Littérature scientifique sur le sujet « Organic/polymeric Solar Cells »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Organic/polymeric Solar Cells ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Organic/polymeric Solar Cells"

1

Mdluli, Siyabonga B., Morongwa E. Ramoroka, Sodiq T. Yussuf, Kwena D. Modibane, Vivian S. John-Denk et Emmanuel I. Iwuoha. « π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells ». Polymers 14, no 4 (13 février 2022) : 716. http://dx.doi.org/10.3390/polym14040716.

Texte intégral
Résumé :
The evolution and emergence of organic solar cells and hybrid organic-silicon heterojunction solar cells have been deemed as promising sustainable future technologies, owing to the use of π-conjugated polymers. In this regard, the scope of this review article presents a comprehensive summary of the applications of π-conjugated polymers as hole transporting layers (HTLs) or emitters in both organic solar cells and organic-silicon hybrid heterojunction solar cells. The different techniques used to synthesize these polymers are discussed in detail, including their electronic band structure and doping mechanisms. The general architecture and principle of operating heterojunction solar cells is addressed. In both discussed solar cell types, incorporation of π-conjugated polymers as HTLs have seen a dramatic increase in efficiencies attained by these devices, owing to the high transmittance in the visible to near-infrared region, reduced carrier recombination, high conductivity, and high hole mobilities possessed by the p-type polymeric materials. However, these cells suffer from long-term stability due to photo-oxidation and parasitic absorptions at the anode interface that results in total degradation of the polymeric p-type materials. Although great progress has been seen in the incorporation of conjugated polymers in the various solar cell types, there is still a long way to go for cells incorporating polymeric materials to realize commercialization and large-scale industrial production due to the shortcomings in the stability of the polymers. This review therefore discusses the progress in using polymeric materials as HTLs in organic solar cells and hybrid organic-silicon heterojunction solar cells with the intention to provide insight on the quest of producing highly efficient but less expensive solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lim, Kyung-Geun, Soyeong Ahn, Young-Hoon Kim, Yabing Qi et Tae-Woo Lee. « Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic–inorganic hybrid perovskite solar cells ». Energy & ; Environmental Science 9, no 3 (2016) : 932–39. http://dx.doi.org/10.1039/c5ee03560k.

Texte intégral
Résumé :
Tailoring the interface energetics between a polymeric hole extraction layer (HEL) and a photoactive layer (PAL) in organic photovoltaics (OPVs) and organic–inorganic hybrid perovskite solar cells (PrSCs) is very important to maximize open circuit voltage (Voc), power conversion efficiency (PCE), and device lifetime.
Styles APA, Harvard, Vancouver, ISO, etc.
3

A., Venkateswararao, Shun-Wei Liu et Ken-Tsung Wong. « Organic polymeric and small molecular electron acceptors for organic solar cells ». Materials Science and Engineering : R : Reports 124 (février 2018) : 1–57. http://dx.doi.org/10.1016/j.mser.2018.01.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Seco, Cristina Rodríguez, Anton Vidal-Ferran, Rajneesh Misra, Ganesh D. Sharma et Emilio Palomares. « Efficient Non-polymeric Heterojunctions in Ternary Organic Solar Cells ». ACS Applied Energy Materials 1, no 8 (6 juillet 2018) : 4203–10. http://dx.doi.org/10.1021/acsaem.8b00828.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hahn, T., C. Saller, M. Weigl, I. Bauer, T. Unger, A. Köhler et P. Strohriegl. « Organic solar cells with crosslinked polymeric exciton blocking layer ». physica status solidi (a) 212, no 10 (10 juin 2015) : 2162–68. http://dx.doi.org/10.1002/pssa.201532040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Thao, Tran Thi, Do Ngoc Chung, Nguyen Nang Dinh et Vo Van Truong. « Photoluminescence Quenching of Nanocomposite Materials Used for Organic Solar Cells ». Communications in Physics 24, no 3S1 (7 novembre 2014) : 22–28. http://dx.doi.org/10.15625/0868-3166/24/3s1/5073.

Texte intégral
Résumé :
In this work, we have studied the photoluminescence (PL) quenching of two polymeric composites, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(3-hexylthiophene) (P3HT) in presence of nc-TiO\(_{2}\) particles by PL- spectroscopy. PL quenching values are 19.2\(\text{\%}\) and 45.5\(\text{\%}\), for MEH-PPV+nc-TiO\(_{2}\) and P3HT+nc-TiO$_{2}$, respectively. The obtained results on the relationship of PL quenching and photoelectrical efficiency (PCE) of an OSC showed that the quenching coefficient of a semiconducting polymer can be considered as apreliminarycriterion for choosing an appropriate polymeric composite being used for OSC preparation. Under illumination of solar energyof 56 mW/cm\(^{2}\), P3HT+TiO\(_{2}\) based OSC possess FF, V$_{OC}$, J$_{SC}$ and PCE of 0.64, 0.243 V, 1.43 mA/cm\(^{2}\) and 0.45\(\text{\%}\), respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ye, Huaiying, Wen Li et Weishi Li. « Progress in Polymeric Electron-Donating Materials for Organic Solar Cells ». Chinese Journal of Organic Chemistry 32, no 2 (2012) : 266. http://dx.doi.org/10.6023/cjoc1104062.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Liu, Feng, Zachariah A. Page, Volodimyr V. Duzhko, Thomas P. Russell et Todd Emrick. « Conjugated Polymeric Zwitterions as Efficient Interlayers in Organic Solar Cells ». Advanced Materials 25, no 47 (18 septembre 2013) : 6868–73. http://dx.doi.org/10.1002/adma.201302477.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, Lung-Chien. « Organic and Polymeric Thin-Film Materials for Solar Cells : A New Open Special Issue in Materials ». Materials 15, no 19 (26 septembre 2022) : 6664. http://dx.doi.org/10.3390/ma15196664.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lee, You-Sun, Ji Young Lee, Su-Mi Bang, Bogyu Lim, Jaechol Lee et Seok-In Na. « A feasible random copolymer approach for high-efficiency polymeric photovoltaic cells ». Journal of Materials Chemistry A 4, no 29 (2016) : 11439–45. http://dx.doi.org/10.1039/c6ta04920f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Organic/polymeric Solar Cells"

1

Dittmer, Janke Jörn. « Dye/polymer blends for organic solar cells ». Thesis, University of Cambridge, 2001. https://www.repository.cam.ac.uk/handle/1810/251783.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Saif, Addin Burhan K. (Burhan Khalid). « The challenges of organic polymer solar cells ». Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/62740.

Texte intégral
Résumé :
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 108-110).
The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total PV system efficiency>10%), scalable and inexpensive to make and install (<100 $/m2). At a cost of less than 1$/Wp, PV systems will be able to generate electricity in most geographical locations at costs competitive to coal's electricity (at 5-6 cents/KWh) and will make electricity available to more people around the world (-20% of the world population is without electricity). In this chapter, we explore organic polymer solar cell technology. The first chapter discusses the potential impact of solar cells on electricity markets and the developing world and its promise as a sustainable scalable low carbon energy technology. The second chapter discusses some of the complexity in designing polymer solar cells from new materials and the physics involved in some detail. I also discuss the need to develop new solution processed transparent conductors, cost effective encapsulation and long life flexible substrates. The third chapter discusses polymer solar cells cost estimates and how innovative designs for new modules could reduce installation costs. In the final chapter I discussed the prospects for commercialization of polymer solar cells in several niche markets and in grid electricity markets; the commiseration prospects are dim especially with the uncertainty in the potential improvement in polymer solar cell stability.
by Burhan K. Saif Addin.
M.Eng.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Tress, Wolfgang. « Device Physics of Organic Solar Cells ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89501.

Texte intégral
Résumé :
This thesis deals with the device physics of organic solar cells. Organic photovoltaics (OPV) is a field of applied research which has been growing rapidly in the last decade leading to a current record value of power-conversion efficiency of 10 percent. One major reason for this boom is a potentially low-cost production of solar modules on flexible (polymer) substrate. Furthermore, new application are expected by flexible or semitransparent organic solar cells. That is why several OPV startup companies were launched in the last decade. Organic solar cells consist of hydrocarbon compounds, deposited as ultrathin layers (some tens of nm) on a substrate. Absorption of light leads to molecular excited states (excitons) which are strongly bound due to the weak interactions and low dielectric constant in a molecular solid. The excitons have to be split into positive and negative charges, which are subsequently collected at different electrodes. An effective dissociation of excitons is provided by a heterojunction of two molecules with different frontier orbital energies, such that the electron is transfered to the (electron) acceptor and the positive charge (hole) remains on the donor molecule. This junction can be realized by two distinct layers forming a planar heterojunction or by an intermixed film of donor and acceptor, resulting in a bulk heterojunction. Electrodes are attached to the absorber to collect the charges by providing an ohmic contact in the optimum case. This work focuses on the electrical processes in organic solar cells developing and employing a one-dimensional drift-diffusion model. The electrical model developed here is combined with an optical model and covers the diffusion of excitons, their separation, and the subsequent transport of charges. In contrast to inorganics, charge-carrier mobilities are low in the investigated materials and charge transport is strongly affected by energy barriers at the electrodes. The current-voltage characteristics (J-V curve) of a solar cell reflect the electrical processes in the device. Therefore, the J-V curve is selected as means of comparison between systematic series of simulation and experimental data. This mainly qualitative approach allows for an identification of dominating processes and provides microscopic explanations. One crucial issue, as already mentioned, is the contact between absorber layer and electrode. Energy barriers lead to a reduction of the power-conversion efficiency due to a decrease in the open-circuit voltage or the fill factor by S-shaped J-V curve (S-kink), which are often observed for organic solar cells. It is shown by a systematic study that the introduction of deliberate barriers for charge-carrier extraction and injection can cause such S-kinks. It is explained by simulated electrical-field profiles why also injection barriers lead to a reduction of the probability for charge-carrier extraction. A pile-up of charge carriers at an extraction barrier is confirmed by measurements of transient photocurrents. In flat heterojunction solar cells an additional reason for S-kinks is found in an imbalance of electron and hole mobilities. Due to the variety of reasons for S-kinks, methods and criteria for a distinction are proposed. These include J-V measurements at different temperatures and of samples with varied layer thicknesses. Most of the studies of this this work are based on experimental data of solar cells comprisiing the donor dye zinc phthalocyanine and the acceptor fullerene C60. It is observed that the open-circuit voltage of these devices depends on the mixing ratio of ZnPc:C60. A comparison of experimental and simulation data indicates that the reason is a changed donor-acceptor energy gap caused by a shift of the ionization potential of ZnPc. A spatial gradient in the mixing ratio of a bulk heterojunction is also investigated as a donor(acceptor)-rich mixture at the hole(electron)-collecting contact is supposed to assist charge extraction. This effect is not observed, but a reduction of charge-carrier losses at the “wrong” electrode which is seen at an increase in the open-circuit voltage. The most important intrinsic loss mechanism of a solar cell is bulk recombination which is treated at the example of ZnPc:C60 devices in the last part of this work. An examination of the dependence of the open-circuit voltage on illumination intensity shows that the dominating recombination mechanism shifts from trap-assisted to direct recombination for higher intensities. A variation of the absorption profile within the blend layer shows that the probability of charge-carrier extraction depends on the locus of charge-carrier generation. This results in a fill factor dependent on the absorption profile. The reason is an imbalance in charge-carrier mobilities which can be influenced by the mixing ratio. The work is completed by a simulation study of the influence of charge-carrier mobilities and different recombination processes on the J-V curve and an identification of a photoshunt dominating the experimental linear photocurrent-voltage characteristics in reverse bias
Diese Dissertation beschäftigt sich mit der Physik organischer Solarzellen. Die organische Photovoltaik ist ein Forschungsgebiet, dem in den letzten zehn Jahren enorme Aufmerksamkeit zu Teil wurde. Der Grund liegt darin, dass diese neuartigen Solarzellen, deren aktueller Rekordwirkungsgrad bei 10 Prozent liegt, ein Potential für eine kostengünstige Produktion auf flexiblem (Polymer)substrat aufweisen und aufgrund ihrer Vielfältigkeit neue Anwendungsbereiche für die Photovoltaik erschließen. Organische Solarzellen bestehen aus ultradünnen (einige 10 nm) Schichten aus Kohlenwasserstoffverbindungen. Damit der photovoltaische Effekt genutzt werden kann, müssen die durch Licht angeregten Molekülzustände zu freien Ladungsträgern führen, wobei positive und negative Ladung an unterschiedlichen Kontakten extrahiert werden. Für eine effektive Trennung dieser stark gebundenden lokalisierten angeregten Zustände (Exzitonen) ist eine Grenzfläche zwischen Molekülen mit unterschiedlichen Energieniveaus der Grenzorbitale erforderlich, sodass ein Elektron auf einem Akzeptor- und eine positive Ladung auf einem Donatormolekül entstehen. Diese Grenzschicht kann als planarer Heteroübergang durch zwei getrennte Schichten oder als Volumen-Heteroübergang in einer Mischschicht realisiert werden. Die Absorberschichten werden durch Elektroden kontaktiert, wobei es für effiziente Solarzellen erforderlich ist, dass diese einen ohmschen Kontakt ausbilden, da ansonsten Verluste zu erwarten sind. Diese Arbeit behandelt im Besonderen die elektrischen Prozesse einer organischen Solarzelle. Dafür wird ein eindimensionales Drift-Diffusionsmodell entwickelt, das den Transport von Exzitonen, deren Trennung an einer Grenzfläche und die Ladungsträgerdynamik beschreibt. Abgesehen von den Exzitonen gilt als weitere Besonderheit einer organischen Solarzelle, dass sie aus amorphen, intrinsischen und sehr schlecht leitfähigen Absorberschichten besteht. Elektrische Effekte sind an der Strom-Spannungskennlinie (I-U ) sichtbar, die in dieser Arbeit als Hauptvergleichspunkt zwischen experimentellen Solarzellendaten und den Simulationsergebnissen dient. Durch einen weitgehend qualitativen Vergleich können dominierende Prozesse bestimmt und mikroskopische Erklärungen gefunden werden. Ein wichtiger Punkt ist der schon erwähnte Kontakt zwischen Absorberschicht und Elektrode. Dort auftretende Energiebarrieren führen zu einem Einbruch im Solarzellenwirkungsgrad, der sich durch eine Verringerung der Leerlaufspanung und/oder S-förmigen Kennlinien (S-Knick) bemerkbar macht. Anhand einer systematischen Studie der Grenzfläche Lochleiter/Donator wird gezeigt, dass Energiebarrieren sowohl für die Ladungsträgerextraktion als auch für die -injektion zu S-Knicken führen können. Insbesondere die Tatsache, dass Injektionsbarrieren sich auch negativ auf den Photostrom auswirken, wird anhand von simulierten Ladungsträger- und elektrischen Feldprofilen erklärt. Das Aufstauen von Ladungsträgern an Extraktionsbarrieren wird durch Messungen transienter Photoströme bestätigt. Da S-Knicke in organischen Solarzellen im Allgemeinen häufig beobachtet werden, werden weitere Methoden vorgeschlagen, die die Identifikation der Ursachen ermöglichen. Dazu zählen I-U Messungen in Abhängigkeit von Temperatur und Schichtdicken. Als eine weitere Ursache von S-Knicken werden unausgeglichene Ladungsträgerbeweglichkeiten in einer Solarzelle mit flachem Übergang identifiziert und von den Barrierefällen unterschieden. Weiterer Forschungsgegenstand dieser Arbeit sind Mischschichtsolarzellen aus dem Donator-Farbstoff Zink-Phthalozyanin ZnPc und dem Akzeptor Fulleren C60. Dort wird beobachtet, dass die Leerlaufspannung vom Mischverhältnis abhängt. Ein Vergleich von Experiment und Simulation zeigt, dass sich das Ionisationspotenzial von ZnPc und dadurch die effektive Energielücke des Mischsystems ändern. Zusätzlich zu homogenen Mischschichten werden Solarzellen untersucht, die einen Gradienten im Mischungsverhältnis aufweisen. Die Vermutung liegt nahe, dass ein hoher Donatorgehalt am Löcherkontakt und ein hoher Akzeptorgehalt nahe des Elektronenkontakts die Ladungsträgerextraktion begünstigen. Dieser Effekt ist in dem hier untersuchten System allerdings vergleichsweise irrelevant gegenüber der Tatsache, dass der Gradient das Abfließen bzw. die Rekombination von Ladungsträgern am “falschen” Kontakt reduziert und somit die Leerlaufspannung erhöht. Der wichtigste intrinsische Verlustmechanismus einer Solarzelle ist die Rekombination von Ladungsträgern. Diese wird im letzten Teil der Arbeit anhand der ZnPc:C60 Solarzelle behandelt. Messungen der Leerlaufspannung in Abhängigkeit von der Beleuchtungsintensität zeigen, dass sich der dominierende Rekombinationsprozess mit zunehmender Intensität von Störstellenrekombination zu direkter Rekombination von freien Ladungsträgern verschiebt. Eine gezielte Variation des Absorptionsprofils in der Absorberschicht zeigt, dass die Ladungsträgerextraktionswahrscheinlickeit vom Ort der Ladungsträgergeneration abhängt. Dieser Effekt wird hervorgerufen durch unausgeglichene Elektronen- und Löcherbeweglichkeiten und äußert sich im Füllfaktor. Weitere Simulationsergebnisse bezüglich des Einflusses von Ladungsträgerbeweglichkeiten und verschiedener Rekombinationsmechanismen auf die I-U Kennlinie und die experimentelle Identifikation eines Photoshunts, der den Photostrom in Rückwärtsrichtung unter Beleuchtung dominiert, runden die Arbeit ab
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ong, Kok Haw. « Low band-gap donor polymers for organic solar cells ». Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/6430.

Texte intégral
Résumé :
One of the key challenges of organic solar cells is their relatively low power conversion efficiency. One way to improve the efficiency of these cells is to develop donor materials with improved photon harvesting capabilities, well-located highest-occupied molecular orbital (HOMO) and lowest-unoccupied molecular orbital (LUMO) energy levels, good hole transport characteristics and good processability. In this thesis, the design, synthesis and characterization of fifteen low band gap donor-acceptor type polymers are described. Two different acceptor moieties, 3,6- bis(thien-2-yl)-2,5-di-N-alkylpyrrolo[3,4-c]pyrrole-1,4-dione (DPP) and 2,1,3- benzothiadiazole (BT) were used in our polymer designs and the polymers were synthesised using the palladium-catalysed Stille cross-coupling method. The first series of polymers were random co-polymers of DPP and dithienothiophene. By tuning the solubility and absorption characteristics of the polymers, we achieved a polymer that gave power conversion efficiencies of up to 4.85 % when applied in solar cells. Low open-circuit voltages were obtained for these cells, hence the next series of polymers was designed with the aim of improving the open-circuit voltages. Although the lower HOMO levels of these polymers resulted in higher open-circuit voltages when applied in solar cells, the low hole mobility of the polymers and poor morphology of the polymer:fullerene films resulted in low solar cell power conversion efficiencies. Finally, a series of benzothiadiazole-oligothiophene polymers were synthesised. These polymers had high hole mobilities and wide absorption spectra. When these polymers were applied in organic thin-film transistors, good hole mobilities of up to 0.20 cm2/Vs were achieved, and when applied in solar cells, power conversion efficiencies of up to 6.2 % were achieved. These results show that benzothiadiazoleoligothiophene systems are promising candidates for both transistor and solar cell applications.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Han, Lu. « Synthesis of a Fullerene Acceptor with Visible Absorption for Polymer Solar Cells ». University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1399248320.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kim, Youngkyoo. « Organic solar cells based on highly self-organizing semiconducting polymers ». Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/49917.

Texte intégral
Résumé :
In this thesis I have studied organic solar cells (photovoltaic devices) based on a highly self-organizing polymer, regioregular poly(3-hexyIthiophene) (P3HT), because of its particular crystallization tendency leading to high charge carrier mobilities, good light-harvesting in red parts, and suitable energy band structure for an electron-donor. Prior to organic solar cell study, the pristine P3HT films have been investigated to understand their optical/electrical property and nanocrystal structure changes upon thermal annealing. As an electron-acceptor for organic solar cells, two candidates were employed: One is polymer [poly(poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)), another is big small molecule [[6,6]-phenyl Cgi-butyric acid methyl ester (PCBM)]. The kinds of blends used for organic solar cell fabrication were P3HT:F8BT, P3HT:PCBM, and P3HT:PCBM:F8BT. Organic solar cells were fabricated by spin-coating these blend films onto transparent conductive oxide coated substrates followed by depositing metal electrodes (sometimes inserting LiF). For better understanding of device performance changes, blend films have been examined with optical absorption, photoluminescence including time-resloved system, normal reflection mode x-ray diffraction, grazing incidence x-ray diffraction (Synchrotron), atomic force microscopy, scanning electron microscopy, high resolution transmission electron microscopy with field emission gun, transient absorption spectroscopy, and time-of-flight mobility measurement. As a result, P3HT:F8BT solar cells (maximum external quantum efficiency=~3%) showed poorer efficiency than P3HT:PCBM solar cells (maximum external quantum efficiency=~73%), though both blends have P3HT components, which is attributed to the low electron mobility of F8BT compared to PCBM. The power conversion efficiency of P3HT:PCBM solar cells has reached 4.4-5.5% at 85~8.5mW/cm^ (air mass 1.5 simulated solar illumination), which is ascribed mainly to the formation of vertical phase segregation upon thermal annealing leading to pseudo layered p-n junction. This layered structure might reduce the charge recombination between P3HT positive polaron (radical cation) and PCBM negative polaron (radical anion), a parameter that has been quantitatively analysed using a new model proposed in this work.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ripollés, Sanchis Teresa. « Interfacial and Bulk Operation of Polymeric Solar Cells by Optoelectronics and Structural Techniques ». Doctoral thesis, Universitat Jaume I, 2014. http://hdl.handle.net/10803/277095.

Texte intégral
Résumé :
This Ph.D. Thesis focuses on the investigation of organic photovoltaic (OPV) technology, especially in aspects of experimental device processing, and optoelectronic and electrical characterization on OPV devices to be readily marketable. More specifically, the topics addressed are the following: origin of recombination current,open-circuit voltage and crystallinity, transport driving force, contact selectivity and interface states, alternative hole transporting layers and oxygen and degradation routes.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Topolniak, Ievgeniia. « Photodegradation of polymer nanocomposites for encapsulation of organic solar cells ». Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22630.

Texte intégral
Résumé :
L'objectif de ce travail était le développement des nanocomposites d’EVOH/zeolites à base de charges telles que les zéolites pour l’encapsulation des cellules solaires organiques, et l’étude de leur comportement photochimique. Ce travail a porté sur l’étude du mécanisme de photooxydation des copolymères d’EVOH puis sur l'impact des zéolites sur ce mécanisme. Les propriétés fonctionnelles des nanocomposites d’EVOH/zéolites ont été étudiées en prenant en compte le taux de charge et la taille des particules. Les propriétés des copolymères d’EVOH et des nanocomposites d’EVOH/zéolites comme la transparence optique, la morphologie de surface, les propriétés mécaniques et thermiques, et les propriétés d'absorption de l'eau ont été étudiées. Sur la base des résultats obtenus, les meilleurs candidats pour l'encapsulation des cellules solaires organiques ont été proposés. Le mécanisme de photooxydation des copolymères a été proposé, la photostabilité des matériaux et l'impact des zéolites sur le comportement photochimique du polymère ont été étudiés. Le test électrique de calcium et le suivi des performances des cellules solaires organiques encapsulées ont été effectués afin d'évaluer l’efficacité des matériaux étudiés comme candidats potentiels pour une encapsulation efficace et stable des cellules solaires
The goal of this work was to develop EVOH/zeolite nanocomposites based on inorganic fillers such as zeolites for potential encapsulation of OSCs and to investigate their photochemical behaviour. The research was focused on the photooxidation mechanism of pristine EVOH copolymers and on the impact of the filler addition on this mechanism. EVOH/zeolite nanocomposites functional properties were characterised taking into account different particle sizes and filler contents. Properties of EVOH copolymers and EVOH/zeolites nanocomposites such as optical transparency, surface morphology, mechanical and thermal properties, and water uptake properties were investigated. On the basis of obtained results, the best candidate(s) for encapsulation of organic solar cells has been proposed. The chemical degradation mechanism of pristine polymers has been proposed, the materials photostability and the impact of the zeolite particles on the photochemical behaviour of the polymer have been studied. Electrical calcium test and performance of encapsulated OSCs were carried out in order to evaluate the ability of the studied materials to be used as potential candidates for efficient and stable encapsulation coatings for OSCs applications
Styles APA, Harvard, Vancouver, ISO, etc.
9

Cui, Chaohua. « Conjugated polymer and small-molecule donor materials for organic solar cells ». HKBU Institutional Repository, 2014. https://repository.hkbu.edu.hk/etd_oa/37.

Texte intégral
Résumé :
This thesis is dedicated to developing conjugated polymer and small-molecule donor materials for solution-processable organic solar cells. To begin with, a brief introduction of organic solar cells (OSCs) and an overview of donor materials development were presented in Chapter 1. In chapter 2, we used carbon-carbon triple bands as linkage of the TVT unit to develop a new building block, ATVTA. Small molecules S-03, S-04, and S-05 with ATVTA as building block showed broad absorption spectra and low-lying HOMO energy levels. S-01 with TVT unit and S-02 with AT2 as building block were also synthesized for clear comparison. OSCs devices based on S-01 and S-02 showed a Voc of 0.88 V and 0.89 V, respectively. The device based on S-03 exhibited a high Voc of 0.96 V, leading to a PCE of 2.19%. The devices based on S-04 and S-05 afforded a notable Voc over 1.0 V. The results demonstrate that ATVTA unit is a promising building block for extending π conjugation of the molecules without pulling up their HOMO energy levels. Chapter 3 focused on the development of 2D-conjugated small-molecule donor materials. The 2D-conjugated small molecule S-06 possesses excellent solution processability, broad absorption feature, respectable hole mobility and good film-forming morphology. The conjugated thiophene side chain not only effectively extends the absorption spectrum, but also lowers the HOMO energy level, which is desirable for obtaining high Voc. The BHJ OSCs based on S-06:PC70BM (1:0.5, w/w) afforded a high PCE of 4.0% and a notable FF of 0.63 without any special treatment needed. This preliminary work demonstrates that this kind of 2D-conjugated small molecules offer a good strategy to design new photovoltaic small molecule-based donor materials with high FF and Voc for high-efficiency OSCs. The consistently developed two 2D-conjugated small molecules S-07 and S-08 also possess low-lying HOMO energy levels. OSC device based on S-07:PC60BM (1:3, w/w) afforded a notable Voc of 0.96 V, with a PCE of 2.52%. BHJ devices based on S-08 will be fabricated and tested to investigate its photovoltaic properties in the near future. We developed a series of oligothiophenes with platinum(Ⅱ) as the building block in Chapter 4. These small metallated conjugated small molecules exhibited broad spectra and relatively low-lying HOMO energy levels in the range of –5.27 eV to –5.40 eV. Introducing platinum(Ⅱ) arylene ethynylenes as building block can be considered as an approach to obtain small-molecule donors with satisfactory absorption features and HOMO energy levels. Nevertheless, due to the low FF, the PCEs of these donor materials based devices are lower than 2%. Fine tuning the film morphologies of this kind of metallated small-molecule donor materials should be carried out to improve their photovoltaic performance. We addressed an efficient approach to improve the photovoltaic properties by side chain engineering in 2D-conjugated polymers in Chapter 5. Considering the fact that the Voc of PBDTTT based devices is less than 0.8 V, we introduced alkylthio substituent on the conjugated thiophene side chains of the 2D-conjugated copolymer to further improve the photovoltaic performance of the 2D-conjugated copolymers PBDTTTs. The weak electron-donating ability of the alkylthio side chains effectively down-shifted the HOMO energy level of PBDTT-S-TT by 0.11 eV in comparison to the corresponding polymer with alkyl substitution on the conjugated thiophene side chains. The PSC device based on PBDTT-S-TT showed an enhanced Voc of 0.84 V, which is among the highest one in the reported copolymers based on BDT and TT units, leading to an enhanced PCE of 8.42%. The results indicate that molecular modification by introducing alkylthio side chain will be a promising strategy to broaden the absorption, down-shift the HOMO energy level and increase the hole mobility of the low band gap 2D-conjugated polymers for further enhancing the photovoltaic performance of PSCs. PBDTT-O-TT-C and PBDTT-S-TT-C were developed to further study the conclusion. We found that OSC device based on PBDTT-S-TT-C with alkylthio side chain also demonstrated a high Voc of 0.89 V, with a PCE of 6.85% when processed with 3% DIO additive
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mangold, Hannah [Verfasser]. « Charge separation and recombination in novel polymeric absorber materials for organic solar cells : a photophysical study / Hannah Mangold ». Mainz : Universitätsbibliothek Mainz, 2013. http://d-nb.info/1046208454/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Organic/polymeric Solar Cells"

1

Krebs, Frederik C., dir. Stability and Degradation of Organic and Polymer Solar Cells. Chichester, UK : John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119942436.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Krebs, Frederik C. Stability and degradation of organic and polymer solar cells. Hoboken, N.J : Wiley, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hiramoto, Masahiro, et Seiichiro Izawa, dir. Organic Solar Cells. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9113-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Choy, Wallace C. H., dir. Organic Solar Cells. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4823-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tress, Wolfgang. Organic Solar Cells. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10097-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wu, Bo, Nripan Mathews et Tze-Chien Sum. Plasmonic Organic Solar Cells. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2021-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Huang, Hui, et Jinsong Huang, dir. Organic and Hybrid Solar Cells. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10855-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Solar module packaging : Polymeric requirements and selection. Boca Raton : Taylor & Francis, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Choy, Wallace C. H. Organic Solar Cells : Materials and Device Physics. London : Springer London, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

G, Bailey Sheila, et NASA Glenn Research Center, dir. Thin-film organic-based solar cells for space power. [Cleveland, Ohio] : National Aeronautics and Space Administration, Glenn Research Center, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Organic/polymeric Solar Cells"

1

Duan, Chunhui, Chengmei Zhong, Fei Huang et Yong Cao. « Interface Engineering for High Performance Bulk-Heterojunction Polymeric Solar Cells ». Dans Organic Solar Cells, 43–79. London : Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4823-4_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Facchetti, Antonio. « Polymeric Acceptor Semiconductors for Organic Solar Cells ». Dans Organic Photovoltaics, 239–300. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527656912.ch08.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bai, Huitao, Qinqin Shi et Xiaowei Zhan. « Polymer Solar Cells ». Dans Organic Optoelectronics, 407–35. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527653454.ch9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Osaka, Itaru. « Polymer Solar Cells : Development of π-Conjugated Polymers with Controlled Energetics and Structural Orders ». Dans Organic Solar Cells, 89–121. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9113-6_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ohkita, Hideo. « Charge Carrier Dynamics in Polymer Solar Cells ». Dans Organic Solar Cells, 123–54. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9113-6_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tai, Qidong, et Feng Yan. « Hybrid Solar Cells with Polymer and Inorganic Nanocrystals ». Dans Organic Solar Cells, 243–65. London : Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4823-4_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zhao, D. W., L. Ke, W. Huang et X. W. Sun. « Interface Stability of Polymer and Small-Molecule Organic Photovoltaics ». Dans Organic Solar Cells, 139–76. London : Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4823-4_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ohkita, Hideo, et Shinzaburo Ito. « Exciton and Charge Dynamics in Polymer Solar Cells Studied by Transient Absorption Spectroscopy ». Dans Organic Solar Cells, 103–37. London : Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4823-4_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Eck, Michael, et Michael Krueger. « Polymer-Nanocrystal Hybrid Solar Cells ». Dans Organic Photovoltaics, 171–208. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527656912.ch06.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

O'Malley, Kevin M., Hin-Lap Yip et Alex K. Y. Jen. « Metal Oxide Interlayers for Polymer Solar Cells ». Dans Organic Photovoltaics, 319–42. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527656912.ch10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Organic/polymeric Solar Cells"

1

Strohriegl, Peter, Philipp Knauer, Christina Saller et Esther Scheler. « Patternable conjugated polymers for organic solar cells ». Dans SPIE Organic Photonics + Electronics, sous la direction de Zakya H. Kafafi et Paul A. Lane. SPIE, 2013. http://dx.doi.org/10.1117/12.2023899.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

de Oliveira Hansen, Roana M., Manuela Schiek, Yinghui Liu, Morten Madsen et Horst-Günter Rubahn. « Efficiency enhancement of ITO-free organic polymeric solar cells by light trapping ». Dans SPIE Photonics Europe, sous la direction de Ralf Wehrspohn et Andreas Gombert. SPIE, 2012. http://dx.doi.org/10.1117/12.921797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Strohriegl, Peter, Christina Saller, Philipp Knauer, Anna Köhler, Tobias Hahn, Florian Fischer et Frank-Julian Kahle. « Crosslinkable low bandgap polymers for organic solar cells ». Dans SPIE Organic Photonics + Electronics, sous la direction de Zakya H. Kafafi, Paul A. Lane et Ifor D. W. Samuel. SPIE, 2016. http://dx.doi.org/10.1117/12.2239400.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ameri, Tayebeh, Jie Min, Ning Li, Florian Machui, Christoph J. Brabec, Michael Forster, Kristina Schottler, Daniel Dolfen, Sybille Allard et Ullrich Scherf. « Near IR sensitization of polymer/fullerene solar cells ». Dans SPIE Organic Photonics + Electronics, sous la direction de Zakya H. Kafafi, Christoph J. Brabec et Paul A. Lane. SPIE, 2012. http://dx.doi.org/10.1117/12.930475.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hishikawa, Yoshihiro. « Performance measurement of dye-sensitized solar cells and organic polymer solar cells ». Dans Photonic Devices + Applications, sous la direction de Zakya H. Kafafi et Paul A. Lane. SPIE, 2008. http://dx.doi.org/10.1117/12.799608.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Moons, Ellen, Vanja Blazinic, André Johansson, Cleber Marchiori, Leif K. E. Ericsson et C. Moyses Araujo. « Photo-oxidation of a non-fullerene acceptor polymer ». Dans NFA-Based Organic Solar Cells : Materials, Morphology and Fundamentals. València : Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfasc.2021.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gong, Xiong. « Towards high performance inverted polymer solar cells through interfacial reengineering ». Dans SPIE Organic Photonics + Electronics, sous la direction de Zakya H. Kafafi et Paul A. Lane. SPIE, 2013. http://dx.doi.org/10.1117/12.2026018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Guedes, Andre F. S., Vilmar P. Guedes, Monica L. Souza, Simone Tartari et Idaulo J. Cunha. « The electrodeposition of multilayers on a polymeric substrate in flexible organic photovoltaic solar cells ». Dans SPIE Optics + Photonics for Sustainable Energy, sous la direction de Louay A. Eldada et Michael J. Heben. SPIE, 2015. http://dx.doi.org/10.1117/12.2189872.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bundgaard, Eva, et Frederik C. Krebs. « Low band gap polymers for organic solar cells ». Dans SPIE Optics + Photonics, sous la direction de Zakya H. Kafafi et Paul A. Lane. SPIE, 2006. http://dx.doi.org/10.1117/12.679012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Salinas, J. F., J. L. Maldonado, G. Ramos-Ortíz, M. Rodríguez, M. A. Meneses-Nava, O. Barbosa-García, N. Farfán et R. Santillan. « Solar cells based on organic molecules and polymers ». Dans Seventh Symposium on Optics in Industry, sous la direction de Guillermo García Torales, Jorge L. Flores Núñez, Gilberto Gómez Rosas et Eric Rosas. SPIE, 2009. http://dx.doi.org/10.1117/12.849014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Organic/polymeric Solar Cells"

1

Chang, Yun-Chorng. Surface-Plasmon Enhanced Organic Thin-Film Solar Cells. Fort Belvoir, VA : Defense Technical Information Center, février 2010. http://dx.doi.org/10.21236/ada513773.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Anthony, John E., et George G. Malliaras. Organic Semiconductors for Sprayable Solar Cells : Improving Stability and Efficiency. Fort Belvoir, VA : Defense Technical Information Center, mars 2008. http://dx.doi.org/10.21236/ada500809.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Fungura, Fadzai. Organic Solar Cells : Degradation Processes and Approaches to Enhance Performance. Office of Scientific and Technical Information (OSTI), décembre 2016. http://dx.doi.org/10.2172/1409195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Walker, K., et S. Joslin. High Efficiency Organic Solar Cells : December 16, 2009 - February 2, 2011. Office of Scientific and Technical Information (OSTI), mai 2011. http://dx.doi.org/10.2172/1013905.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Heeger, Alan, Guillermo Bazan, Thuc-Quyen Nguyen et Fred Wudl. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells. Office of Scientific and Technical Information (OSTI), février 2015. http://dx.doi.org/10.2172/1171383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sellinger, Alex. Perovskite Solar Cells : Addressing Low Cost, High Efficiency, and Reliability through Novel Polymeric Hole Transport Materials. Office of Scientific and Technical Information (OSTI), janvier 2023. http://dx.doi.org/10.2172/1913945.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

VanSant, Kaitlyn. Thin Film Solar Cells Using ZnO Nanowires, Organic Semiconductors and Quantum Dots. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.2692.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Guo, Tzung-Fang. The Organic-Oxide Interfacial Layer on the Studies of Organic Electronics (Light-Emitting Diodes and Solar Cells). Fort Belvoir, VA : Defense Technical Information Center, octobre 2008. http://dx.doi.org/10.21236/ada488098.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Starkenburg, Daken, Asmerom Weldeab, Danielle Fagnani, Lei Li, Zhengtao Xu, Xiaoyang Yan, Michael Sexton, Davita Watkins, Ronald Castellano et Jiangeng Xue. Final Scientific/Technical Report -- Single-Junction Organic Solar Cells with >15% Efficiency. Office of Scientific and Technical Information (OSTI), mai 2018. http://dx.doi.org/10.2172/1435607.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Forrest, Stephen R. Reliable and Large Area Organic Solar Cells on Flexible Foil Substrates (Final Report). Office of Scientific and Technical Information (OSTI), mai 2019. http://dx.doi.org/10.2172/1511476.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie