Articles de revues sur le sujet « Oxynitrure de phosphate de lithium »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Oxynitrure de phosphate de lithium.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Oxynitrure de phosphate de lithium ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mayer, Sergio Federico, Cristina de la Calle, María Teresa Fernández-Díaz, José Manuel Amarilla et José Antonio Alonso. « Nitridation effect on lithium iron phosphate cathode for rechargeable batteries ». RSC Advances 12, no 6 (2022) : 3696–707. http://dx.doi.org/10.1039/d1ra07574h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Carrillo Solano, M. A., M. Dussauze, P. Vinatier, L. Croguennec, E. I. Kamitsos, R. Hausbrand et W. Jaegermann. « Phosphate structure and lithium environments in lithium phosphorus oxynitride amorphous thin films ». Ionics 22, no 4 (17 octobre 2015) : 471–81. http://dx.doi.org/10.1007/s11581-015-1573-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dai, Wangqi, Ziqiang Ma, Donglei Wang, Siyu Yang et Zhengwen Fu. « Functional multilayer solid electrolyte films for lithium dendrite suppression ». Applied Physics Letters 121, no 22 (28 novembre 2022) : 223901. http://dx.doi.org/10.1063/5.0122984.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The improvement of the interface between a lithium metal and a solid electrolyte layer is very important for the application of a lithium anode coated by solid electrolytes in lithium metal batteries. In order to address the issues of interface performance and compatibility between solid electrolyte films prepared by magnetron sputtering and lithium metals and the suppression of lithium dendrite during the cycling, a three-layer interface solid electrolyte film based on carbon-doped lithium phosphate oxynitride (LiCPON) was employed for coating a lithium metal. The sandwich structure of LiCPON by introducing an ultra-thin lithium niobium oxynitride (LiNbON) layer prepared by sputtering LiNbO3 in nitrogen ambient can be confirmed by time-of-flight secondary ion mass spectrometry. Atomic force microscopy data indicated that the surface of the LiCPON thin film with the sandwich structure is flatter and smoother than that of the LiCPON thin film on the lithium metal. The interface impedance of the symmetric battery based on the sandwich structure of the LiCPON coating lithium metal was reduced from 512.2 to 65.4 Ω, and the symmetric battery stable cycles from 300 h with an overpotential of more than 200 mV to 400 h with low overpotential of about 77 mV. These results suggest that functional multilayer solid electrolyte films become an effective method for protecting lithium. The incorporation of ultra-thin LiNbON into the LiCPON thin film could significantly decrease interface impedance between the lithium metal and solid electrolyte layer.
4

Taormina, Riccardo, et Fabio Di Fonzo. « Amorphous Lithium Aluminate As Solid Electrolyte Produced By Pulsed Laser Deposition ». ECS Meeting Abstracts MA2022-01, no 4 (7 juillet 2022) : 543. http://dx.doi.org/10.1149/ma2022-014543mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Solid state batteries are deemed to become the cornerstone of the future electric mobility. Nevertheless, research on solid electrolytes is still ongoing due the many limitations of current polycrystalline materials. The isotropic and non-periodic structure of amorphous ceramics have shown to contribute to increase the overall ionic conductivity of the material by decreasing the grain-boundary resistive contribution. At the current state, the most promising amorphous material happened to be lithium phosphate oxynitride LiPON (σLi = 10-6 S/cm, ), which demonstrates that the absence of grain boundaries, allows the formation of lithium small dendrites which can grow inside the material without cracking it, avoiding short life cycle of the battery over high current densities [1]. Gao et al. [2] addressed the limited ionic conductivity of LiPON to the strong bond between the PO 4- group with Li+: for this reason, elements with weaker electronegativity than P, such as Al, can generate an ionic bond with O with weaker electrostatic force, regulating the kinetics of Li+ transport and speeds up the diffusion process [3]. In this scenario, Lithium Aluminate (LiAlO2) and Nitrogen-doped Lithium Aluminate (LiAlON) result in a competitive position for the development of an innovative amorphous-glassy electrolyte: very few studies have been conducted on the development of lithium aluminate based solid electrolytes at the present time, mainly due to its low processability at the amorphous phase and the low ionic conductivity of the crystalline phase, more common in the traditional sintering processes. In this study, we demonstrate for the first time the possibility to obtain with Pulsed Laser Deposition (PLD), a completely amorphous LiAlO2 solid electrolyte with a room temperature ionic conductivity of 10-10 S/cm. Thanks to the PLD processing, the grade of polymorphism can be easily controlled as well as film thickness range (10nm up to 10um) and film porosity. By controlling the deposition atmosphere, different content of nitrogen doping has been achieved, promoting the formation of the highly ionic conductive LiAlON (almost two order of higher conductivity). Electrochemical analysis such as DC polarization and Impedance Spectroscopy, revealed the wide electrochemical voltage stability against lithium metal and the high ionic conductivity of the solid electrolyte. A multi-layer approach for the direct deposition of the solid electrolyte over lithium metal surface is proposed, allowing the realization of symmetric cell test and plating/stripping test. Good protection of Li metal substrate has been observed from the LiAlO2 SSE over 24h, hindering oxidation and degradation of the sample. [1] - Nowak, Berkemeier, and Schmitz, “Ultra-Thin LiPON Films – Fundamental Properties and Application in Solid State Thin Film Model Batteries.” [2] - Gao et al., “Screening Possible Solid Electrolytes by Calculating the Conduction Pathways Using Bond Valence Method.” [3] - Guan et al., “Superior Ionic Conduction in LiAlO 2 Thin-Film Enabled by Triply Coordinated Nitrogen.”
5

Takada, K. « Lithium ion conduction in lithium magnesium thio-phosphate ». Solid State Ionics 147, no 1-2 (1 mars 2002) : 23–27. http://dx.doi.org/10.1016/s0167-2738(02)00007-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Li, Yongjian, Liping Dong, Pei Shi, Zhongqi Ren et Zhiyong Zhou. « Selective recovery of lithium from lithium iron phosphate ». Journal of Power Sources 598 (avril 2024) : 234158. http://dx.doi.org/10.1016/j.jpowsour.2024.234158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Abrahams, I., et K. S. Easson. « Structure of lithium nickel phosphate ». Acta Crystallographica Section C Crystal Structure Communications 49, no 5 (15 mai 1993) : 925–26. http://dx.doi.org/10.1107/s0108270192013064.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Richardson, Thomas J. « Phosphate-stabilized lithium intercalation compounds ». Journal of Power Sources 119-121 (juin 2003) : 262–65. http://dx.doi.org/10.1016/s0378-7753(03)00244-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pozas, R., S. Madueño, S. Bruque, L. Moreno-Real, M. Martinez-Lara, C. Criado et J. Ramos-Barrado. « Lithium insertion in vanadyl phosphate ». Solid State Ionics 51, no 1-2 (mars 1992) : 79–83. http://dx.doi.org/10.1016/0167-2738(92)90347-r.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Qian, Xinming Zhang, Ya Zhang et Qiang Shen. « Influence of lithium phosphate on the structural and lithium-ion conducting properties of lithium aluminum titanium phosphate pellets ». Ionics 27, no 6 (26 mars 2021) : 2473–81. http://dx.doi.org/10.1007/s11581-021-04011-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Hsiang, Hsing-I., et Wei-Yu Chen. « Electrochemical Properties and the Adsorption of Lithium Ions in the Brine of Lithium-Ion Sieves Prepared from Spent Lithium Iron Phosphate Batteries ». Sustainability 14, no 23 (5 décembre 2022) : 16235. http://dx.doi.org/10.3390/su142316235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Because used LiFePO4 batteries contain no precious metals, converting the lithium iron phosphate cathode into recycled materials (Li2CO3, Fe, P) provides no economic benefits. Thus, few researchers are willing to recycle them. As a result, environmental sustainability can be achieved if the cathode material of spent lithium-iron phosphate batteries can be directly reused via electrochemical technology. Lithium iron phosphate films were developed in this study through electrophoretic deposition using spent lithium-iron phosphate cathodes as raw materials to serve as lithium-ion sieves. The lithium iron phosphate films were then coated with a layer of polypyrrole (PPy) conductive polymer to improve the electrochemical properties and the lithium-ion adsorption capacity for brine. Cyclic voltammetry, charge/discharge testing, and an AC impedance test were used to determine the electrochemical properties and lithium-ion adsorption capacity of lithium-ion sieves. The findings indicate that lithium iron phosphate films prepared from spent LiFePO4 cathodes have a high potential as a lithium-ion sieve for electro-sorption from brine.
12

Fang, Zhang, Li Junming, Yu Xiaochen, Su Hainan, Yu Xin, Pang Jing et Xie Hongxu. « Safety Analysis and System Design of Lithium Iron Phosphate Battery in Substation ». E3S Web of Conferences 256 (2021) : 01017. http://dx.doi.org/10.1051/e3sconf/202125601017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
This paper discusses the safety protection design of lithium iron phosphate batteries based on the technical characteristics of lithium iron phosphate batteries. Combined with the current background of the application of lithium iron phosphate batteries in substations, the system design of lithium iron phosphate batteries is discussed from many aspects. It focuses on how to ensure its safety in order to improve the application effect of lithium iron phosphate batteries in substations.
13

Pietrzak, Tomasz K., Jerzy E. Garbarczyk, Marek Wasiucionek et Jan L. Nowiński. « Nanocrystallisation in vanadate phosphate and lithium iron vanadate phosphate glasses ». Physics and Chemistry of Glasses : European Journal of Glass Science and Technology Part B 57, no 3 (21 juin 2016) : 113–24. http://dx.doi.org/10.13036/17533562.57.3.038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

He, Jing, Ning Li, Chun Fu Gao, Yi Wen Luo et Xin Sheng He. « Analysis on Charge and Discharge Mechanism of the Modified Lithium Iron Phosphate Positive Material ». Key Engineering Materials 579-580 (septembre 2013) : 41–45. http://dx.doi.org/10.4028/www.scientific.net/kem.579-580.41.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Along with the thorough research of lithium ion battery, the lithium iron phosphate with the peridot structure becomes a new higher energy power battery anode material. But the charge and discharge mechanism of the modified lithium iron phosphate positive material did not get the unity understanding. In this paper, the carbon coating modification, metal ion doping, particle surfaces coated iron-phosphorus phase network and the nanoparticles of lithium iron phosphate were analyzed from the modified microstructure of the lithium ion phosphate batteries, so as to get the charge and discharge mechanism is the results of the active atoms and lithium ion embedded in the grid work and emergence in the layer structure, leading to the energy changes in lithium iron phosphate microstructure.
15

Zhang, Biao, Fu Kang, Jingkun Guo et Lian Gao. « Self-reinforced lithium zirconium phosphate ceramics ». Journal of Materials Science Letters 15, no 18 (janvier 1996) : 1648–49. http://dx.doi.org/10.1007/bf00278117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Matt Blois. « Lithium iron phosphate comes to America ». C&EN Global Enterprise 101, no 4 (30 janvier 2023) : 22–27. http://dx.doi.org/10.1021/cen-10104-cover.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

CHEN, J., et M. WHITTINGHAM. « Hydrothermal synthesis of lithium iron phosphate ». Electrochemistry Communications 8, no 5 (mai 2006) : 855–58. http://dx.doi.org/10.1016/j.elecom.2006.03.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Köhler, Mathias, Frank Berkemeier, Tobias Gallasch et Guido Schmitz. « Lithium diffusion in sputter-deposited lithium iron phosphate thin-films ». Journal of Power Sources 236 (août 2013) : 61–67. http://dx.doi.org/10.1016/j.jpowsour.2013.02.043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Tao, Du, Shengping Wang, Yongchao Liu, Yu Dai, Jingxian Yu et Xinrong Lei. « Lithium vanadium phosphate as cathode material for lithium ion batteries ». Ionics 21, no 5 (17 mars 2015) : 1201–39. http://dx.doi.org/10.1007/s11581-015-1405-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kai, Wei, Liu yunsong, Rong Hua, Qiu Peng et Meng Zhen. « Improvement strategy of overcharging characteristics of a new type lithium iron phosphate battery in substation ». E3S Web of Conferences 248 (2021) : 01068. http://dx.doi.org/10.1051/e3sconf/202124801068.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
In order to solve the hidden trouble for the long-term overcharging condition of lithium iron phosphate batteries, it is urgent to develop overcharging protective lithium iron phosphate batteries. A strategy combining autonomous equalization technology and passive equalization technology is proposed in this paper to improve the overcharging characteristics of lithium iron phosphate batteries. A certain proportion of oxidizing reductant is added to the electrolyte of ordinary lithium iron phosphate battery. And a comparative test is conducted between conventional lithium iron phosphate battery module and self-equalization lithium iron phosphate battery module in continuous overcharging state. The test results show that the proposed comprehensive strategy has reduced the voltage difference between the cells significantly, and the single cell voltage difference is small in the long-term overcharging process, so as to maintain the safe voltage level.
21

Bi, Haijun, Huabing Zhu, Lei Zu, Yong Gao, Song Gao et Zhongwei Wu. « Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries ». Waste Management & ; Research 37, no 12 (5 septembre 2019) : 1217–28. http://dx.doi.org/10.1177/0734242x19871610.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
With the rapid development of the electric vehicle market since 2012, lithium-iron phosphate (LFP) batteries face retirement intensively. Numerous LFP batteries have been generated given their short service life. Thus, recycling spent LFP batteries is crucial. However, published information on the recovery technology of spent LFP batteries is minimal. Traditional separators and separation theories of recovering technologies were unsuitable for guiding the separation process of recovering metals from spent LFP batteries. The separation rate of the current method for recovering spent LFP batteries was rather low. Furthermore, some wastewater was produced. In this study, spent LFP batteries were dismantled into individual parts of aluminium shells, cathode slices, polymer diaphragms and anode slices. The anode pieces were scraped to separate copper foil and anode powder. The cathode pieces were thermally treated to reduce adhesion between the cathode powder and the aluminium foil. The dissociation rate of the cathode slices reached 100% after crushing when the temperature and time reached 300℃ and 120 min, respectively. Eddy current separation was performed to separate nonferrous metals (aluminium) from aluminium and LFP mixture. The optimized operation parameters for the eddy current separation were feeding speed of 1 m/s and magnetic field rotation speed of 4 m/s. The separation rate of the eddy current separation reached 100%. Mass balance of the recovered materials was conducted. Results showed that the recovery rate of spent LFP can reach 92.52%. This study established a green and full material recovery process for spent LFP batteries.
22

Chen, Ping, Xin Hu et Guang Qiang Shun. « Application of Lithium Iron Phosphate Battery on Electric Power Engineering ». Applied Mechanics and Materials 577 (juillet 2014) : 560–63. http://dx.doi.org/10.4028/www.scientific.net/amm.577.560.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
This paper explores the application of. ithium iron phosphate battery in substation DC system. This paper analyzes the system configuration and the advantages and disadvantages of lithium iron phosphate battery, explores the feasibility and economy of the application of lithium iron phosphate battery in power grid, also summarizes the technical route of lithium iron phosphate battery and provides reference for design of new type of batteries adopted in substation DC system in future.
23

Yang, Rui Juan, Ying Hui Wang, Hua Li Liu et Shi Quan Liu. « Study on the Addition of SiO2 into Lithium-Iron-Phosphate Glass ». Advanced Materials Research 306-307 (août 2011) : 1623–26. http://dx.doi.org/10.4028/www.scientific.net/amr.306-307.1623.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Different amounts of SiO2 were used to substitute P2O5 to prepare lithium-iron-phosphate glass melts. It was found that glass can only formed after annealing the melt cast sample if the sample contains SiO2 not more than 5 mol%. The addition of 5 mol% SiO2 into the lithium-iron-phosphate glass strengthens the phosphate glass network. The density, chemical durability, both the transition and crystallization temperatures increase with the addition of SiO2. In addition, the addition of SiO2 results in the decrease in the activation energy of lithium-iron-phosphate glass, making the glass easier to crystallize. However, both the lithium-iron-phosphate glass and the glass with SiO2 show surface crystallization with LiFeP2O7 as the crystalline phase.
24

Xie, Ning, Dongmei Li, Yaqian Li, Jingming Gong et Xianluo Hu. « Solar-assisted lithium metal recovery from spent lithium iron phosphate batteries ». Chemical Engineering Journal Advances 8 (novembre 2021) : 100163. http://dx.doi.org/10.1016/j.ceja.2021.100163.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Su, Yuhao. « Comparative Analysis of Lithium Iron Phosphate Battery and Ternary Lithium Battery ». Journal of Physics : Conference Series 2152, no 1 (1 janvier 2022) : 012056. http://dx.doi.org/10.1088/1742-6596/2152/1/012056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Abstract This article analyses the lithium iron phosphate battery and the ternary lithium battery. With the development of new energy vehicles, people are discussing more and more about the batteries of electric vehicles. Nowadays, electric vehicles mainly use the lithium iron phosphate battery and the ternary lithium battery as energy sources. Existing research and articles have given the current performance of the two batteries but have not systematically compared the two batteries with more details. This article introduces the basic principles, cathode structure, and standard preparation methods of the two batteries by summarizing and discussing existing data and research. The article discusses the two types of batteries and concludes the advantages and disadvantages of the two batteries at the present stage. This article aims to help readers have a more comprehensive understanding of the basic information of the two batteries at this stage and provide theoretical guidance for future research on batteries for electric vehicles.
26

Qin, Yan, Zonghai Chen, Jun Liu et Khalil Amine. « Lithium Tetrafluoro Oxalato Phosphate as Electrolyte Additive for Lithium-Ion Cells ». Electrochemical and Solid-State Letters 13, no 2 (2010) : A11. http://dx.doi.org/10.1149/1.3261738.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wainright, R. J., et R. P. Ramasamy. « Lithium Iron Phosphate Nanosheet Nests Cathode Material for Lithium Ion Batteries ». ECS Transactions 69, no 22 (28 décembre 2015) : 1–8. http://dx.doi.org/10.1149/06922.0001ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

AMATUCCI, G., A. SAFARI, F. SHOKOOHI et B. WILKENS. « Lithium scandium phosphate-based electrolytes for solid state lithium rechargeable microbatteries ». Solid State Ionics 60, no 4 (avril 1993) : 357–65. http://dx.doi.org/10.1016/0167-2738(93)90015-u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Liao, Xiangfei, Ji Yu et Lijun Gao. « Electrochemical study on lithium iron phosphate/hard carbon lithium-ion batteries ». Journal of Solid State Electrochemistry 16, no 2 (5 avril 2011) : 423–28. http://dx.doi.org/10.1007/s10008-011-1387-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Ramesh Kumar, P., M. Venkateswarlu et N. Satyanarayana. « Three-dimensional lithium manganese phosphate microflowers for lithium-ion battery applications ». Journal of Applied Electrochemistry 42, no 3 (2 février 2012) : 163–67. http://dx.doi.org/10.1007/s10800-012-0383-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Qin, Zijun, Xiaohui Li, Xinjie Shen, Yi Cheng, Feixiang Wu, Yunjiao Li et Zhenjiang He. « Electrochemical selective lithium extraction and regeneration of spent lithium iron phosphate ». Waste Management 174 (février 2024) : 106–13. http://dx.doi.org/10.1016/j.wasman.2023.11.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Gerold, Eva, Stefan Luidold et Helmut Antrekowitsch. « Separation and Efficient Recovery of Lithium from Spent Lithium-Ion Batteries ». Metals 11, no 7 (8 juillet 2021) : 1091. http://dx.doi.org/10.3390/met11071091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The consumption of lithium has increased dramatically in recent years. This can be primarily attributed to its use in lithium-ion batteries for the operation of hybrid and electric vehicles. Due to its specific properties, lithium will also continue to be an indispensable key component for rechargeable batteries in the next decades. An average lithium-ion battery contains 5–7% of lithium. These values indicate that used rechargeable batteries are a high-quality raw material for lithium recovery. Currently, the feasibility and reasonability of the hydrometallurgical recycling of lithium from spent lithium-ion batteries is still a field of research. This work is intended to compare the classic method of the precipitation of lithium from synthetic and real pregnant leaching liquors gained from spent lithium-ion batteries with sodium carbonate (state of the art) with alternative precipitation agents such as sodium phosphate and potassium phosphate. Furthermore, the correlation of the obtained product to the used type of phosphate is comprised. In addition, the influence of the process temperature (room temperature to boiling point), as well as the stoichiometric factor of the precipitant, is investigated in order to finally enable a statement about an efficient process, its parameter and the main dependencies.
33

Li, Hui, Haotian Li, Jinglong Liang, Hongyan Yan et Zongying Cai. « Study on the Synergistic Extraction of Lithium from Spent Lithium Cobalt Oxide Batteries by Molten Salt Electrolysis and Two-Step Precipitation Method ». Crystals 11, no 10 (24 septembre 2021) : 1163. http://dx.doi.org/10.3390/cryst11101163.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
With the continuous development of society, the number of spent lithium-ion batteries has also increased, and the recovery of valuable metals such as Ni, Co, and Li has become the main research direction of many scholars. In this paper, the extraction process of lithium that enters the molten salt after LiCoO2 electrolysis is studied. Oxalic acid and phosphate are added to molten salt containing lithium ions to realize the two-part precipitation method to extract lithium. The influence of pH value, temperature, reaction time, and oxalic acid (or phosphate) addition on the process of oxalic acid calcium removal and phosphate lithium precipitation is analyzed. The results show that the calcium removal rate of oxalic acid has reached 99.72% (Initial conditions: PH = 7.0, T = 70 °C, t = 1.5 h, n(H2C2O4):n(Ca2+) = 1.2:1). The precipitation of Li3PO4 obtained in the phosphate extraction experiment of lithium is as high as 88.44% (Initial conditions: PH = 8.0, T = 70 °C, t = 1.5 h, n(actual dosage of Na3PO4):n(theoretical dosage of Na3PO4) = 1.2:1). The obtained lithium phosphate crystals show regular spherical particles, which can be seen by SEM.
34

Hato, Yuya, Chien Chen, Toshio Hirota, Yushi Kamiya, Yasuhiro Daisho et Shoichi Inami. « Degradation Predictions of Lithium Iron Phosphate Battery ». World Electric Vehicle Journal 7, no 1 (27 mars 2015) : 25–31. http://dx.doi.org/10.3390/wevj7010025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Yinquan Hu, et Heping Liu. « Characteristic Study of Lithium Iron Phosphate Batteries ». International Journal of Digital Content Technology and its Applications 6, no 5 (31 mars 2012) : 264–72. http://dx.doi.org/10.4156/jdcta.vol6.issue5.32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Nan, Caiyun, Jun Lu, Chen Chen, Qing Peng et Yadong Li. « Solvothermal synthesis of lithium iron phosphate nanoplates ». Journal of Materials Chemistry 21, no 27 (2011) : 9994. http://dx.doi.org/10.1039/c0jm04126b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Stenina, I. A., Yu A. Velikodnyi, V. A. Ketsko et A. B. Yaroslavtsev. « Synthesis of NASICON-Type Lithium Zirconium Phosphate ». Inorganic Materials 40, no 9 (septembre 2004) : 967–70. http://dx.doi.org/10.1023/b:inma.0000041330.84296.2e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Mugoni, Consuelo, Monia Montorsi, Cristina Siligardi et Himanshu Jain. « Electrical conductivity of copper lithium phosphate glasses ». Journal of Non-Crystalline Solids 383 (janvier 2014) : 137–40. http://dx.doi.org/10.1016/j.jnoncrysol.2013.04.048.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Delgado, A. M., et J. V. Sinisterra. « Lithium phosphate catalyst, III. New supported catalyst ». Reaction Kinetics & ; Catalysis Letters 47, no 2 (juillet 1992) : 293–98. http://dx.doi.org/10.1007/bf02137663.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Benoit, Charlotte, et Sylvain Franger. « Chemistry and electrochemistry of lithium iron phosphate ». Journal of Solid State Electrochemistry 12, no 7-8 (31 octobre 2007) : 987–93. http://dx.doi.org/10.1007/s10008-007-0443-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Alibakhshi, E., E. Ghasemi et M. Mahdavian. « Corrosion inhibition by lithium zinc phosphate pigment ». Corrosion Science 77 (décembre 2013) : 222–29. http://dx.doi.org/10.1016/j.corsci.2013.08.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

ABRAHAMS, I., et K. S. EASSON. « ChemInform Abstract : Structure of Lithium Nickel Phosphate. » ChemInform 24, no 40 (20 août 2010) : no. http://dx.doi.org/10.1002/chin.199340043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Yang, Shoufeng, Peter Y. Zavalij et M. Stanley Whittingham. « Hydrothermal synthesis of lithium iron phosphate cathodes ». Electrochemistry Communications 3, no 9 (septembre 2001) : 505–8. http://dx.doi.org/10.1016/s1388-2481(01)00200-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Zhou, Ming, Kanglin Liu, Mingdeng Wei, Jingwei Zhang, Song Chen et Wanli Cheng. « Recovery of Lithium Iron Phosphate by Specific Ultrasonic Cavitation Parameters ». Sustainability 14, no 6 (14 mars 2022) : 3390. http://dx.doi.org/10.3390/su14063390.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
With the widespread use of lithium iron phosphate batteries in various industries, the amount of waste lithium iron phosphate batteries is also increasing year by year, and if not disposed of in a timely manner, will pollute the environment and waste a lot of metal resources. In the composition of lithium iron phosphate batteries, the cathode has an abundance of elements. The ultrasonic method is a crucial method to recover waste LiFePO4 batteries. It has the following disadvantages, such as the lack of empirical parameters and suitable research equipment. In order to overcome the inefficiency of the LiFePO4 recycling method, the airborne bubble dynamical mechanism of ultrasound in the removal of lithium phosphate cathode material was studied by a high-speed photographic observation and Fluent simulation and the disengagement process. Mainly aimed at the parameters such as action time, power, frequency, and action position in the detachment process were optimized. The recovery efficiency of lithium iron phosphate reached 77.7%, and the recovered lithium iron phosphate powder has good electrochemical properties, with the first charge–discharge ratio of up to 145 (mAh)/g. It is shown that the new disengagement process established in this study was adopted for the recovery of waste LiFePO4.
45

Zhang, Jia-feng, Xiao-wei Wang, Bao Zhang, Chun-li Peng, Hui Tong et Zhan-hong Yang. « Multicore-shell carbon-coated lithium manganese phosphate and lithium vanadium phosphate composite material with high capacity and cycling performance for lithium-ion battery ». Electrochimica Acta 169 (juillet 2015) : 462–69. http://dx.doi.org/10.1016/j.electacta.2015.03.091.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Yang, Yongxia, Xiangqi Meng, Hongbin Cao, Xiao Lin, Chenming Liu, Yong Sun, Yi Zhang et Zhi Sun. « Selective recovery of lithium from spent lithium iron phosphate batteries : a sustainable process ». Green Chemistry 20, no 13 (2018) : 3121–33. http://dx.doi.org/10.1039/c7gc03376a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Kageyama, Hiroyuki, Yasuo Hashimoto, Yuya Oaki, Siro Saito, Yasuhiro Konishi et Hiroaki Imai. « Application of biogenic iron phosphate for lithium-ion batteries ». RSC Advances 5, no 84 (2015) : 68751–57. http://dx.doi.org/10.1039/c5ra11090d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Biogenic iron(ii) phosphate and microbially derived lithium iron phosphate spherical microparticles consisting of nanosheets produced by iron-reducing bacteria were investigated for application in lithium-ion batteries.
48

Li, Jun Yan, Hai Yan Zhao, Guang Fei Qu, Jun Jie Gu et Ping Ning. « Research of Lithium Ferrous Phosphate by Microwave Technique ». Materials Science Forum 743-744 (janvier 2013) : 455–62. http://dx.doi.org/10.4028/www.scientific.net/msf.743-744.455.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
In order to developing high-value-added products and making full use of phosphate resources, Lithium Iron Phosphate were synthesized in the controlled atmosphere, using electronic grade phosphoric acid from Yunnan province, ferrous oxalate and Lithium carbonate by microwave processing. The variety of particles and distribution in different conditions of the mixing and grinding, the influence of appearance and property of the Lithium Iron Phosphate in different conditions of microwave power, microwave time and reaction temperature were discussed. Based on the experiment the optimized process conditions have been obtained. Some of the samples were characterized by XRD, SEM, electric capacity, chemical analysis, cycle performance and phase analysis. The experimental results show that the microwave synthesis method of Lithium Ferrous Phosphate is feasible.
49

Uwai, Yuichi, Riku Yamaguchi et Tomohiro Nabekura. « Analysis of sex difference in the tubular reabsorption of lithium in rats ». Physiological Research 70, no 4 (31 août 2021) : 655–59. http://dx.doi.org/10.33549/physiolres.934568.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Lithium is used in the treatment of bipolar disorder. We previously demonstrated that two types of transporters mediate the tubular reabsorption of lithium in rats, and suggested that sodium-dependent phosphate transporters play a role in lithium reabsorption with high affinity. In the present study, we examined sex differences in lithium reabsorption in rats. When lithium chloride was infused at 60 µg/min, creatinine clearance and the renal clearance of lithium were lower, and the plasma concentration of lithium was higher in female rats. These values reflected the higher fractional reabsorption of lithium in female rats. In rats infused with lithium chloride at 6 µg/min, the pharmacokinetic parameters of lithium examined were all similar in both sexes. The fractional reabsorption of lithium was decreased by foscarnet, a representative inhibitor of sodium-dependent phosphate transporters, in male and female rats when lithium chloride was infused at the low rate. Among the candidate transporters mediating lithium reabsorption examined herein, the mRNA expression of only PiT2, a sodium-dependent phosphate transporter, exhibited sexual dimorphism. The present results demonstrated sex differences in the tubular reabsorption of lithium with low affinity in rats.
50

Wei, XinLai, WenJie Gao, Yaoming Wang, Ke Wu et Tongwen Xu. « A green and economical method for preparing lithium hydroxide from lithium phosphate ». Separation and Purification Technology 280 (janvier 2022) : 119909. http://dx.doi.org/10.1016/j.seppur.2021.119909.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie