Articles de revues sur le sujet « Organohalides »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Organohalides.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Organohalides ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Maucourt, Bruno, Stéphane Vuilleumier et Françoise Bringel. « Transcriptional regulation of organohalide pollutant utilisation in bacteria ». FEMS Microbiology Reviews 44, no 2 (3 février 2020) : 189–207. http://dx.doi.org/10.1093/femsre/fuaa002.

Texte intégral
Résumé :
ABSTRACT Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lee, Matthew, Chris Marquis, Bat-Erdene Judger et Mike Manefield. « Anaerobic microorganisms and bioremediation of organohalide pollution ». Microbiology Australia 36, no 3 (2015) : 125. http://dx.doi.org/10.1071/ma15044.

Texte intégral
Résumé :
Organohalide pollution of subsurface environments is ubiquitous across all industrialised countries. Fortunately, strictly anaerobic microorganisms exist that have evolved using naturally occurring organohalides as their terminal electron acceptor. These unusual organisms are now being utilised to clean anthropogenic organohalide pollution.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bolandi, Ali, Setare Tahmasebi Nick et Sherine O. Obare. « Nanoscale materials for organohalide degradation via reduction pathways ». Nanotechnology Reviews 1, no 2 (1 mars 2012) : 147–71. http://dx.doi.org/10.1515/ntrev-2012-0003.

Texte intégral
Résumé :
AbstractThe unique chemical and physical properties of nanoscale materials have led to important roles in several scientific and technological fields. Environmental chemistry processes have benefited from the enhanced reactivity of nanoscale particles relative to their bulk counterparts with contaminants. Here, we describe recent advances in the synthesis and characterization of metallic and bimetallic nanoparticles that have been effective toward degrading toxic organohalide contaminants. We then review the degradation mechanisms involved in the reactions of nanoscale particles with organohalides via reduction pathways. We also discuss an emerging area – the degradation of organohalides via multi-electron transfer pathways.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bertolini, Martina, Sarah Zecchin, Giovanni Pietro Beretta, Patrizia De Nisi, Laura Ferrari et Lucia Cavalca. « Effectiveness of Permeable Reactive Bio-Barriers for Bioremediation of an Organohalide-Polluted Aquifer by Natural-Occurring Microbial Community ». Water 13, no 17 (5 septembre 2021) : 2442. http://dx.doi.org/10.3390/w13172442.

Texte intégral
Résumé :
In this study, a bioremediation approach was evaluated for the decontamination of an aquifer affected by the release of organohalides by an industrial landfill. After preliminary physicochemical and microbiological characterization of the landfill groundwater, the stimulation of natural organohalide respiration by the addition of a reducing substrate (i.e., molasse) was tested both at microcosm and at field scales, by the placement of an anaerobic permeable reactive bio-barrier. Illumina sequencing of cDNA 16S rRNA gene revealed that organohalide-respiring bacteria of genera Geobacter, Sulfurospirillum, Dehalococcoides, Clostridium and Shewanella were present within the aquifer microbial community, along with fermentative Firmicutes and Parvarchaeota. Microcosm experiments confirmed the presence of an active natural attenuation, which was boosted by the addition of the reducing substrate. Field tests showed that the bio-barrier decreased the concentration of chloroethenes at a rate of 23.74 kg d−1. Monitoring of organohalide respiration biomarkers by qPCR and Illumina sequencing revealed that native microbial populations were involved in the dechlorination process, although their specific role still needs to be clarified. The accumulation of lower-chloroethenes suggested the need of future improvement of the present approach by supporting bacterial vinyl-chloride oxidation, to achieve a complete degradation of chloroethenes.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Futagami, Taiki, Yuki Morono, Takeshi Terada, Anna H. Kaksonen et Fumio Inagaki. « Distribution of dehalogenation activity in subseafloor sediments of the Nankai Trough subduction zone ». Philosophical Transactions of the Royal Society B : Biological Sciences 368, no 1616 (19 avril 2013) : 20120249. http://dx.doi.org/10.1098/rstb.2012.0249.

Texte intégral
Résumé :
Halogenated organic matter buried in marine subsurface sediment may serve as a source of electron acceptors for anaerobic respiration of subseafloor microbes. Detection of a diverse array of reductive dehalogenase-homologous ( rdhA ) genes suggests that subseafloor organohalide-respiring microbial communities may play significant ecological roles in the biogeochemical carbon and halogen cycle in the subseafloor biosphere. We report here the spatial distribution of dehalogenation activity in the Nankai Trough plate-subduction zone of the northwest Pacific off the Kii Peninsula of Japan. Incubation experiments with slurries of sediment collected at various depths and locations showed that degradation of several organohalides tested only occurred in the shallow sedimentary basin, down to 4.7 metres below the seafloor, despite detection of rdhA in the deeper sediments. We studied the phylogenetic diversity of the metabolically active microbes in positive enrichment cultures by extracting RNA, and found that Desulfuromonadales bacteria predominate. In addition, for the isolation of genes involved in the dehalogenation reaction, we performed a substrate-induced gene expression screening on DNA extracted from the enrichment cultures. Diverse DNA fragments were obtained and some of them showed best BLAST hit to known organohalide respirers such as Dehalococcoides , whereas no functionally known dehalogenation-related genes such as rdhA were found, indicating the need to improve the molecular approach to assess functional genes for organohalide respiration.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ito, Hajime, Eiji Yamamoto, Satoshi Maeda et Tetsuya Taketsugu. « Transition-Metal-Free Boryl Substitution Using Silylboranes and Alkoxy Bases ». Synlett 28, no 11 (26 avril 2017) : 1258–67. http://dx.doi.org/10.1055/s-0036-1588772.

Texte intégral
Résumé :
Silylboranes are used as borylation reagents for organohalides in the presence of alkoxy bases without transition-metal catalysts. PhMe2Si–B(pin) reacts with a variety of aryl, alkenyl, and alkyl halides, including sterically hindered examples, to provide the corresponding organoboronates in good yields with high borylation/silylation ratios, showing good functional group compatibility. Halogenophilic attack of a silyl nucleophile on organohalides, and subsequent nucleophilic attack on the boron electrophile are identified to be crucial, based on the results of extensive theoretical and experimental studies. This boryl­ation reaction is further applied to the first direct dimesitylboryl (BMes2) substitution of aryl halides using Ph2MeSi–BMes2 and Na(O-t-Bu), affording aryldimesitylboranes, which are regarded as an important class of compounds for organic materials.1 Introduction2 Boryl Substitution of Organohalides with PhMe2Si–B(pin)/Alkoxy Bases3 Mechanistic Investigations4 DFT Mechanistic Studies Using an Artificial Force Induced Reaction (AFIR) Method5 Dimesitylboryl Substitution of Aryl Halides with Ph2MeSi–BMes2/Na(O-t-Bu)6 Conclusion
Styles APA, Harvard, Vancouver, ISO, etc.
7

Spurling, TH, et DA Winkler. « CNDO/2 Calculations for Organohalides ». Australian Journal of Chemistry 39, no 2 (1986) : 233. http://dx.doi.org/10.1071/ch9860233.

Texte intégral
Résumé :
A CNDO/2 parameterization for performing semiempirical molecular orbital calculations for organic molecules containing bromine and iodine is presented; the results are superior to those from other parameterizations, and generally agree with ab initio calculations and experiment.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Wigginton, Nicholas S. « How bacteria break down organohalides ». Science 346, no 6208 (23 octobre 2014) : 435.9–436. http://dx.doi.org/10.1126/science.346.6208.435-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Rupakula, Aamani, Thomas Kruse, Sjef Boeren, Christof Holliger, Hauke Smidt et Julien Maillard. « The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus : lessons from tiered functional genomics ». Philosophical Transactions of the Royal Society B : Biological Sciences 368, no 1616 (19 avril 2013) : 20120325. http://dx.doi.org/10.1098/rstb.2012.0325.

Texte intégral
Résumé :
Dehalobacter restrictus strain PER-K23 is an obligate organohalide respiring bacterium, which displays extremely narrow metabolic capabilities. It grows only via coupling energy conservation to anaerobic respiration of tetra- and trichloroethene with hydrogen as sole electron donor. Dehalobacter restrictus represents the paradigmatic member of the genus Dehalobacter , which in recent years has turned out to be a major player in the bioremediation of an increasing number of organohalides, both in situ and in laboratory studies. The recent elucidation of the D. restrictus genome revealed a rather elaborate genome with predicted pathways that were not suspected from its restricted metabolism, such as a complete corrinoid biosynthetic pathway, the Wood–Ljungdahl (WL) pathway for CO 2 fixation, abundant transcriptional regulators and several types of hydrogenases. However, one important feature of the genome is the presence of 25 reductive dehalogenase genes, from which so far only one, pceA , has been characterized on genetic and biochemical levels. This study describes a multi-level functional genomics approach on D. restrictus across three different growth phases. A global proteomic analysis allowed consideration of general metabolic pathways relevant to organohalide respiration, whereas the dedicated genomic and transcriptomic analysis focused on the diversity, composition and expression of genes associated with reductive dehalogenases.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Sheng-Jun, Lu Han et Shi-Kai Tian. « 1,2-Aminohalogenation of arynes with amines and organohalides ». Chemical Communications 55, no 75 (2019) : 11255–58. http://dx.doi.org/10.1039/c9cc05505c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Denk, Michael K., Nicholas S. Milutinović, Katherine M. Marczenko, Natalie M. Sadowski et Athanasios Paschos. « Nature's hydrides : rapid reduction of halocarbons by folate model compounds ». Chemical Science 8, no 3 (2017) : 1883–87. http://dx.doi.org/10.1039/c6sc04314c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Ghasemi, Mehri, Miaoqiang Lyu, Md Roknuzzaman, Jung-Ho Yun, Mengmeng Hao, Dongxu He, Yang Bai et al. « Phenethylammonium bismuth halides : from single crystals to bulky-organic cation promoted thin-film deposition for potential optoelectronic applications ». Journal of Materials Chemistry A 7, no 36 (2019) : 20733–41. http://dx.doi.org/10.1039/c9ta07454f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kim, Hyejin, et Chulbom Lee. « Nickel-Catalyzed Reductive Cyclization of Organohalides ». Organic Letters 13, no 8 (15 avril 2011) : 2050–53. http://dx.doi.org/10.1021/ol200455n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Xiao, Shuhuan, Chen Liu, Bin Song, Liang Wang, Yan Qi et Yongjun Liu. « Samarium-based Grignard-type addition of organohalides to carbonyl compounds under catalysis of CuI ». Chemical Communications 57, no 50 (2021) : 6169–72. http://dx.doi.org/10.1039/d1cc00965f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Kareem, Rzgar Tawfeeq, Bayan Azizi, Manzarbanou Asnaashariisfahani, Abdolghaffar Ebadi et Esmail Vessally. « Vicinal halo-trifluoromethylation of alkenes ». RSC Advances 11, no 25 (2021) : 14941–55. http://dx.doi.org/10.1039/d0ra06872a.

Texte intégral
Résumé :
Both trifluoromethyl and halide groups are widely found in medicinally and pharmaceutically important compounds and, moreover, organohalides are commonly used as versatile intermediates in synthetic organic chemistry.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Sun, Baozhen, Shuang Liu, Mengru Zhang, Jinbo Zhao et Qian Zhang. « Pd-Catalyzed carboannulation of γ,δ-alkenyl oximes : efficient access to 5-membered cyclic nitrones and dihydroazines ». Organic Chemistry Frontiers 6, no 3 (2019) : 388–92. http://dx.doi.org/10.1039/c8qo01076e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Zhang, Haoxiang, Mengze Liang, Xiao Zhang, Meng-Ke He, Chao Yang, Lin Guo et Wujiong Xia. « Electrochemical synthesis of functionalized gem-difluoroalkenes with diverse alkyl sources via a defluorinative alkylation process ». Organic Chemistry Frontiers 9, no 1 (2022) : 95–101. http://dx.doi.org/10.1039/d1qo01460a.

Texte intégral
Résumé :
An electrochemical defluorinative alkylation of α-trifluoromethyl alkenes is described. This reaction enables the preparation of functionalized gem-difluoroalkenes with diverse alkyl sources including organohalides, NHP esters, and Katritzky salts.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Xu, Qing, Huamei Xie, Pingliang Chen, Lei Yu, Jianhui Chen et Xingen Hu. « Organohalide-catalyzed dehydrative O-alkylation between alcohols : a facile etherification method for aliphatic ether synthesis ». Green Chemistry 17, no 5 (2015) : 2774–79. http://dx.doi.org/10.1039/c5gc00284b.

Texte intégral
Résumé :
Organohalides effectively catalyzed dehydrative O-alkylation reactions between alcohols, providing selective, practical, green, and easily scalable homo- and cross-etherification methods for the preparation of useful symmetrical and unsymmetrical aliphatic ethers.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Fagin, Anatolii A., Tatyana V. Balashova, Dmitrii M. Kusyaev, Tatyana I. Kulikova, Tatyana A. Glukhova, Natalya P. Makarenko, Yurii A. Kurskii, William J. Evans et Mikhail N. Bochkarev. « Reactions of neodymium(II) iodide with organohalides ». Polyhedron 25, no 5 (mars 2006) : 1105–10. http://dx.doi.org/10.1016/j.poly.2005.08.050.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Chu, Xue-Qiang, Dan Liu, Zhen-Hua Xing, Xiao-Ping Xu et Shun-Jun Ji. « Palladium-Catalyzed Cyclization of Alkenes with Organohalides ». Organic Letters 18, no 4 (2 février 2016) : 776–79. http://dx.doi.org/10.1021/acs.orglett.6b00035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Root, Douglas P., Gerald Pitz et Namal Priyantha. « Electrocatalytic metalloporphyrin electrode for detection of organohalides ». Electrochimica Acta 36, no 5-6 (janvier 1991) : 855–58. http://dx.doi.org/10.1016/0013-4686(91)85285-f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Pri-Bar, Ilan, et Ouri Buchman. « Homogeneous, palladium-catalyzed, selective hydrogenolysis of organohalides ». Journal of Organic Chemistry 51, no 5 (mars 1986) : 734–36. http://dx.doi.org/10.1021/jo00355a029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Boateng, Sakyiwaa. « Assessing conceptual difficulties experienced by pre-service chemistry teachers in organic chemistry ». Eurasia Journal of Mathematics, Science and Technology Education 20, no 2 (1 février 2024) : em2398. http://dx.doi.org/10.29333/ejmste/14156.

Texte intégral
Résumé :
Organic chemistry is a mandatory component of chemistry II and chemistry III within the curriculum for pre-service chemistry teachers (PSCTs) pursuing a degree in chemistry teaching. The organic chemistry course sequence is well recognized as challenging and unapproachable for students, despite its significant relevance and impact across several sectors. While efforts have been made to recognize and deal with challenges faced by students in the cognitive and psychomotor aspects, there has been less attention given to identifying PSCTs’ conceptual difficulties and misconceptions of organic chemistry. This includes the subsequent strategies to design instructions to enhance students’ learning experiences, which are crucial elements in addressing their achievements in organic chemistry. The study aimed to identify the conceptual difficulties and misconceptions encountered by PSCTs in organohalides and stereochemistry. Furthermore, the study aimed to suggest strategies to enhance PSCTs’ understanding of the course. The study was situated within the theoretical framework of constructivism and employed an interpretivist qualitative case study design. The population under study consisted of all individuals who were enrolled in the Bachelor of Education program within the faculty of educational sciences. A cohort of 33 whole-class PSCTs who had registered for the chemistry III course, where organohalides and stereochemistry were taught as units, were purposefully selected to participate in the study. The main instruments were document analysis, formal written tests, and interviews. Data were analyzed using thematic analysis. The study revealed that PSCTs encountered difficulties when attempting to solve problems related to organohalides and stereochemistry. In addition, PSCTs had misconceptions about these concepts. The study, therefore, recommends the implementation of suitable and appropriate instructional strategies to enhance PSCTs’ conceptual understanding and reduce misconceptions.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Bauman, Lew, et Michael K. Stenstrom. « Observations of the reaction between organohalides and sulfite ». Environmental Science & ; Technology 23, no 2 (février 1989) : 232–36. http://dx.doi.org/10.1021/es00179a017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Kim, Hyejin, et Chulbom Lee. « Visible-Light-Induced Photocatalytic Reductive Transformations of Organohalides ». Angewandte Chemie 124, no 49 (4 novembre 2012) : 12469–72. http://dx.doi.org/10.1002/ange.201203599.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Lekkala, Ravindar, Revathi Lekkala, Balakrishna Moku, K. P. Rakesh et Hua-Li Qin. « Recent Developments in Radical-Mediated Transformations of Organohalides ». European Journal of Organic Chemistry 2019, no 17 (12 avril 2019) : 2769–806. http://dx.doi.org/10.1002/ejoc.201900098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kim, Hyejin, et Chulbom Lee. « Visible-Light-Induced Photocatalytic Reductive Transformations of Organohalides ». Angewandte Chemie International Edition 51, no 49 (4 novembre 2012) : 12303–6. http://dx.doi.org/10.1002/anie.201203599.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kim, Hyejin, et Chulbom Lee. « ChemInform Abstract : Nickel-Catalyzed Reductive Cyclizaton of Organohalides. » ChemInform 42, no 30 (30 juin 2011) : no. http://dx.doi.org/10.1002/chin.201130030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Abbaspourtamijani, Ali, Nicholas Vitti, Henry White et Yue Qi. « Electrochemical Reduction of Organohalides : Insights from First Principles Calculations ». ECS Meeting Abstracts MA2021-02, no 48 (19 octobre 2021) : 1940. http://dx.doi.org/10.1149/ma2021-02481940mtgabs.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

He, Haozheng, Yiyang Li, Rui Shen, Hojae Shim, Yanhong Zeng, Siyan Zhao, Qihong Lu, Bixian Mai et Shanquan Wang. « Environmental occurrence and remediation of emerging organohalides : A review ». Environmental Pollution 290 (décembre 2021) : 118060. http://dx.doi.org/10.1016/j.envpol.2021.118060.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Lu, Qihong, Lan Qiu, Ling Yu, Shangwei Zhang, Renata Alves de Toledo, Hojae Shim et Shanquan Wang. « Microbial transformation of chiral organohalides : Distribution, microorganisms and mechanisms ». Journal of Hazardous Materials 368 (avril 2019) : 849–61. http://dx.doi.org/10.1016/j.jhazmat.2019.01.103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wallner, Olov A., et Kálmán J. Szabó. « Employment of Palladium Pincer-Complexes in Phenylselenylation of Organohalides ». Journal of Organic Chemistry 70, no 23 (novembre 2005) : 9215–21. http://dx.doi.org/10.1021/jo051266x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Cheung, Man Sing, Todd B. Marder et Zhenyang Lin. « Mechanisms of Reactions of a Lithium Boryl with Organohalides ». Organometallics 30, no 11 (13 juin 2011) : 3018–28. http://dx.doi.org/10.1021/om200115y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zanaroli, Giulio, Andrea Negroni, Max M. Häggblom et Fabio Fava. « Microbial dehalogenation of organohalides in marine and estuarine environments ». Current Opinion in Biotechnology 33 (juin 2015) : 287–95. http://dx.doi.org/10.1016/j.copbio.2015.03.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Nijenhuis, Ivonne, et Hans H. Richnow. « Stable isotope fractionation concepts for characterizing biotransformation of organohalides ». Current Opinion in Biotechnology 41 (octobre 2016) : 108–13. http://dx.doi.org/10.1016/j.copbio.2016.06.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Li, Yuqiang, et Guoyin Yin. « Bathocuproine-Enabled Nickel-Catalyzed Selective Ullmann Cross-Coupling of Two sp2-Hybridized Organohalides ». Synlett 32, no 16 (24 août 2021) : 1657–61. http://dx.doi.org/10.1055/a-1608-5693.

Texte intégral
Résumé :
AbstractCross-coupling reactions are essential for the synthesis of complex organic molecules. Here, we report a nickel-catalyzed Ullmann cross-coupling of two sp2-hybridized organohalides, featuring high cross-selectivity when the two coupling partners are used in a 1:1 ratio. The high chemoselectivity is governed by the bathocuproine ligand. Moreover, the mild reductive reaction conditions allow that a wide range of functional groups are compatible in this Ullmann cross-coupling.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Wackett, Lawrence P. « Recruitment of Co-Metabolic Enzymes for Environmental Detoxification of Organohalides ». Environmental Health Perspectives 103 (juin 1995) : 45. http://dx.doi.org/10.2307/3432478.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Wackett, L. P. « Recruitment of co-metabolic enzymes for environmental detoxification of organohalides. » Environmental Health Perspectives 103, suppl 5 (juin 1995) : 45–48. http://dx.doi.org/10.1289/ehp.95103s445.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Cristofoli, Walter A., et Brian A. Keay. « A palladium catalyzed cross-coupling between furylborates (generated ) and organohalides ». Tetrahedron Letters 32, no 42 (octobre 1991) : 5881–84. http://dx.doi.org/10.1016/s0040-4039(00)79416-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Zheng, Kewang, Guanlin Xiao, Tao Guo, Yalan Ding, Chengdong Wang, Teck-Peng Loh et Xiaojin Wu. « Intermolecular Reductive Heck Reaction of Unactivated Aliphatic Alkenes with Organohalides ». Organic Letters 22, no 2 (8 janvier 2020) : 694–99. http://dx.doi.org/10.1021/acs.orglett.9b04474.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Jugder, Bat-Erdene, Haluk Ertan, Matthew Lee, Michael Manefield et Christopher P. Marquis. « Reductive Dehalogenases Come of Age in Biological Destruction of Organohalides ». Trends in Biotechnology 33, no 10 (octobre 2015) : 595–610. http://dx.doi.org/10.1016/j.tibtech.2015.07.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kim, Hyejin, et Chulbom Lee. « ChemInform Abstract : Visible Light Induced Photocatalytic Reductive Transformations of Organohalides. » ChemInform 44, no 22 (13 mai 2013) : no. http://dx.doi.org/10.1002/chin.201322033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Huang, Yu, Ruizhi Yang et Wenbo H. Liu. « Recent advances of the Grignard-type reactions without involving organohalides ». Tetrahedron Chem 9 (mars 2024) : 100069. http://dx.doi.org/10.1016/j.tchem.2024.100069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Tang, Shuang-Qi, Martine Schmitt et Frédéric Bihel. « POxAP Precatalysts and the Negishi Cross-Coupling Reaction ». Synthesis 52, no 01 (28 octobre 2019) : 51–59. http://dx.doi.org/10.1055/s-0039-1690728.

Texte intégral
Résumé :
Recently developed for the Fukuyama reaction, post-oxidative addition precatalysts (POxAPs) are also very efficient in catalyzing Negishi cross-coupling reactions between organohalides and organozinc reagents. Using very low catalyst loadings, POxAPs show similar catalytic activities to those of classical precatalysts such as XPhos Pd G4 or PEPPSI-IPr, with turnover numbers of up to 93,000. POxAPs are easily prepared, are stable to air and moisture, tolerate a wide range of functional groups in the Negishi cross-coupling reaction and contribute advantageously to the arsenal of organic chemists in terms of Pd precatalysts.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Kohn, Tamar, et A. Lynn Roberts. « Interspecies Competitive Effects in Reduction of Organohalides in Connelly Iron Columns ». Environmental Engineering Science 23, no 5 (septembre 2006) : 874–85. http://dx.doi.org/10.1089/ees.2006.23.874.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Liu, Yongjun, Shuhuan Xiao, Yan Qi et Feng Du. « Reductive Homocoupling of Organohalides Using Nickel(II) Chloride and Samarium Metal ». Chemistry - An Asian Journal 12, no 6 (21 février 2017) : 673–78. http://dx.doi.org/10.1002/asia.201601712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Gilbert, Bruce C., Richard J. Harrison, Chris I. Lindsay, P. Terry McGrail, Andrew F. Parsons, Richard Southward et Derek J. Irvine. « Polymerization of Methyl Methacrylate Using Dimanganese Decacarbonyl in the Presence of Organohalides ». Macromolecules 36, no 24 (décembre 2003) : 9020–23. http://dx.doi.org/10.1021/ma034712w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Falck, J. R., Rama K. Bhatt et Jianhua Ye. « Tin-Copper Transmetalation : Cross-Coupling of .alpha.-Heteroatom-Substituted Alkyltributylstannanes with Organohalides ». Journal of the American Chemical Society 117, no 22 (juin 1995) : 5973–82. http://dx.doi.org/10.1021/ja00127a010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Shrestha, Bijay, Surendra Thapa, Santosh K. Gurung, Ryan A. S. Pike et Ramesh Giri. « General Copper-Catalyzed Coupling of Alkyl-, Aryl-, and Alkynylaluminum Reagents with Organohalides ». Journal of Organic Chemistry 81, no 3 (20 janvier 2016) : 787–802. http://dx.doi.org/10.1021/acs.joc.5b02077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zhang, Ting-Ting, Mu-Jia Luo, Yang Li, Ren-Jie Song et Jin-Heng Li. « Electrochemical Alkoxyhalogenation of Alkenes with Organohalides as the Halide Sources via Dehalogenation ». Organic Letters 22, no 18 (27 août 2020) : 7250–54. http://dx.doi.org/10.1021/acs.orglett.0c02582.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie