Littérature scientifique sur le sujet « P^2q »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « P^2q ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "P^2q"

1

Hernández Iglesias, Mauro Fernando. "Singularidad de la polar de una curva plana irreducible en K(2p,2q,2pq+d)." Pesquimat 22, no. 1 (2019): 1–8. http://dx.doi.org/10.15381/pes.v22i1.15758.

Texte intégral
Résumé :
Veremos que existe un abierto de Zariski en el conjunto de curvas planas irreducibles con exponentes característicos 2p; 2q y 2q+d, dado por K(2p; 2q; 2q+d) con mcd{p,q} = 1 y d impar, donde la polar es no degenerada, su topología es constante y determinada apenas por p y q.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tadee, Suton, and Apirat Siraworakun. "Nonexistence of Positive Integer Solutions of the Diophantine Equation p^x + (p + 2q)^ y = z^2 , where p, q and p + 2q are Prime Numbers." European Journal of Pure and Applied Mathematics 16, no. 2 (2023): 724–35. http://dx.doi.org/10.29020/nybg.ejpam.v16i2.4702.

Texte intégral
Résumé :
The Diophantine equation p^x + (p + 2q)^y = z^2 , where p, q and p + 2q are prime numbers, is studied widely. Many authors give q as an explicit prime number and investigate the positive integer solutions and some conditions for non-existence of positive integer solutions. In this work, we gather some conditions for odd prime numbers p and q for showing that the Diophantine equation p^x + (p + 2q)^y = z^2 has no positive integer solution. Moreover, many examples of Diophantine equations with no positive integer solution are illustrated.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yaying, Taja, Bipan Hazarika, and S. A. Mohiuddine. "Domain of Padovan q-difference matrix in sequence spaces lp and l∞." Filomat 36, no. 3 (2022): 905–19. http://dx.doi.org/10.2298/fil2203905y.

Texte intégral
Résumé :
In this study, we construct the difference sequence spaces lp (P?2q) = (lp)P?2q, 1 ? p ? ?, where P = (?rs) is an infinite matrix of Padovan numbers %s defined by ?rs = {?s/?r+5-2 0 ? s ? r, 0 s > r. and ?2q is a q-difference operator of second order. We obtain some inclusion relations, topological properties, Schauder basis and ?-, ?- and ?-duals of the newly defined space. We characterize certain matrix classes from the space lp (P?2q) to any one of the space l1, c0, c or l?. We examine some geometric properties and give certain estimation for von-Neumann Jordan constant and James constan
Styles APA, Harvard, Vancouver, ISO, etc.
4

Asbullah, Muhammad Asyraf, Normahirah Nek Abd Rahman, uhammad Rezal Kamel Ariffin, Siti Hasana Sapar, and Faridah Yunos. "CRYPTANALYSIS OF RSA KEY EQUATION OF N=p^2q FOR SMALL |2q – p| USING CONTINUED FRACTION." Malaysian Journal of Science 39, no. 1 (2020): 72–80. http://dx.doi.org/10.22452/mjs.vol39no1.6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Arifin, Muchammad Choerul, and Iwan Ernanto. "IDEMPOTENT ELEMENTS IN MATRIX RING OF ORDER 2 OVER POLYNOMIAL RING $\mathbb{Z}_{p^2q}[x]$." Journal of Fundamental Mathematics and Applications (JFMA) 6, no. 2 (2023): 136–47. http://dx.doi.org/10.14710/jfma.v6i2.19307.

Texte intégral
Résumé :
An idempotent element in the algebraic structure of a ring is an element that, when multiplied by itself, yields an outcome that remains unchanged and identical to the original element. Any ring with a unity element generally has two idempotent elements, 0 and 1, these particular idempotent elements are commonly referred to as the trivial idempotent elements However, in the case of rings $\mathbb{Z}_n$ and $\mathbb{Z}_n[x]$ it is possible to have non-trivial idempotent elements. In this paper, we will investigate the idempotent elements in the polynomial ring $\mathbb{Z}_{p^2q}[x]$ with $p,q$
Styles APA, Harvard, Vancouver, ISO, etc.
6

Basher, Mohamed. "Even vertex odd mean labeling of uniform theta graphs." Proyecciones (Antofagasta) 43, no. 1 (2024): 153–62. http://dx.doi.org/10.22199/issn.0717-6279-4894.

Texte intégral
Résumé :
Let $G$ be a graph with $p$ vertices and $q$ edges. A total graph labeling $ f:V(G)\bigcup E(G)\rightarrow \{0,1,2,3,...,2q\}$ is called even vertex odd mean labeling of a graph $G$ if the vertices of the graph $G$ label by distinct even integers from the set $\{0,2,...,2q\}$ and the labels of the edges are defined as the mean of the labels of its end vertices and these labels are $2q-1$ distinct odd integers from the set $\{1,3,5,...,2q-1\}$. In this paper we investigate the even vertex odd mean labeling of uniform theta graphs.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhao, Xin, та Wenming Zou. "On a class of critical elliptic systems in ℝ4". Advances in Nonlinear Analysis 10, № 1 (2020): 548–68. http://dx.doi.org/10.1515/anona-2020-0136.

Texte intégral
Résumé :
Abstract In the present paper, we consider the following classes of elliptic systems with Sobolev critical growth: $$\begin{array}{} \displaystyle \begin{cases} -{\it\Delta} u+\lambda_1u=\mu_1 u^3+\beta uv^2+\frac{2q}{p} y u^{\frac{2q}{p}-1}v^2\quad &\hbox{in}\;{\it\Omega}, \\ -{\it\Delta} v+\lambda_2v=\mu_2 v^3+\beta u^2v+2 y u^{\frac{2q}{p}}v\quad&\hbox{in}\;{\it\Omega}, \\ u,v \gt 0&\hbox{in}\;{\it\Omega}, \\ u,v=0&\hbox{on}\;\partial{\it\Omega}, \end{cases} \end{array}$$ where Ω ⊂ ℝ4 is a smooth bounded domain with smooth boundary ∂Ω; p, q are positive coprime integers with
Styles APA, Harvard, Vancouver, ISO, etc.
8

ALZER, HORST. "ON AN INTEGRAL INEQUALITY OF R. BELLMAN." Tamkang Journal of Mathematics 22, no. 2 (1991): 187–91. http://dx.doi.org/10.5556/j.tkjm.22.1991.4597.

Texte intégral
Résumé :

 
 
 We prove: if $u$ and $v$ are non-negative, concave functions defined on $[0, 1]$ satisfying 
 \[\int_0^1 (u(x))^{2p} dx =\int_0^1 (v(x))^{2q} dx=1, \quad p>0, \quad q>0,\]
 then
 \[\int_0^1(u(x))^p (v(x))^q dx\ge\frac{2\sqrt{(2p+1)(2q+1)}}{(p+1)(q+1)}-1.\]
 
 
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kalita, N., and A. J. Dutta. "Spectral analysis of second order quantum difference operator over the sequence space lp (1 < p < ∞)." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 118, no. 2 (2025): 122–36. https://doi.org/10.31489/2025m2/122-136.

Texte intégral
Résumé :
In this article, we study the spectrum, fine spectrum and boundedness property of second order quantum difference operator ∆2q (0 &lt; q &lt; 1) over the class of sequence lp (1 &lt; p &lt; ∞), the pth summable sequence space. The second order quantum difference operator ∆2q is a lower triangular triple band matrix ∆2q(1,−(1+ q),q). We also determine the approximate point spectrum, defect spectrum, compression spectrum, and Goldberg classification of the operator on the class of sequence. We obtained the results by solving an infinite system of linear equations and computing the inverse of a l
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kamaraj, T., and J. Thangakani. "Edge even and edge odd graceful labelings of Paley Graphs." Journal of Physics: Conference Series 1770, no. 1 (2021): 012068. http://dx.doi.org/10.1088/1742-6596/1770/1/012068.

Texte intégral
Résumé :
Abstract Edge even graceful labeling is a novel graceful labelling, introduced in 2017 by Elsonbaty and Daoud. A graph G with p vertices and q edges is called an edge even graceful if there is a bijection f: E(G) → {2, 4,. . ., 2q} such that, when each vertex is assigned the sum of the labels of all edges incident to it mod 2k, where k = max (p, q), the resulting vertex labels are distinct. A labeling of G is called edge odd graceful labeling, if there exists a bijection f from the set of edges E(G) to the set {1,3,5,…,2q-1} such that the induced the map f* from the set of vertices V(G) to {0,
Styles APA, Harvard, Vancouver, ISO, etc.
Plus de sources

Thèses sur le sujet "P^2q"

1

CAMPEDEL, ELENA. "Hopf-Galois Structures and Skew Braces of order p^2q." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/378739.

Texte intégral
Résumé :
Nella mia tesi enumero le strutture Hopf-Galois su estensioni di Galois di ordine p^2q. Questo sarà fatto, mediante l'uso delle funzioni gamma, contando i sottogruppi regolari dell'olomorfo di gruppi di ordine p^2q. Questi ultimi oggetti sono anche connessi con le skew braces, e fornisco anche il numero di classi di isomorfismo di skew braces di ordine p^2q.<br>In my thesis I enumerate the Hopf-Galois structures on Galois extensions of order p^2q. This will be done, using the gamma functions, by enumerating the regular subgroups of the holomorph of groups G of order p^2q. The last objects are
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "P^2q"

1

Sousa, A. D. R. de, J. C. Carneiro, L. Faria, and M. V. Pabon. "Sobre o número de cruzamentos do grafo de Kneser K(n,2)." In Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/etc.2022.222905.

Texte intégral
Résumé :
O número de cruzamentos $\nu(G)$ de um grafo $G=(V,E)$ é o menor número de cruzamentos em um desenho $D(G)$ no plano de $G$. Dada uma reta $r$, chamada espinha, $p\geq 1$, e $S_1,\ldots,S_p$ serem $p$ semiplanos distintos limitados por $r$, um desenho de $G=(V,E)$ em $p$-páginas tem os vértices de $V$ desenhados em $r$ e cada aresta de $G$ é desenhada em um $S_1,\ldots,S_p$. O número de cruzamentos em $p$-páginas $\nu_p(G)$ de $G$ é o menor número de cruzamentos em um desenho de $G$ em $p$ páginas. Nós provamos que se $n=2q\geq 6$, então $\frac{n^8} {2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!