (Pinuselliottii Engelm. var. elliottii) plantation. A controlled temperature chamber system was used to estimate respiration rates and Q10 values of insitu tissues over a range of 10 to 35 °C. Respiration rates did not differ significantly among seasons, fertilized versus unfertilized plots, or time of day in a diurnal time series (needles). Needle respiration from the lower canopy was less than that from the upper canopy. Fine root respiration measurements were consistent with previously made esti
Styles APA, Harvard, Vancouver, ISO, etc.
15

Brosnan, Stephanie. "Partitioning of soil respiration in a first rotation beech plantation." Biology and Environment: Proceedings of the Royal Irish Academy 117B, no. 2 (2017): 91–105. http://dx.doi.org/10.1353/bae.2017.0009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Bond-Lamberty, Ben, Dustin Bronson, Emma Bladyka, and Stith T. Gower. "A comparison of trenched plot techniques for partitioning soil respiration." Soil Biology and Biochemistry 43, no. 10 (2011): 2108–14. http://dx.doi.org/10.1016/j.soilbio.2011.06.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Yang, Jinyan, and Chuankuan Wang. "Partitioning soil respiration of temperate forest ecosystems in northeastern China." Acta Ecologica Sinica 26, no. 6 (2006): 1640–46. http://dx.doi.org/10.1016/s1872-2032(06)60027-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Savage, K. E., E. A. Davidson, R. Z. Abramoff, A. C. Finzi, and M. A. Giasson. "Partitioning soil respiration: quantifying the artifacts of the trenching method." Biogeochemistry 140, no. 1 (2018): 53–63. http://dx.doi.org/10.1007/s10533-018-0472-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

A. Jonay Jovani Sancho, Stephanie Brosnan, and Kenneth A. Byrne. "Partitioning of soil respiration in a first rotation beech plantation." Biology and Environment: Proceedings of the Royal Irish Academy 117B, no. 2 (2017): 91. http://dx.doi.org/10.3318/bioe.2017.09.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Lalonde, Rachelle G., and Cindy E. Prescott. "Partitioning heterotrophic and rhizospheric soil respiration in a mature Douglas-fir (Pseudotsuga menziesii) forest." Canadian Journal of Forest Research 37, no. 8 (2007): 1287–97. http://dx.doi.org/10.1139/x07-019.

Texte intégral
Résumé :
Total belowground respiration (Rs) was partitioned into heterotrophic (Rh) and rhizospheric (Rr) respiration to determine the amount of CO2 originating from each component in a coastal Douglas-fir ( Pseudotsuga menziesii (Mirb.) Franco) forest. Rh was measured within cylinders from which roots, hyphae, and associated rhizosphere organisms were excluded by a 0.5 μm nylon mesh and installed 50 cm into the soil. Rs was 12 Mg C·ha–1·year–1 and ranged from 0.71 to 6.57 g C·m–2·day–1 during the 15 month experiment. Rh was 7.8 Mg C·ha–1·year–1, which contributed 65% of Rs, mostly between May and Augu
Styles APA, Harvard, Vancouver, ISO, etc.
21

Lim Kim Choo, Liza Nuriati, and Osumanu Haruna Ahmed. "Partitioning Carbon Dioxide Emission and Assessing Dissolved Organic Carbon Leaching of a Drained Peatland Cultivated with Pineapple at Saratok, Malaysia." Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/906021.

Texte intégral
Résumé :
Pineapples (Ananas comosus(L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lombardini, Leonardo, Moreno Toselli, and James A. Flore. "Use of 13CO2 as a Tool to Investigate Carbon Partitioning in Field and Greenhouse-grown Apple Trees." HortScience 32, no. 3 (1997): 530D—530. http://dx.doi.org/10.21273/hortsci.32.3.530d.

Texte intégral
Résumé :
Instrumentation to measure soil respiration is currently readily available. However, the relationship between soil respiration and root activity or root mass is not known. Herein we report on preliminary result using a 13CO2 pulse to the foliage to determine if 13C respiration can be related to either root activity or root mass. An experiment was performed in the field on a 5-year-old apple tree (cv. Jonagold on M7). The tree canopy was enclosed in a Mylar® balloon and 2.1 g 13CO2 were pulsed in the balloon for 1 hr. After the pulse, air emitted by the soil and selected roots was collected eve
Styles APA, Harvard, Vancouver, ISO, etc.
23

Qubaja, Rafat, Fyodor Tatarinov, Eyal Rotenberg, and Dan Yakir. "Partitioning of canopy and soil CO<sub>2</sub> fluxes in a pine forest at the dry timberline across a 13-year observation period." Biogeosciences 17, no. 3 (2020): 699–714. http://dx.doi.org/10.5194/bg-17-699-2020.

Texte intégral
Résumé :
Abstract. Partitioning carbon fluxes is key to understanding the process underlying ecosystem response to change. This study used soil and canopy fluxes with stable isotopes (13C) and radiocarbon (14C) measurements in an 18 km2, 50-year-old, dry (287 mm mean annual precipitation; nonirrigated) Pinus halepensis forest plantation in Israel to partition the net ecosystem's CO2 flux into gross primary productivity (GPP) and ecosystem respiration (Re) and (with the aid of isotopic measurements) soil respiration flux (Rs) into autotrophic (Rsa), heterotrophic (Rh), and inorganic (Ri) components. On
Styles APA, Harvard, Vancouver, ISO, etc.
24

TANG Luozhong, 唐罗忠, 葛晓敏 GE Xiaomin, 吴麟 WU Lin, 田野 TIAN Ye, and 魏勇 WEI Yong. "Partitioning of autotrophic and heterotrophic soil respiration in southern type poplar plantations." Acta Ecologica Sinica 32, no. 22 (2012): 7000–7008. http://dx.doi.org/10.5846/stxb201110111498.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Schuur, Edward A. G., and Susan E. Trumbore. "Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon." Global Change Biology 12, no. 2 (2005): 165–76. http://dx.doi.org/10.1111/j.1365-2486.2005.01066.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Jia, Bingrui, Guangsheng Zhou, Fengyu Wang, Yuhui Wang, Wenping Yuan, and Li Zhou. "Partitioning root and microbial contributions to soil respiration in Leymus chinensis populations." Soil Biology and Biochemistry 38, no. 4 (2006): 653–60. http://dx.doi.org/10.1016/j.soilbio.2005.06.027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zhao, Xin, Naishen Liang, Jiye Zeng, and Azian Mohti. "A simple model for partitioning forest soil respiration based on root allometry." Soil Biology and Biochemistry 152 (January 2021): 108067. http://dx.doi.org/10.1016/j.soilbio.2020.108067.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Rodeghiero, Mirco, and Alessandro Cescatti. "Indirect partitioning of soil respiration in a series of evergreen forest ecosystems." Plant and Soil 284, no. 1-2 (2006): 7–22. http://dx.doi.org/10.1007/s11104-005-5109-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Taylor, Adam J., Chun-Ta Lai, Francesca M. Hopkins, et al. "Radiocarbon-Based Partitioning of Soil Respiration in an Old-Growth Coniferous Forest." Ecosystems 18, no. 3 (2015): 459–70. http://dx.doi.org/10.1007/s10021-014-9839-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Sharkova, I. N., A. S. Chumbaeva та V. A. Androkhanov. "Estimation of Soil Carbon Balance Based on СО<sub>2</sub> Emission Determination". Agrohimiâ, № 9 (20 листопада 2024): 78–89. http://dx.doi.org/10.31857/s0002188124090095.

Texte intégral
Résumé :
The increased interest nowadays in quantitative assessment of soil respiration is largely due to studies of the role of various terrestrial ecosystems in changing the concentration of the most important greenhouse gas, CO2, in the atmosphere. The review considers methodological aspects of determining the actual CO2 emission from soils using chamber and absorption methods, as well as the use of the obtained data to assess the carbon balance in soils. Successful development of this topic will allow to promptly get an answer to the main question of this pressing environmental issue: what is the s
Styles APA, Harvard, Vancouver, ISO, etc.
31

Hicks Pries, Caitlin E., Edward A. G. Schuur та Kathryn G. Crummer. "Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and ∆14C". Global Change Biology 19, № 2 (2012): 649–61. http://dx.doi.org/10.1111/gcb.12058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Tucker, Colin L., Jessica M. Young, David G. Williams, and Kiona Ogle. "Process-based isotope partitioning of winter soil respiration in a subalpine ecosystem reveals importance of rhizospheric respiration." Biogeochemistry 121, no. 2 (2014): 389–408. http://dx.doi.org/10.1007/s10533-014-0008-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Bhattacharyya, Siddhartha Shankar, Pedro Mondaca, Oloka Shushupti, and Sharjeel Ashfaq. "Interplay between Plant Functional Traits and Soil Carbon Sequestration under Ambient and Elevated CO2 Levels." Sustainability 15, no. 9 (2023): 7584. http://dx.doi.org/10.3390/su15097584.

Texte intégral
Résumé :
Unique plant functional traits (morpho-physio-anatomical) may respond to novel environmental conditions to counterbalance elevated carbon dioxide (eCO2) concentrations. Utilizing CO2, plants produce photoassimilates (carbohydrates). A mechanistic understanding of partitioning and translocation of carbon/photoassimilates into different plant parts and soils under ambient and eCO2 is required. In this study, we examine and present the intrinsic relationship between plant functional traits and eCO2 and seek answers to (i) how do plant functional traits (morpho-physio-anatomical features) affect C
Styles APA, Harvard, Vancouver, ISO, etc.
34

Lasslop, G., M. Migliavacca, G. Bohrer, et al. "On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning." Biogeosciences Discussions 9, no. 7 (2012): 9829–73. http://dx.doi.org/10.5194/bgd-9-9829-2012.

Texte intégral
Résumé :
Abstract. Networks that merge and harmonise eddy-covariance measurements from many different parts of the world have become an important observational resource for ecosystem science. Empirical algorithms have been developed which combine direct observations of the net ecosystem exchange of carbon dioxide with simple empirical models to disentangle photosynthetic (GPP) and respiratory fluxes (Reco). The increasing use of these estimates for the analysis of climate sensitivities, model evaluation, and calibration demands a thorough understanding of assumptions in the analysis process and the res
Styles APA, Harvard, Vancouver, ISO, etc.
35

Lasslop, G., M. Migliavacca, G. Bohrer, et al. "On the choice of the driving temperature for eddy-covariance carbon dioxide flux partitioning." Biogeosciences 9, no. 12 (2012): 5243–59. http://dx.doi.org/10.5194/bg-9-5243-2012.

Texte intégral
Résumé :
Abstract. Networks that merge and harmonise eddy-covariance measurements from many different parts of the world have become an important observational resource for ecosystem science. Empirical algorithms have been developed which combine direct observations of the net ecosystem exchange of carbon dioxide with simple empirical models to disentangle photosynthetic (GPP) and respiratory fluxes (Reco). The increasing use of these estimates for the analysis of climate sensitivities, model evaluation and calibration demands a thorough understanding of assumptions in the analysis process and the resu
Styles APA, Harvard, Vancouver, ISO, etc.
36

Sasse, Joelle. "Plant Chemistry and Morphological Considerations for Efficient Carbon Sequestration." CHIMIA 77, no. 11 (2023): 726–32. http://dx.doi.org/10.2533/chimia.2023.726.

Texte intégral
Résumé :
Carbon sequestration to soils counteracts increasing CO2 levels in the atmosphere, and increases soil fertility. Efforts to increase soil carbon storage produced mixed results, due to the multifactorial nature of this process, and the lack of knowledge on molecular details on the interplay of plants, microbes, and soil physiochemical properties. This review outlines the carbon flow from the atmosphere into soils, and factors resulting in elevated or decreased carbon sequestration are outlined. Carbon partitioning within plants defines how much fixed carbon is allocated belowground, and plant a
Styles APA, Harvard, Vancouver, ISO, etc.
37

MOYES, ANDREW B., SARAH J. GAINES, ROLF T. W. SIEGWOLF, and DAVID R. BOWLING. "Diffusive fractionation complicates isotopic partitioning of autotrophic and heterotrophic sources of soil respiration." Plant, Cell & Environment 33, no. 11 (2010): 1804–19. http://dx.doi.org/10.1111/j.1365-3040.2010.02185.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Yi, Zhigang, Shenglei Fu, Weimin Yi, et al. "Partitioning soil respiration of subtropical forests with different successional stages in south China." Forest Ecology and Management 243, no. 2-3 (2007): 178–86. http://dx.doi.org/10.1016/j.foreco.2007.02.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Zeng, Xinhua, Yigang Song, Chunmin Zeng, Wanjun Zhang, and Shengbing He. "Partitioning soil respiration in two typical forests in semi-arid regions, North China." CATENA 147 (December 2016): 536–44. http://dx.doi.org/10.1016/j.catena.2016.08.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Chen, Guang-shui, Yu-sheng Yang, Jian-fen Guo, Jin-sheng Xie, and Zhi-jie Yang. "Relationships between carbon allocation and partitioning of soil respiration across world mature forests." Plant Ecology 212, no. 2 (2010): 195–206. http://dx.doi.org/10.1007/s11258-010-9814-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kou, Taiji, Jianguo Zhu, Zubin Xie, Toshihiro Hasegawa, and Katia Heiduk. "Effect of elevated atmospheric CO2 concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber." Plant and Soil 299, no. 1-2 (2007): 237–49. http://dx.doi.org/10.1007/s11104-007-9380-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

ArchMiller, Althea, and Lisa Samuelson. "Partitioning Longleaf Pine Soil Respiration into Its Heterotrophic and Autotrophic Components through Root Exclusion." Forests 7, no. 2 (2016): 39. http://dx.doi.org/10.3390/f7020039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

CHEN Minpeng, 陈敏鹏, 夏旭 XIA Xu, 李银坤 LI Yinkun, and 梅旭荣 MEI Xurong. "Progress on techniques for partitioning soil respiration components and their application in cropland ecosystem." Acta Ecologica Sinica 33, no. 22 (2013): 7067–77. http://dx.doi.org/10.5846/stxb201207191027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

HAN, Tian-Feng, Guo-Yi ZHOU, Yue-Lin LI, Ju-Xiu LIU, and De-Qiang ZHANG. "Partitioning soil respiration in lower subtropical forests at different successional stages in southern China." Chinese Journal of Plant Ecology 35, no. 9 (2011): 946–54. http://dx.doi.org/10.3724/sp.j.1258.2011.00946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Søe, Astrid R. B., Anette Giesemann, Traute-Heidi Anderson, Hans-Joachim Weigel, and Nina Buchmann. "Soil respiration under elevated CO2and its partitioning into recently assimilated and older carbon sources." Plant and Soil 262, no. 1/2 (2004): 85–94. http://dx.doi.org/10.1023/b:plso.0000037025.78016.9b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ogle, Kiona, and Elise Pendall. "Isotope partitioning of soil respiration: A Bayesian solution to accommodate multiple sources of variability." Journal of Geophysical Research: Biogeosciences 120, no. 2 (2015): 221–36. http://dx.doi.org/10.1002/2014jg002794.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Snell, Helen S. K., David Robinson, and Andrew J. Midwood. "Minimising methodological biases to improve the accuracy of partitioning soil respiration using natural abundance13C." Rapid Communications in Mass Spectrometry 28, no. 21 (2014): 2341–51. http://dx.doi.org/10.1002/rcm.7017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Ventura, M., C. Zhang, E. Baldi, et al. "Effect of biochar addition on soil respiration partitioning and root dynamics in an apple orchard." European Journal of Soil Science 65, no. 1 (2013): 186–95. http://dx.doi.org/10.1111/ejss.12095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Phillips, C. L., K. J. McFarlane, D. Risk, and A. R. Desai. "Biological and physical influences on soil <sup>14</sup>CO<sub>2</sub> seasonal dynamics in a temperate hardwood forest." Biogeosciences 10, no. 12 (2013): 7999–8012. http://dx.doi.org/10.5194/bg-10-7999-2013.

Texte intégral
Résumé :
Abstract. While radiocarbon (14C) abundances in standing stocks of soil carbon have been used to evaluate rates of soil carbon turnover on timescales of several years to centuries, soil-respired 14CO2 measurements are an important tool for identifying more immediate responses to disturbance and climate change. Soil Δ14CO2 data, however, are often temporally sparse and could be interpreted better with more context for typical seasonal ranges and trends. We report on a semi-high-frequency sampling campaign to distinguish physical and biological drivers of soil Δ14CO2 at a temperate forest site i
Styles APA, Harvard, Vancouver, ISO, etc.
50

Bao, Fang, Guangsheng Zhou, Fengyu Wang, and Xinghua Sui. "Partitioning soil respiration in a temperate desert steppe in Inner Mongolia using exponential regression method." Soil Biology and Biochemistry 42, no. 12 (2010): 2339–41. http://dx.doi.org/10.1016/j.soilbio.2010.08.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!