Littérature scientifique sur le sujet « P^2q »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « P^2q ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "P^2q"

1

Hernández Iglesias, Mauro Fernando. « Singularidad de la polar de una curva plana irreducible en K(2p,2q,2pq+d) ». Pesquimat 22, no 1 (3 mai 2019) : 1–8. http://dx.doi.org/10.15381/pes.v22i1.15758.

Texte intégral
Résumé :
Veremos que existe un abierto de Zariski en el conjunto de curvas planas irreducibles con exponentes característicos 2p; 2q y 2q+d, dado por K(2p; 2q; 2q+d) con mcd{p,q} = 1 y d impar, donde la polar es no degenerada, su topología es constante y determinada apenas por p y q.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Asbullah, Muhammad Asyraf, Normahirah Nek Abd Rahman, uhammad Rezal Kamel Ariffin, Siti Hasana Sapar et Faridah Yunos. « CRYPTANALYSIS OF RSA KEY EQUATION OF N=p^2q FOR SMALL |2q – p| USING CONTINUED FRACTION ». Malaysian Journal of Science 39, no 1 (29 février 2020) : 72–80. http://dx.doi.org/10.22452/mjs.vol39no1.6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yaying, Taja, Bipan Hazarika et S. A. Mohiuddine. « Domain of Padovan q-difference matrix in sequence spaces lp and l∞ ». Filomat 36, no 3 (2022) : 905–19. http://dx.doi.org/10.2298/fil2203905y.

Texte intégral
Résumé :
In this study, we construct the difference sequence spaces lp (P?2q) = (lp)P?2q, 1 ? p ? ?, where P = (?rs) is an infinite matrix of Padovan numbers %s defined by ?rs = {?s/?r+5-2 0 ? s ? r, 0 s > r. and ?2q is a q-difference operator of second order. We obtain some inclusion relations, topological properties, Schauder basis and ?-, ?- and ?-duals of the newly defined space. We characterize certain matrix classes from the space lp (P?2q) to any one of the space l1, c0, c or l?. We examine some geometric properties and give certain estimation for von-Neumann Jordan constant and James constant of the space lp(P). Finally, we estimate upper bound for Hausdorff matrix as a mapping from lp to lp(P).
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zhao, Xin, et Wenming Zou. « On a class of critical elliptic systems in ℝ4 ». Advances in Nonlinear Analysis 10, no 1 (13 septembre 2020) : 548–68. http://dx.doi.org/10.1515/anona-2020-0136.

Texte intégral
Résumé :
Abstract In the present paper, we consider the following classes of elliptic systems with Sobolev critical growth: $$\begin{array}{} \displaystyle \begin{cases} -{\it\Delta} u+\lambda_1u=\mu_1 u^3+\beta uv^2+\frac{2q}{p} y u^{\frac{2q}{p}-1}v^2\quad &\hbox{in}\;{\it\Omega}, \\ -{\it\Delta} v+\lambda_2v=\mu_2 v^3+\beta u^2v+2 y u^{\frac{2q}{p}}v\quad&\hbox{in}\;{\it\Omega}, \\ u,v \gt 0&\hbox{in}\;{\it\Omega}, \\ u,v=0&\hbox{on}\;\partial{\it\Omega}, \end{cases} \end{array}$$ where Ω ⊂ ℝ4 is a smooth bounded domain with smooth boundary ∂Ω; p, q are positive coprime integers with 1 < $\begin{array}{} \displaystyle \frac{2q}{p} \end{array}$ < 2; μi > 0 and λi ∈ ℝ are fixed constants, i = 1, 2; β > 0, y > 0 are two parameters. We prove a nonexistence result and the existence of the ground state solution to the above system under proper assumptions on the parameters. It seems that this system has not been explored directly before.
Styles APA, Harvard, Vancouver, ISO, etc.
5

ALZER, HORST. « ON AN INTEGRAL INEQUALITY OF R. BELLMAN ». Tamkang Journal of Mathematics 22, no 2 (1 juin 1991) : 187–91. http://dx.doi.org/10.5556/j.tkjm.22.1991.4597.

Texte intégral
Résumé :
We prove: if $u$ and $v$ are non-negative, concave functions defined on $[0, 1]$ satisfying \[\int_0^1 (u(x))^{2p} dx =\int_0^1 (v(x))^{2q} dx=1, \quad p>0, \quad q>0,\] then \[\int_0^1(u(x))^p (v(x))^q dx\ge\frac{2\sqrt{(2p+1)(2q+1)}}{(p+1)(q+1)}-1.\]
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kamaraj, T., et J. Thangakani. « Edge even and edge odd graceful labelings of Paley Graphs ». Journal of Physics : Conference Series 1770, no 1 (1 mars 2021) : 012068. http://dx.doi.org/10.1088/1742-6596/1770/1/012068.

Texte intégral
Résumé :
Abstract Edge even graceful labeling is a novel graceful labelling, introduced in 2017 by Elsonbaty and Daoud. A graph G with p vertices and q edges is called an edge even graceful if there is a bijection f: E(G) → {2, 4,. . ., 2q} such that, when each vertex is assigned the sum of the labels of all edges incident to it mod 2k, where k = max (p, q), the resulting vertex labels are distinct. A labeling of G is called edge odd graceful labeling, if there exists a bijection f from the set of edges E(G) to the set {1,3,5,…,2q-1} such that the induced the map f* from the set of vertices V(G) to {0,1,2,.,.,2q-1} given by f*(u) = Σ uv∈E(G) f(uv) (mod 2q) is an injection. A graph which admits edge even (odd) graceful labeling is called an edge even (odd) graceful graph. Paley graphs are dense undirected graphs raised from the vertices as elements of an appropriate finite field by joining pairs of vertices that differ by a quadratic residue. In this paper, we study the construction of edge even (odd) graceful labeling for Paley graphs and prove that Paley graphs of prime order are edge even (odd) graceful.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Liu, Hailin, Bengong Lou et Bo Ling. « Tetravalent half-arc-transitive graphs of order $p^2q^2$ ». Czechoslovak Mathematical Journal 69, no 2 (4 février 2019) : 391–401. http://dx.doi.org/10.21136/cmj.2019.0335-17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Aguirre, J., et M. Escobedo. « On the blow-up of solutions of a convective reaction diffusion equation ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 123, no 3 (1993) : 433–60. http://dx.doi.org/10.1017/s0308210500025828.

Texte intégral
Résumé :
SynopsisWe study the blow-up of positive solutions of the Cauchy problem for the semilinear parabolic equationwhere u is a scalar function of the spatial variable x ∈ ℝN and time t > 0, a ∈ ℝV, a ≠ 0, 1 < p and 1 ≦ q. We show that: (a) if p > 1 and 1 ≦ q ≦ p, there always exist solutions which blow up in finite time; (b) if 1 < q ≦ p ≦ min {1 + 2/N, 1 + 2q/(N + 1)} or if q = 1 and 1 < p ≦ l + 2/N, then all positive solutions blow up in finite time; (c) if q > 1 and p > min {1 + 2/N, 1 + 2q/N + 1)}, then global solutions exist; (d) if q = 1 and p > 1 + 2/N, then global solutions exist.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Abd Ghafar, Amir Hamzah, et Muhammad Rezal Kamel Ariffin. « SPA on Rabin variant with public key $$N=p^2q$$ N = p 2 q ». Journal of Cryptographic Engineering 6, no 4 (10 février 2016) : 339–46. http://dx.doi.org/10.1007/s13389-016-0118-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Firmansah, Fery, et Muhammad Ridlo Yuwono. « Odd Harmonious Labeling on Pleated of the Dutch Windmill Graphs ». CAUCHY 4, no 4 (30 mai 2017) : 161. http://dx.doi.org/10.18860/ca.v4i4.4043.

Texte intégral
Résumé :
A graph G(p,q) with p=|V(G)| vertices and q=|E(G)| edges. The graph G(p,q) is said to be odd harmonious if there exist an injection f: V(G)-&gt;{0,1,2,...,2q-1} such that the induced function f*: E(G)-&gt;{1,2,3,...,2q-1} defined by f*(uv)=f(u)+f(v) which is a bijection and f is said to be odd harmonious labeling of G(p,q). In this paper we prove that pleated of the Dutch windmill graphs C_4^(k)(r) with k&gt;=1 and r&gt;=1 are odd harmonious graph. Moreover, we also give odd harmonious labeling construction for the union pleated of the Dutch windmill graph C_4^(k)(r) union C_4^(k)(r) with k&gt;=1 and r&gt;=1.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "P^2q"

1

CAMPEDEL, ELENA. « Hopf-Galois Structures and Skew Braces of order p^2q ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/378739.

Texte intégral
Résumé :
Nella mia tesi enumero le strutture Hopf-Galois su estensioni di Galois di ordine p^2q. Questo sarà fatto, mediante l'uso delle funzioni gamma, contando i sottogruppi regolari dell'olomorfo di gruppi di ordine p^2q. Questi ultimi oggetti sono anche connessi con le skew braces, e fornisco anche il numero di classi di isomorfismo di skew braces di ordine p^2q.
In my thesis I enumerate the Hopf-Galois structures on Galois extensions of order p^2q. This will be done, using the gamma functions, by enumerating the regular subgroups of the holomorph of groups G of order p^2q. The last objects are also connected to skew braces, and I also provide the number of isomorphism classes of skew braces of size p^2q.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "P^2q"

1

Sousa, A. D. R. de, J. C. Carneiro, L. Faria et M. V. Pabon. « Sobre o número de cruzamentos do grafo de Kneser K(n,2) ». Dans Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/etc.2022.222905.

Texte intégral
Résumé :
O número de cruzamentos $\nu(G)$ de um grafo $G=(V,E)$ é o menor número de cruzamentos em um desenho $D(G)$ no plano de $G$. Dada uma reta $r$, chamada espinha, $p\geq 1$, e $S_1,\ldots,S_p$ serem $p$ semiplanos distintos limitados por $r$, um desenho de $G=(V,E)$ em $p$-páginas tem os vértices de $V$ desenhados em $r$ e cada aresta de $G$ é desenhada em um $S_1,\ldots,S_p$. O número de cruzamentos em $p$-páginas $\nu_p(G)$ de $G$ é o menor número de cruzamentos em um desenho de $G$ em $p$ páginas. Nós provamos que se $n=2q\geq 6$, então $\frac{n^8} {2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{2^{10}} - \frac{n^4} {2^{7}} - \frac{n^3}{2^{9}} \leq \nu(K(n,2))\leq \nu_2(K(n,2))\ leq \frac{n^8}{2^{10}} - \frac{3n^7}{2^8} + \frac{31n^6}{2^83} + \ frac{7n^5}{2^6} - \frac{563n^4}{2^73} + \frac{517n^3}{2^53} - \ frac{267n^2}{2^5} + \frac{107n}{2^33}$. Como os grafos completos $\nu_2(K(n,2))=\Theta(|V(K(n,2)|^4)=\nu(K(n,2))$ cujo termo líder $\ell(n)$ satisfaz $\frac{1}{2^{13}}\leq \ell(n)\leq \frac{1}{2^{10}}$.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie