Sommaire
Littérature scientifique sur le sujet « Organica elettronica »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Organica elettronica ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Organica elettronica"
Mazza, Clelia, et Nicoletta De Chiara. « E-cigs e vaping : nuove prospettive di rischio per la salute. » Journal of Advanced Health Care, 29 juillet 2019. http://dx.doi.org/10.36017/jahc1907-008.
Texte intégralThèses sur le sujet "Organica elettronica"
Neri, Tommaso. « Novel organic semiconducting small molecules for X-ray detection ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14809/.
Texte intégralDRAKOPOULOU, SOFIA. « Crescita, morfologia e risposta elettronica dei transistor organici a effetto di campo in stato solido e in elettrolita ». Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2021. http://hdl.handle.net/11380/1244691.
Texte intégralOrganic electronic devices, such as light emitting diodes (OLEDs), field effect transistors (OFETs) and solar cells (OPVs) have reached a technological maturity and, in the case of OLEDs and OPVs, industrial production. Significant advancements in chemical synthesis, materials processing and device engineering have boosted the device performance and reliability. However, several concepts regarding the mechanism of the device operations are still unresolved, especially in OFETs. Charge transport in the organic semiconductors involves different interfaces of the materials and one of the most important questions that people tries to address is how the morphology of the device affects the mechanism of charge transport across the device. Indeed, morphology, molecular and energy disorder, and surface defects can easily influence their performance. There is a compelling quest for understanding the mechanical aspects of the organic thin film nucleation and growth on real test patterns in order to understand the morphology. The main goal of this thesis was to understand the correlation between different growth modes, morphology, and the electrical response of OFETs in solid state operation as well as in an electrolytic environment. Pentacene is the workhorse organic semiconductor that we used throughout this thesis. The motivation is understanding the physics of the pentacene transistors as a function of the semiconductor channel thickness, and it was the core of the EC-Marie Curie project SPM 2.0 that supported my research work. As a new important finding out of this thesis, we discovered and assessed a new anomalous growth of Pentacene thin films vs increase of the thickness, viz. the mass of organic semiconductor in the OFET channel. In this novel growth mode, there is a breakdown to the usually observed growth mode upon rapid roughening, where a layer-by-layer growth at the early stages suddenly evolves into a self-affine mode characterized by growing islands made of terrace stacks. We observed this mode at the lower deposition temperatures, but we discovered that at a precise range of deposition temperature and rate, viz. 80°C and 0.1 A/s, this growth mode is not observed, instead an iteration of wetting/dewetting transition occurs as thickness increases. Its peculiar features consist of the fact that the morphology of the islands as stacks of monomolecular terraces, is retained. However, the morphological parameters, such as correlation lengths and roughness, that we extract from atomic force microscopy (AFM) images exhibit anomalous oscillations with period increasing with thickness. In order to explain the trend of the parameters, we devised an empirical equation that encompasses both self-affine 3D growth and the oscillations typical of wetting/dewetting transition as in the spinodal dewetting phenomena. We then analyzed the electrical characteristics of the OFET operated as solid-state device as well as electrolyte gated devices. The correlation of the transistor parameters with the morphology were analyzed. Experiments using bimodal AFM allowed us to investigate the mechanical properties of conductive and semiconductive thin films. The latter activity was carried out at CSIC-ICMM in Madrid during the secondment at the laboratory of Professor Ricardo Garcia.
Landi, Alessandro. « Charge transfer in organic materials with potential applications in electronics ». Doctoral thesis, Universita degli studi di Salerno, 2019. http://elea.unisa.it:8080/xmlui/handle/10556/4261.
Texte intégralSearch for low cost electronic materials has led towards the synthesis and the employment of organic semiconductors (OSCs), a class of materials that combine the electronic advantages of semiconducting materials with the chemical and mechanical benefits of organic compounds. Despite the intense research effort, new OSCs have usually been discovered by trial and error and, even retrospectively, it was not always possible to explain why some materials exhibit better performances than others. A more efficient approach is now required and, in this respect, the use of computer-aided materials discovery can be highly beneficial. Increasing numbers of new OSCs have already been designed and improved through computational modeling, which requires the efficient simulation of charge transport (CT) processes taking place in OSC-based devices. In this thesis we study and compare the relative performances of differ- ent models in the simulations of charge transport in OSCs. In the first part we focus on the different properties of organic semicon- ductors with respect to their inorganic counterpart, their benefits and their drawbacks, restricting our analysis to organic crystalline semiconductors, which show the highest mobilities among all OSCs. Then we describe some of the most widely studied classes of OSC materials, showing some cases in which theory-guided material design has already been applied leading towards new materials with improved electronic performances. 2 In the second part of this thesis we dwell on the unique physical prop- erties of organic semiconductors and on the reasons that animates the still topical debate about the most appropriate theoretical model for the CT de- scription in these materials. Then, we briefly analyze strengths and draw- backs of five theoretical models: the Marcus theory, the Fermi Golden Rule (FGR), the Second Order Cumulant expansion of the density matrix (SOC), the quantum dynamics, and a recently developed approach, the Transient Localization Theory (TLT). In particular we describe some approximated strategies that significantly speed up the computations still ensuring accu- rate results. In the third part we apply the abovementioned models to the description of charge transport in some of the most studied OSCs, comparing their predictions with experimental data and discussing the relative performances of each method. Our results show that SOC and TLT predictions are in good agreement with experimental data, the latter being the method of choice because of its low computational cost and physically well-sound assumptions. In the last part of this thesis we focus on the simulation of CT in DNA oligomers, a topical issue since long range charge migration makes DNA a potentially well-suited material for nanoelectronics. Our analysis reproduces in a quantitative way published experimental data and allows us to reconcile experimental results disagreeing about the role of thymine bridges in CT across DNA oligomers. [edited by Author]
XXXI ciclo
Fiorillo, Maria Rosa. « N-type Organic Thin Film Transistors (OTFT) : Effects of treatments of the insulator/semiconductor interface on the devices performances ». Doctoral thesis, Universita degli studi di Salerno, 2017. http://hdl.handle.net/10556/2604.
Texte intégralThe organic electronic devices are finding a great consideration for applications where silicon limitations make this semiconductor unsuitable. Many properties of organic materials open new frontiers of the research; some example of applications are flexible displays, smart textiles, new lighting fixtures, intelligent packaging. Furthermore, an interesting attraction of organic devices is their being environmentally friendly. Organic materials provide also an inspiration for always new applications stimulated by the continuing efforts of characterization, fabrication, synthesis and design. This thesis work wants to contribute to the comprehension of the properties of solution processed organic thin film transistors (OTFTs) that use a n-type semiconductor. These devices are the basic element of the driving circuits, where the n channel transistors still result poorly understood. In this PhD activity, it is studied the effect of surface treatments at SiO2 dielectric layer and organic semiconductor interface to improve the OTFTs performance. These transistors, that are fabricated employing a specific combination of treatments before the deposition of a soluble semiconductor, are studied in order to analyze the relationship between the surface treatments and the devices electrical parameters; so to calculate one or more variables able to better adapt the conditions of the treatments to the performances of the device. The devices are fabricated using as semiconductor the [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) deposited from drop casting technique on a SiO2 layer where a combination of ultraviolet/ozone cleaning (UV/O3) and self-assembled monolayer (SAM) coating is previously carried out. The hexamethyldisilazane (HMDS) is the SAM used, and it is deposited at three different temperatures, 7°C, 25°C and 60°C. UV/O3 cleaning allows to remove organic contaminations on the dielectric surface, thanks to the formation of hydroxyl groups (-OH) generated by the UV/O3 ambient. While the HMDS can reduce the traps induced by Si-OH groups on the gate insulators, making layer treated hydrophobic. In this work, it is observed that different deposition temperatures of the SAM produce surfaces with different hydrophobic characters resulting in different electric performances of the devices. The techniques of analysis employed to observe the effects of the treatments have been: contact angle measurements, AFM imaging of the organic semiconductor, I vs. V static characterization and admittance measurements. Particular effort is given to evaluate the presence of electronic trap states in organic thin film transistors based on n-type semiconductor in bottom-gate bottom-contact configuration, thus it is proposed a new and accurate equivalent electrical, which is capable to model the properties of the semiconductor bulk and the conductive channel, through the calculation of the density of the trap states and the channel resistance. From the performed analysis, the transistors treated at temperature of 25°C show a high roughness, a very inhomogeneous surface of the semiconductor layer and a higher degree of the SiO2 surface hydrophobicity compared to the transistors processed at 7°C and 60°C. The HMDS behaving as a silane coupling reactant, provides a better tailored hydrophobic surface during the processes at 7°C and at 60°C, resulting in an improved surface energy, matching between the gate insulator and the organic semiconductor. From DC measurements, it is observed that the samples at 60°C temperature for HMDS deposition show the best performances: the highest electron mobility of 13·10-3 cm2/Vs and the lowest threshold voltage of 12.0 V. While for the devices prepared at 7 °C and at 25 °C, the values of the mobility and the threshold voltage are 7.6·10-3 cm2/Vs - 13.6 V, and 2.8·10-3 cm2/Vs - 17.8 V, respectively. The densities of the resulting trap states, calculated by admittance measurements and equivalent circuit, show the minimum quantity of the traps for the devices treated at 60°C compared to other devices, with a value of 1.48 1016 cm-3 eV-1. In conclusion, in this thesis it has been studied the effect of the deposition processing of HDMS layers on the behavior of PC70BM bottom-gate bottom-contacts OTFTs. In particular, the temperature of the HMDS process influences the quality of the semiconductor films and the devices performances. The hydrophobicity of the dielectric surface, induced by the HDMS process at 60°C, measured trough the value of the contact angle, which is of the order of 104.1° for this process, results in the formation of the highest quality of the PC70BM films, with homogeneous layers and a reduced quantity of traps, giving the OTFTs with the best performances. This results have allowed to develop a new equivalent electrical circuit, which, for the first time, models the AC behavior of bottom-gate bottom-contacts OTFTs with n-type semiconductors. [edited by author]
I dispositivi elettronici organici stanno vivendo un periodo di grande interesse scientifico nel campo delle applicazioni dove le limitazioni del silicio semiconduttore li rendono inadatti. Le innumerevoli proprietà dei materiali organici aprono nuove frontiere della ricerca; alcuni esempi di applicazioni sono: display flessibili, tessuti intelligenti, nuovi apparecchi di illuminazione e imballaggi intelligenti. Inoltre, un'interessante attrattiva risiede nel ridotto impatto ambientale. I materiali organici forniscono anche una fonte d'ispirazione per sempre nuove applicazioni supportati da continui sforzi di caratterizzazione, fabbricazione, sintesi e design da parte del mondo della ricerca. Questa attività di tesi vuole contribuire alla comprensione delle proprietà dei transistori organici a film sottile (OTFTs) da soluzione che utilizzano un semiconduttore di tipo n. Questi dispositivi sono l'elemento di base dei circuiti di pilotaggio, in cui i transistori a canale n risultano ancora poco compresi. Durante l'attività di dottorato, si è dunque analizzato l'effetto dei trattamenti superficiali all'interfaccia tra lo strato dielettrico SiO2 e il semiconduttore organico per migliorare le prestazioni dei OTFTs. Questi transistori, che sono fabbricati impiegando una specifica combinazione di trattamenti prima della deposizione del semiconduttore solubile, sono studiati per analizzare il rapporto che intercorre tra i trattamenti superficiali e i parametri elettrici dei dispositivi; in modo da calcolare una o più variabili in grado di adattare le condizioni dei trattamenti alle prestazioni del dispositivo. I dispositivi sono fabbricati usando come semiconduttore il [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) depositato con la tecnica del drop casting su uno strato di SiO2 su cui è stato precedentemente effettuata una combinazione del trattamento di pulizia con raggi ultravioletti e ozono (UV/O3) ed un monostrato auto-assemblato (SAM, self-assembled monolayer). L'esametildisilazano (HMDS) è il SAM utilizzato, questo è depositato a tre diverse temperature, 7 ° C, 25 ° C e 60 ° C. Il trattamento di pulizia UV/O3 permette di rimuovere i contaminanti organici sulla superficie dielettrica, grazie alla formazione di gruppi ossidrilici (-OH) generate dall'ambiente UV/O3. Mentre l'HMDS può ridurre le trappole indotte dai gruppi Si-OH sull'isolante di gate rendendo tale strato di tipo idrofobo. In questo lavoro, è stato osservato che le diverse temperature di deposizione del SAM sono in grado di produrre superfici con diverso carattere idrofobico che comportano differenti prestazioni elettriche dei dispositivi. Le tecniche di analisi utilizzate per osservare gli effetti dei trattamenti sono stati: la misura di angolo di contatto, immagini AFM del semiconduttore organico, caratterizzazione statica I vs. V e misure di spettroscopia di ammettenza. Uno sforzo particolare è stato fatto per valutare la presenza di stati elettronici di trappola nei transistor organici a film sottile di tipo n in configurazione bottom-gate bottom-contact (BG-BC), per i quali si propone un nuovo e accurato circuito elettrico equivalente, che è in grado di modellare le proprietà del semiconduttore e del canale conduttivo, attraverso il calcolo della densità degli stati trappola e la resistenza di canale. Dall'analisi effettuata, i transistor trattati a temperatura di 25 ° C hanno mostrano una elevata rugosità, una superficie dello strato semiconduttore molto disomogenea e un più alto grado idrofobicità della superficie SiO2 rispetto ai transistor trattati a 7 ° C e 60 ° C. Probabilmente, questo risultato è dovuto all'azione chimica dei gruppi silanici terminali che sono più efficaci durante i processi a temperatura più alta e più bassa in esame. Il miglioramento dell'energia superficiale che ne consegue, crea dunque una più efficace crescita del semiconduttore organico sullo strato isolante di gate. Dalle misure DC, si osserva che i campioni trattati a temperatura di 60°C per la deposizione di HMDS hanno mostrano le migliori prestazioni elettriche, ovvero la più alta mobilità elettronica, 13·10-3 cm2/Vs, e la minima tensione di soglia, 12.0 V. Inoltre, le densità degli stati trappola, calcolati dalle misure di ammettenze e dal circuito equivalente, mostrano il valore minimo delle trappole per i dispositivi trattati a 60°C rispetto ad altri dispositivi, circa 1.48 1016 cm-3 eV-1. In conclusione, in questo lavoro di tesi è stato studiato l'effetto del trattamento di deposizione HDMS sul comportamento del PC70BM per OTFTs in configurazione BG-BC. In particolare, la temperatura del processo HMDS influenza la qualità del film semiconduttore e le prestazioni dei dispositivi. L'idrofobicità della superficie dielettrica, indotto dal processo HDMS a 60°C, porta ad un incremento della qualità dei film PC70BM, con strati omogenei e una ridotta quantità di trappole, realizzando dei OTFTs con le migliori prestazioni. Questo risultato ha permesso di sviluppare per la prima volta un modello elettrico per OTFT di tipo n in architettura BG-BC attraverso un circuito equivalente a parametri concentrati che riproduce il comportamento in regime AC dei transistor a film sottile. [a cura dell'autore]
XXIX n.s.
Martini, Mara. « Simulazione delle proprietà morfologiche e strutturali di materiali biologici ed organici per dispositivi elettronici ed optoelettronici ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15555/.
Texte intégralDurazzi, Francesco. « Caratterizzazione di transistor organici a effetto di campo come detector di raggi X ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/12030/.
Texte intégralSANZONE, ALESSANDRO. « Towards the development of sustainable materials for organic electronics ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241277.
Texte intégralThe synthesis and characterization of organic semiconductors (OS) has been a focal research field in the last two decades. Their potential application to large-area and flexible electronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), and organic photovoltaics (OPVs), has sparked intensive research in this field. Organic printed electronics (OPE) is based on the combination of new materials and cost-effective, large area production processes that open up new fields of application. Thinness, light weight, flexibility and potential environmental sustainability are key potential advantages of organic electronics. In fact, several high-tech companies have significantly invested in cheap and high-performance organic-electronic devices, a billion-dollar market that is expected to grow rapidly. Based on the recent progress in materials and process technology and the expected future technology development, the experts were able to identified that key challenges called “Red Brick Walls”, for which major breakthroughs are needed. Academic research has done big effort to increase devices performances, indeed for example if we look charge career mobility for OFET or power efficiency conversion for OPV reported in literature by years we can see that have been increase of different order of magnitude during the last decades but often overlooked the other features required for the OPE industrial development. Indeed among the key challenge identified cost and scalability are present. These challenges are directly linked with the preparation and processing technique of the materials, in particular of the organic semiconductor materials. Here are presented two main approaches in order to development of sustainable materials for organic electronics applied to different OS classes (Diketopyrrolopyrroles (DPPs), Isoindigoes (IGs), Benzothiadiazoles (BTs) and Benzothienobenzothiophenes (BTBTs)): the use of the direct arylation reaction in place of the more classical reactions of Suzuki-Miyaura, Kumada and Stille cross-coupling reactions and the develop of micellar conditions for organic OS synthesis.In particular the second chapter are reported the synthesis of, original and not, [1]benzothieno[3,2-b][1]benzothiophene (BTBT) derivatives, a class of very promising p-materials for OFET, starting from parent BTBT by direct arylation . These are the first examples of late stage functionalization of BTBT scaffold by direct arylation, In chapter 4 is reported a study of optimization of direct arylation polycondensation condition for the develop of a new Naphthalenetetracarboxylic dianhydride-based copolymer for OFET application. The second approach developed for organic OS synthesis reported in chapter 3 and 4 is the micellar catalysis. Micellar reactions are a well established topic in modern organic synthesis, indeed the numbers of reactions reported in literature to date in micellar condition is quite impressive despite this in the field of organic OS the examples are still limited. The use of micellar catalysis for OS material in not trivial indeed organic OS are usually heavily functionalized molecules, highly crystalline and they can interfere with surfactant micellization these lead to low conversion. In the different sections of chapter 3 and 4 are exposed several strategies developed for the application of micellar catalysis to the OS synthesis.
LOI, ALBERTO. « Inkjet printing : technique and applications for organic electronic devices ». Doctoral thesis, Università degli Studi di Cagliari, 2014. http://hdl.handle.net/11584/266455.
Texte intégralGIORDANI, MARTINA. « Sensori Neuromorfici Organici per Neurotrasmettitori ». Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2020. http://hdl.handle.net/11380/1211520.
Texte intégralIn this thesis an ultra-sensitive and selective sensor for dopamine (DA) by means of a neuro-inspired device platform without the need of a specific recognition moiety is demonstrated. DA is a neurotransmitter of catecholamines family that controls functions of cardiovascular, renal, hormonal and central nervous systems. DA deficit is a hallmark of Parkinson’s disease (PD), due to the degeneration of dopaminergic neurons in substantia nigra pars compacta. The sensor is a whole organic device featuring two electrodes made of poly(3,4-ethylenedioxythiophene):polystyrene sulfonate – PEDOT:PSS – directly patterned through laser ablation on a polydymethylsiloxane – PDMS – flexible substrate. One electrode is pulsed with a train of voltage square waves (-200 mV with a frequency of 500 Hz for 1s), to mimic the pre-synaptic neuron behavior, while the other is used to record the displacement current, mimicking the post-synaptic neuron. The current response exhibits the features of synaptic Short-Term Plasticity (STP) with facilitating or depressing response according to the stimulus frequency. We found that the resulting current decreases with a characteristic time, τSTP , depending on DA concentration in solution. The sensor detects [DA] down to 1 pM range. We assess the sensor also in the presence of several moieties physiologically present in cerebrospinal fluid or extracellular fluids, i.e. ascorbic acid, uric acid, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, serotonin, epinephrine and norepinephrine. Our detection strategy successfully discriminates DA from the other analytes in model solutions (i.e. Phosphate Saline Buffer). The sensor appears still more sensitive to DA than to the others, even in presence of moieties with similar chemical structures. The synapse appears ultrasensitive to DA (from physiological to pathological concentrations) and selective thanks to the interaction mechanism with PEDOT:PSS. DFT calculations on PEDOT:PSS/metabolite clusters hint to a correlation between the STP response and stronger non-covalent interactions between DA and PEDOT:PSS, specifically electrostatic and hydrogen bonding of DA ammonium end group with sulfonate. The whole organic synapse, being biocompatible, soft and flexible, is attractive for implantable devices aimed to real-time monitoring of DA concentration in bodily fluids, to be used as a diagnostic tool, for instance, in chronic neurodegenerative diseases such as Parkinson’s disease.
CALANDRA, SEBASTIANELLA GIOACCHINO. « Dispositivi neuromorfici organici a due e tre terminali : dimostrazione in laboratorio, modelli analitici e applicazioni per il rilevamento di ioni ». Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2022. https://hdl.handle.net/11380/1293285.
Texte intégralOrganic electronics is the eligible technology towards the development of devices able to be interfaced with the living matter, paving the way for in vivo real-time signal processing and selective quantification of neurotransmitters in pathological condition like Parkinson’s disease. Organic electronic devices cover a wide range of applications due to their features such as low energy consumption, high tunability, biocompatibility, flexibility and the capability to mix electronic and ionic conductivity, making them especially suited for operations in electrolyte solutions, providing new opportunities for medical diagnostics and therapy. This entanglement between ionic transport (a slow process), and electronic currents (fast processes), is at the origin of one of the most promising feature of organic electronic devices: Neuromorphism. Organic neuromorphic electronics aims at developing hybrid brain-inspired computing/memory units able to process and store informations in the same space, thus overcoming the spatial limitations of silicon-based circuits based on von Neumann architectures. The aim of this thesis is to investigate the fundamental and translational aspects of the neuromorphic response in organic electronic devices. In particular, Short-Term Plasticity (STP) is investigated in three-terminal architectures (i.e. Electrolyte-Gated Organic Transistors – EGOTs) and in artificial synapses built on intracortical microelectrodes. During this work it has been shown, on the one hand, that STP can be elicited between the two contacts of the semi-conductive channel of an EGOT, while a third electrode enables the modulation of amplitude and characteristic time scale of the neuromorphic response. This approach allows the operator to arbitrarily set the baseline and the steady- state current, preluding to multilevel memory writing and coexistence of both depressive and facilitative response in frequency-driven EGOTs. On the other hand, implantable artificial synapses have been investigated, showing frequency-dependent crossover between facilitative and depressive regimes. STP features are described with an RLC equivalent circuit unveiling the physical origin and enabling the prediction of the artificial synapse response. Finally, neuromorphic devices are demonstrated as specific label-free ion and neurotransmitters sensors, whose multi-parametric response is rationalized by means of the theoretical and analytical platform developed in this thesis.