Littérature scientifique sur le sujet « Oxide doping »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Oxide doping ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Oxide doping"
Rodwihok, Chatchai, Duangmanee Wongratanaphisan, Tran Van Tam, Won Mook Choi, Seung Hyun Hur et Jin Suk Chung. « Cerium-Oxide-Nanoparticle-Decorated Zinc Oxide with Enhanced Photocatalytic Degradation of Methyl Orange ». Applied Sciences 10, no 5 (2 mars 2020) : 1697. http://dx.doi.org/10.3390/app10051697.
Texte intégralMarincaş, Alexandru-Horaţiu, et Petru Ilea. « Enhancing Lithium Manganese Oxide Electrochemical Behavior by Doping and Surface Modifications ». Coatings 11, no 4 (15 avril 2021) : 456. http://dx.doi.org/10.3390/coatings11040456.
Texte intégralRobertson, John, et Zhaofu Zhang. « Doping limits in p-type oxide semiconductors ». MRS Bulletin 46, no 11 (novembre 2021) : 1037–43. http://dx.doi.org/10.1557/s43577-021-00211-3.
Texte intégralLu, Pei Hsuan Doris, Alison Lennon et Stuart Wenham. « Laser-Doping through Anodic Aluminium Oxide Layers for Silicon Solar Cells ». Journal of Nanomaterials 2015 (2015) : 1–8. http://dx.doi.org/10.1155/2015/870839.
Texte intégralYoshida, Hidehiro, Koji Morita, Byung Nam Kim et Keijiro Hiraga. « Grain Boundary Nanostructure and High Temperature Plastic Flow in Polycrystalline Oxide Ceramics ». Materials Science Forum 638-642 (janvier 2010) : 1731–36. http://dx.doi.org/10.4028/www.scientific.net/msf.638-642.1731.
Texte intégralden Engelsen, Daniel, et Georg Gaertner. « Rare earth oxide doping in oxide cathodes ». Applied Surface Science 253, no 2 (novembre 2006) : 1023–28. http://dx.doi.org/10.1016/j.apsusc.2006.04.046.
Texte intégralMeffert, Matthias, Heike Störmer et Dagmar Gerthsen. « Dopant-Site Determination in Y- and Sc-Doped (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δby Atom Location by Channeling Enhanced Microanalysis and the Role of Dopant Site on Secondary Phase Formation ». Microscopy and Microanalysis 22, no 1 (22 décembre 2015) : 113–21. http://dx.doi.org/10.1017/s1431927615015536.
Texte intégralMcGhee, Joseph, et Vihar P. Georgiev. « Simulation Study of Surface Transfer Doping of Hydrogenated Diamond by MoO3 and V2O5 Metal Oxides ». Micromachines 11, no 4 (20 avril 2020) : 433. http://dx.doi.org/10.3390/mi11040433.
Texte intégralEl-Shobaky, Gamil A., Nagi R. E. Radwan et Farouk M. Radwan. « Catalytic Decomposition of H2O2 over Pure and Li2O-Doped Co3O4 Solids ». Adsorption Science & ; Technology 16, no 9 (octobre 1998) : 733–46. http://dx.doi.org/10.1177/026361749801600906.
Texte intégralLehr, Daniela, Markus R. Wagner, Johanna Flock, Julian S. Reparaz, Clivia M. Sotomayor Torres, Alexander Klaiber, Thomas Dekorsy et Sebastian Polarz. « A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials ». Beilstein Journal of Nanotechnology 6 (18 novembre 2015) : 2161–72. http://dx.doi.org/10.3762/bjnano.6.222.
Texte intégralThèses sur le sujet "Oxide doping"
Yang, Zheng. « Doping in zinc oxide thin films ». Diss., [Riverside, Calif.] : University of California, Riverside, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3359913.
Texte intégralIncludes abstract. Available via ProQuest Digital Dissertations. Title from first page of PDF file (viewed March 12, 2010). Includes bibliographical references. Also issued in print.
Deyu, Getnet Kacha. « Defect Modulation Doping for Transparent Conducting Oxide Materials ». Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI071.
Texte intégralThe doping of semiconductor materials is a fundamental part of modern technology.Transparent conducting oxides (TCOs) are a group of semiconductors, which holds the features of being transparent and electrically conductive. The high electrical conductivity is usually obtained by typical doping with heterovalent substitutional impurities like in Sn-doped In2O3 (ITO), fluorine-doped SnO2 (FTO) and Al-doped ZnO (AZO). However, these classical approaches have in many cases reached their limits both in regard to achievable charge carrier density, as well as mobility. Modulation doping, a mechanism that exploits the energy band alignment at an interface between two materials to induce free charge carriers in one of them, has been shown to avoid the mobility limitation. However, the carrier density limit cannot be lifted by this approach, as the alignment of doping limits by intrinsic defects. The goal of this work was to implement the novel doping strategy for TCO materials. The strategy relies on using of defective wide band gap materials to dope the surface of the TCO layers, which results Fermi level pinning at the dopant phase and Fermi level positions outside the doping limit in the TCOs. The approach is tested by using undoped In2O3, Sn-doped In2O3 and SnO2 as TCO host phase and Al2O3 and SiO2−x as wide band gap dopant phase
Taub, Samuel. « Transition metal oxide doping of ceria-based solid solutions ». Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/18845.
Texte intégralPRADA, STEFANO. « Enhancing oxide surface reactivity by doping or nano-structuring ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/50011.
Texte intégralWellenius, Patrick. « Nitrogen Doping and Ion Beam Processing of Zinc Oxide Thin Films ». NCSU, 2006. http://www.lib.ncsu.edu/theses/available/etd-01042006-015801/.
Texte intégralTrapatseli, Maria. « Doping controlled resistive switching dynamics in transition metal oxide thin films ». Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/423702/.
Texte intégralLi, Zheng. « Phase behavior of iron oxide doping with ethylbenzene dehydrogenation catalyst promoters ». [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3355517.
Texte intégralRashidi, Nazanin. « Cation and anion doping of ZnO thin films by spray pyrolysis ». Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:e8261559-8901-409d-8d08-a3fc04b6d734.
Texte intégralGharavi-Naeini, Jafar. « Doping and temperature dependence of the Raman spectra lanthanum strontium copper oxide ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0028/NQ51865.pdf.
Texte intégralLitzelman, Scott J. « Modification of space charge transport in nanocrystalline cerium oxide by heterogeneous doping ». Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/46681.
Texte intégralIncludes bibliographical references (p. 161-170).
In the search for new materials for energy conversion and storage technologies such as solid oxide fuel cells, nano-ionic materials have become increasingly relevant because unique physical and transport properties that occur on the nanoscale may potentially lead to improved device performance. Nanocrystalline cerium oxide, in particular, has been the subject of intense scrutiny, as researchers have attempted to link trends in electrical conductivity with the properties of space charge layers within the material. In this thesis, efforts designed to intentionally modify the space charge potential, and thus the space charge profiles and the macroscopic conductivity, are described.Nanocrystalline CeO2 thin films with a columnar microstructure were grown by pulsed laser deposition. A novel heterogeneous doping technique was developed in which thin NiO and Gd203 diffusion sources were deposited on the ceria surface and annealed in the temperature range of 7008000C in order to diffuse the cations into the ceria layer exclusively along grain boundaries. Time-offlight secondary ion mass spectrometry (ToF-SIMS) was utilized to measure the diffusion profiles. A single diffusion mechanism, identified as grain boundary diffusion, was observed. Using the constant source solution to the diffusion equation, grain boundary diffusion coefficients on the order of 10-15 to 10-13 cm2/s were obtained for Ni, as well as Mg diffusion emanating from the underlying substrate. Microfabricated Pt electrodes were deposited on the sample surface, and electrical measurements were made using impedance spectroscopy and two-point DC techniques. The asdeposited thin films displayed a total conductivity and activation energy consistent with reference values in the literature. After in-diffusion, the electrical conductivity decreased by one order of magnitude. Novel electron-blocking electrodes, consisting of dense yttria-stabilized zirconia and porous Pt layers were fabricated in order to deconvolute the ionic and electronic contributions to the total conductivity. In the as-deposited state, the ionic conductivity was determined to be pO2-independent, and the electronic conductivity displayed a slope of -0.30. The ionic transference number in the as-deposited state was 0.34.
(cont.) After annealing either with or without a diffusion source at temperatures of 700-8000C, both the ionic and electronic partial conductivities decreased. The ionic transferene numbers with and without a diffusion source were 0.26 and 0.76, respectively. Based on the existing framework of charge transport in polycrystalline materials, carrier profiles associated with the Mott-Schottky and Gouy-Chapman models were integrated in order to predict conductivity values based on parameters such as grain size and the space charge potential. Mott-Schottky profiles with a space charge potential of 0.44V were used to describe the behavior of the ceria thin films in the as-deposited state. It is proposed that annealing at temperatures of 700TC and above resulted in segregation of acceptor impurity ions to the grain boundary, resulting in GouyChapman conditions. The best fit to the annealed data occurred for a space charge potential of 0.35 V: a decrease of approximately 90 mV from the as-deposited state. In addition, a high-conductivity interfacial layer between the CeO2 and substrate was detected and was determined to influence samples with no surface diffusion source to a greater degree than those with NiO or Gd203.
by Scott J. Litzelman.
Ph.D.
Livres sur le sujet "Oxide doping"
Jung, Chul-Ho. From Intrinsic to Extrinsic Design of Lithium-Ion Battery Layered Oxide Cathode Material Via Doping Strategies. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6398-8.
Texte intégralKaschieva, S. Radiation defects in ion implanted and/or high-energy irradiated MOS structures. Hauppauge, N.Y : Nova Science Publishers, 2009.
Trouver le texte intégralKaschieva, S. Radiation defects in ion implanted and/or high-energy irradiated MOS structures. New York : Nova Science Publishers, 2010.
Trouver le texte intégralSymposium J on Ion Implantation into Semiconductors, Oxides, and Ceramics (1998 Strasbourg, France). Ion implantation into semiconductors, oxides, and ceramics : Proceedings of the E-MRS 1998 Spring Meeting Symposium J on Ion Implantation into Semiconductors, Oxides, and Ceramics, Strasbourg, France, 16-19 June, 1998. Amsterdam : Elsevier, 1999.
Trouver le texte intégralS, Ginley D., Materials Research Society, Materials Research Society Meeting et Symposium on Crystalline Oxides on Semiconductors (2002 : Boston, Mass.), dir. Crystalline oxide-silicon heterostructures and oxide optoelectronics : Symposium held December 2-4, 2002, Boston, Massachusetts, U.S.A. Warrendale, Pa : Materials Research Society, 2003.
Trouver le texte intégralJung, Chul-Ho. From Intrinsic to Extrinsic Design of Lithium-Ion Battery Layered Oxide Cathode Material Via Doping Strategies. Springer, 2022.
Trouver le texte intégralIon Implantation into Semiconductors, Oxides and Ceramics (European Materials Research Society Symposia Proceedings). Elsevier Science, 1999.
Trouver le texte intégralChapitres de livres sur le sujet "Oxide doping"
Waag, Andreas. « Electrical Conductivity and Doping ». Dans Zinc Oxide, 95–119. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10577-7_5.
Texte intégralGurylev, Vitaly. « Strategy I : Doping ». Dans Advancement of Metal Oxide Materials for Photocatalytic Application, 43–85. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20553-8_2.
Texte intégralArtacho, E., N. C. Bristowe, P. B. Littlewood, J. M. Pruneda et M. Stengel. « Electrochemical Doping of Oxide Heterostructures ». Dans Frontiers in Electronic Materials, 35. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527667703.ch4.
Texte intégralJanotti, Anderson, et Chris G. Van de Walle. « Native Point Defects and Doping in ZnO ». Dans Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, 113–34. Chichester, UK : John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119991038.ch5.
Texte intégralSatardekar, Pradnyesh, Dario Mortinaro et Vincenzo M. Sglavo. « Modification of Sintering Behavior of Ni Based Anode Material by Doping for Metal Supported-SOFC ». Dans Advances in Solid Oxide Fuel Cells IX, 77–87. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807750.ch7.
Texte intégralMasuda, Hiromu, Fumio Mizuno, Izumi Hirabayashi et Shoji Tanaka. « Possibility of the Carrier Doping in a Ferromagnetic Copper Oxide : La4Ba2Cu2O10 ». Dans Advances in Superconductivity III, 241–44. Tokyo : Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68141-0_51.
Texte intégralJadhav, Gurunath, Sanjay Sahare, Dipti Desai, Tejashree M. Bhave, S. N. Kale et Ravi Kant Choubey. « Effect of Copper Doping on Physical Properties of Cadmium Oxide Thin Films ». Dans Springer Proceedings in Physics, 163–67. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29096-6_21.
Texte intégralAnita Singh et Vandna Luthra. « Modulating Structural, Optical and Electrical Properties of Zinc Oxide by Aluminium Doping ». Dans Springer Proceedings in Physics, 1255–65. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_191.
Texte intégralSharma, Akash, Pooja Sahoo, Alfa Sharma et Saswat Mohapatra. « Effect of Morphology and Doping on the Photoelectrochemical Performance of Zinc Oxide ». Dans Electrochemical Energy Conversion and Storage Systems for Future Sustainability, 251–88. Includes bibliographical references and index. : Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003009320-8.
Texte intégralMansanares, A. M., F. C. G. Gandra, E. C. da Silva, H. Vargas et L. C. M. Miranda. « Photoacoustic and EPR Investigation of Iron Oxide Doping of Soda-Lime Glasses ». Dans Photoacoustic and Photothermal Phenomena II, 326–27. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-540-46972-8_83.
Texte intégralActes de conférences sur le sujet "Oxide doping"
Van de Walle, Chris G. « Doping of gallium oxide and aluminum gallium oxide alloys ». Dans Oxide-based Materials and Devices XII, sous la direction de Ferechteh H. Teherani, David C. Look et David J. Rogers. SPIE, 2021. http://dx.doi.org/10.1117/12.2588459.
Texte intégralBadescu, Catalin, Daniel Hashemi, Jonghoon J. Lee et Jacob P. Tavenner. « Doping of beta-gallium-oxide (Conference Presentation) ». Dans Oxide-based Materials and Devices IX, sous la direction de Ferechteh H. Teherani, David C. Look et David J. Rogers. SPIE, 2018. http://dx.doi.org/10.1117/12.2295970.
Texte intégralLyons, John L., Darshana Wickramaratne et Joel B. Varley. « Band alignments and doping strategies in orthorhombic and monoclinic AlGO alloys ». Dans Oxide-based Materials and Devices XII, sous la direction de Ferechteh H. Teherani, David C. Look et David J. Rogers. SPIE, 2021. http://dx.doi.org/10.1117/12.2588842.
Texte intégralHuang, Dong, Yingli Shi et Francis C. Ling. « Enhancing the dielectric constant of oxides via acceptor-donor co-doping ». Dans Oxide-based Materials and Devices XII, sous la direction de Ferechteh H. Teherani, David C. Look et David J. Rogers. SPIE, 2021. http://dx.doi.org/10.1117/12.2586393.
Texte intégralQi, Dongchen. « Enabling diamond nanoelectronics by transition metal-oxide-induced surface transfer doping ». Dans Oxide-based Materials and Devices XII, sous la direction de Ferechteh H. Teherani, David C. Look et David J. Rogers. SPIE, 2021. http://dx.doi.org/10.1117/12.2588701.
Texte intégralGao, Yongli. « Investigation of Doping C60 with Metal Oxide ». Dans Advanced Optoelectronics for Energy and Environment. Washington, D.C. : OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.asu1b.2.
Texte intégralMauze, Akhil, Takeki Itoh, Yuewei Zhang et James S. Speck. « Sn doping of [beta]-Ga2O3 grown by plasma-assisted molecular beam epitaxy ». Dans Oxide-based Materials and Devices XII, sous la direction de Ferechteh H. Teherani, David C. Look et David J. Rogers. SPIE, 2021. http://dx.doi.org/10.1117/12.2593236.
Texte intégralHuang, Xiao. « Effect of Co-Doping on Microstructure, Thermal and Mechanical Properties of Ternary Zirconia-Based Thermal Barrier Coating Materials ». Dans ASME Turbo Expo 2009 : Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59007.
Texte intégralTeherani, Ferechteh H., Giti A. Khodaparast, Yaobin V. Xu, Jinsong Wu, Vinayak P. Dravid, Dimitris Pavlidis, Manijeh Razeghi et al. « A review of the growth, doping, and applications of Beta-Ga2O3 thin films ». Dans Oxide-based Materials and Devices IX, sous la direction de Ferechteh H. Teherani, David C. Look et David J. Rogers. SPIE, 2018. http://dx.doi.org/10.1117/12.2302471.
Texte intégralChakrabarti, Subhananda, Sushama Sushama, Punam Murkute, Hemant Ghadi et Vinayak Chavan. « Augmenting optical and structural properties in Zn0.85Mg0.15O thin film with P-B co-doping ». Dans Oxide-based Materials and Devices X, sous la direction de Ferechteh H. Teherani, David C. Look et David J. Rogers. SPIE, 2019. http://dx.doi.org/10.1117/12.2508716.
Texte intégralRapports d'organisations sur le sujet "Oxide doping"
Siskaninetz, William J., J. E. Ehret, J. A. Lott, J. C. Griffith, T. R. Nelson et Jr. Enhanced Performance of Bipolar Cascade Light Emitting Diodes by Doping the Aluminum Oxide Apertures. Fort Belvoir, VA : Defense Technical Information Center, novembre 2004. http://dx.doi.org/10.21236/ada429346.
Texte intégralParkinson, Bruce A., et He Jianghua. Combinatorial Discovery and Optimization of the Composition, Doping and Morphology of New Oxide Semiconductors for Efficient Photoelectrochemical Water Splitting. Office of Scientific and Technical Information (OSTI), janvier 2015. http://dx.doi.org/10.2172/1167006.
Texte intégralHill, Julienne Marie. Doping Experiments on Low-Dimensional Oxides and a Search for Unusual Magnetic Properties of MgAlB14. Office of Scientific and Technical Information (OSTI), janvier 2002. http://dx.doi.org/10.2172/806588.
Texte intégral