Articles de revues sur le sujet « Organic Hybrid Heterostructure Solar Cells »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Organic Hybrid Heterostructure Solar Cells.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Organic Hybrid Heterostructure Solar Cells ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Chonsut, Teantong, Sirapat Pratontep, Anusit Keawprajak, Pisist Kumnorkaew et Navaphun Kayunkid. « Improvement of Efficiency of Polymer-Zinc Oxide Hybrid Solar Cells Prepared by Rapid Convective Deposition ». Applied Mechanics and Materials 848 (juillet 2016) : 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.848.7.

Texte intégral
Résumé :
The aim of this research is to study improvement of power conversion efficiency (PCE) of organic-inorganic hybrid bulk heterostructure solar cell prepared by rapid convective deposition as a function of concentration of zinc oxide additive. The structure of hybrid solar cell used in this research is ITO/ZnO/P3HT:PC70BM:ZnO(nanoparticles)/MoO3/Au. By adding 5 mg/ml of ZnO nanoparticles in the active layer (P3HT:PC70BM), the PCE was increased from 0.46 to 1.09%. In order to reveal the origin of improving efficiency, surface morphology and optical properties of active layers were investigated by atomic force microscopy (AFM) and UV-Visible spectroscopy, respectively. The results clearly indicate that the enhancement of solar cell efficiency results from (i) the proper phase sepharation of electron donor and acceptor in the active layer and (ii) the better absorption of the active layer. This research work introduces an alternative way to improve solar cell efficiency by adding ZnO into active layer.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jeong, Hoon-Seok, Dongeon Kim, Seungin Jee, Min-Jae Si, Changjo Kim, Jung-Yong Lee, Yujin Jung et Se-Woong Baek. « Colloidal Quantum Dot:Organic Ternary Ink for Efficient Solution-Processed Hybrid Solar Cells ». International Journal of Energy Research 2023 (6 février 2023) : 1–14. http://dx.doi.org/10.1155/2023/4911750.

Texte intégral
Résumé :
The fabrication of heterostructures via solution process is one of the essential technologies for realizing efficient advanced-generation optoelectronics. Hybrid structures comprising colloidal quantum dots (CQD) and organic semiconducting molecules are garnering considerable research interest because of their complementing optical and electrical properties. However, blending both the materials and forming a stable electronic ink are a challenge owing to the solubility mismatch. Herein, a CQD:organic ternary-blended hybrid solar ink is devised, and efficient hybrid solar cells are demonstrated via single-step spin coating under ambient conditions. Specifically, the passivation of the benzoic acid ligand on the CQD surface enables the dissolution in low-polar solvent such as chlorobenzene, which yields a stable CQD:organic hybrid ink. The hybrid ink facilitates the formation of favorable thin-film morphologies and, consequently, improves the charge extraction efficiency of the solar cells. The resulting hybrid solar cells exhibit a power conversion efficiency of 15.24% that is the highest performance among all existing air-processed CQD:organic hybrid solar cells.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Weingarten, M., T. Zweipfennig, A. Vescan et H. Kalisch. « Low-Temperature Processed Hybrid Organic/Silicon Solar Cells with Power Conversion Efficiency up to 6.5% ». MRS Proceedings 1771 (2015) : 201–6. http://dx.doi.org/10.1557/opl.2015.650.

Texte intégral
Résumé :
ABSTRACTHybrid organic/silicon heterostructures have become of great interest for photovoltaic application due to their promising features (e.g. easy fabrication in a low-temperature process) for cost-effective photovoltaics. This work is focused on solar cells with a hybrid heterojunction between the polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and n-doped monocrystalline silicon. As semi-transparent top contact, a thin (15 nm) Au layer was employed. Devices with different P3HT thicknesses were processed by spin-casting and compared with a reference Au/n-Si Schottky diode solar cell.The current density-voltage (J-V) measurements of the hybrid devices show a significant increase in open-circuit voltage (VOC) from 0.29 V up to 0.50 V for the best performing hybrid devices compared to the Schottky diode reference, while the short-circuit current density (JSC) does not change significantly. The increased VOC indicates that P3HT effectively reduces the reverse electron current into the gold contact. The wavelength-dependent JSC measurements show a decreased JSC in the wavelength range of P3HT absorption. This is related to the reduced JSC generation in silicon not being compensated by JSC generation in P3HT. It is concluded that the charge generation in P3HT is less efficient than in silicon.After a thermal annealing of the hybrid P3HT/silicon solar cells, we achieved power conversion efficiencies (PCE) (AM1.5 illumination) up to 6.5% with VOC of 0.52 V, JSC of 18.6 mA/cm² and a fill factor (FF) of 67%. This is more than twice the efficiency of the reference Schottky diode.
Styles APA, Harvard, Vancouver, ISO, etc.
4

KAFFAH, SILMI, LINA JAYA DIGUNA, SURIANI ABU BAKAR, MUHAMMAD DANANG BIROWOSUTO et ARRAMEL. « ELECTRONIC AND OPTICAL MODIFICATION OF ORGANIC-HYBRID PEROVSKITES ». Surface Review and Letters 28, no 08 (5 juillet 2021) : 2140010. http://dx.doi.org/10.1142/s0218625x21400102.

Texte intégral
Résumé :
Renewed interest has brought significant attention to tune coherently the electronic and optical properties of hybrid organic–inorganic perovskites (HOIPs) in recent years. Tailoring the intimate structure–property relationship is a primary target toward the advancement of light-harvesting technologies. These constructive progresses are expected to promote staggering endeavors within the solar cells community that needs to be revisited. Several considerations and strategies are introduced mainly to illustrate the importance of structural stability, interfacial alignment, and photo-generated carriers extraction across the perovskite heterostructures. Here, we review recent strides of such vast compelling diversity in order to shed some light on the interplay of the interfacial chemistry, photophysics, and light-emitting properties of HOIPs via molecular engineering or doping approach. In addition, we outline several fundamental knowledge processes across the role of charge transfer, charge carrier extraction, passivation agent, bandgap, and emission tunability at two-dimensional (2D) level of HOIPs/molecule heterointerfaces. An extensive range of the relevant work is illustrated to embrace new research directions for employing organic molecules as targeted active layer in perovskite-based devices. Ultimately, we address important insights related to the physical phenomena at the active molecules/perovskites interfaces that deserve careful considerations. This review specifically outlines a comprehensive overview of surface-based interactions that fundamentally challenges the delicate balance between organic materials and perovskites, which promotes bright future of desired practical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Xu, Xiaoyun, Xiong Wang, Yange Zhang et Pinjiang Li. « Ion-exchange synthesis and improved photovoltaic performance of CdS/Ag2S heterostructures for inorganic-organic hybrid solar cells ». Solid State Sciences 61 (novembre 2016) : 195–200. http://dx.doi.org/10.1016/j.solidstatesciences.2016.10.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mustafa, Haveen A., Dler A. Jameel, Hussien I. Salim et Sabah M. Ahmed. « The Effects Of N-GaAs Substrate Orientations on The Electrical Performance of PANI/N-GaAs Hybrid Solar Cell Devices ». Science Journal of University of Zakho 8, no 4 (30 décembre 2020) : 149–53. http://dx.doi.org/10.25271/sjuoz.2020.8.4.773.

Texte intégral
Résumé :
This paper reports the fabrication and electrical characterization of hybrid organic-inorganic solar cell based on the deposition of polyaniline (PANI) on n-type GaAs substrate with three different crystal orientations namely Au/PANI/(100) n-GaAs/(Ni-Au), Au/PANI/(110) n-GaAs/(Ni-Au), and Au/PANI/(311)B n-GaAs/(Ni-Au) using spin coating technique. The effect of crystallographic orientation of n-GaAs on solar cell efficiency of the hybrid solar cell devices has been studied utilizing current density-voltage (J-V) measurements under illumination conditions. Additionally, the influence of planes of n-GaAs on the diode parameters of the same devices has been investigated by employing current-voltage (I-V) characteristics in the dark conditions at room temperature. The experimental observations showed that the best performance was obtained for solar cells fabricated with the structure of Au/PANI/(311)B n-GaAs/(Ni-Au). The open-circuit voltage (Voc), short circuit current density (Jsc), and solar cell efficiency () of the same device were shown the values of 342 mV, 0.294 mAcm-2, 0.0196%, respectively under illuminated condition. All the solar cell characteristics were carried out under standard AM 1.5 at room temperature. Also, diode parameters of PANI/(311)B n-GaAs heterostructures were calculated from the dark I-V measurements revealed the lower reverse saturation current (Io) of 3.0×10-9A, higher barrier height () of 0.79 eV and lower ideality factor (n) of 3.16.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shvarts M. Z., Andreeva A. V., Andronikov D. A., Emtsev K. V., Larionov V. R., Nakhimovich M. V., Pokrovskiy P. V., Sadchikov N. A., Yakovlev S. A. et Malevskiy D. A. « Hybrid concentrator-planar photovoltaic module with heterostructure solar cells ». Technical Physics Letters 49, no 2 (2023) : 46. http://dx.doi.org/10.21883/tpl.2023.02.55371.19438.

Texte intégral
Résumé :
The paper presents a promising solution for photovoltaic modules that provides overcoming the main conceptual limitation for the concentrator concept in photovoltaics --- the impossibility to convert diffused (scattered) solar radiation coming to the panel of sunlight concentrators. The design of a hybrid concentrator-planar photovoltaic module based on heterostructure solar cells: A3B5 triple-junction and Si-HJT is presented. The results of initial outdoor studies of the module output characteristics are discussed and estimates of its energy efficiency are given. Keywords: hybrid concentrator-planar photovoltaic module, multijunction solar cell, Si-HJT planar photoconverter, diffusely scattered radiation.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nkele, A. C., S. U. Offiah, C. P. Chime et F. I. Ezema. « Review on advanced nanomaterials for hydrogen production ». IOP Conference Series : Earth and Environmental Science 1178, no 1 (1 mai 2023) : 012001. http://dx.doi.org/10.1088/1755-1315/1178/1/012001.

Texte intégral
Résumé :
Abstract Global fuel consumption and harmful gaseous emissions diverted energy sources to alternative means. Solar water splitting amidst other solar conversion methods is the most clean and efficient means of hydrogen production. 21st century technologies have delved into adopting nanomaterials of high efficiency to treat environmental pollution and produce hydrogen through electrochemical, photocatalytic, or electrophotocatalytic processes due to their outstanding properties. We reviewed diverse means of producing hydrogen through the use of advanced nanomaterials like carbon nanomaterials, solid inorganic-organic hybrids, metallic oxides/sulfides, quantum dots, composite heterostructures, microbial electrolysis cells etc. Overview on hydrogen production, ways of generating hydrogen, advanced nanomaterials for hydrogen production, and recent progress in hydrogen-producing nanomaterials have been discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mapel, J. K., M. Singh, M. A. Baldo et K. Celebi. « Plasmonic excitation of organic double heterostructure solar cells ». Applied Physics Letters 90, no 12 (19 mars 2007) : 121102. http://dx.doi.org/10.1063/1.2714193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Milliron, Delia J., Ilan Gur et A. Paul Alivisatos. « Hybrid Organic–Nanocrystal Solar Cells ». MRS Bulletin 30, no 1 (janvier 2005) : 41–44. http://dx.doi.org/10.1557/mrs2005.8.

Texte intégral
Résumé :
AbstractRecent results have demonstrated that hybrid photovoltaic cells based on a blend of inorganic nanocrystals and polymers possess significant potential for low-cost, scalable solar power conversion. Colloidal semiconductor nanocrystals, like polymers, are solution processable and chemically synthesized, but possess the advantageous properties of inorganic semiconductors such as a broad spectral absorption range and high carrier mobilities. Significant advances in hybrid solar cells have followed the development of elongated nanocrystal rods and branched nanocrystals, which enable more effective charge transport. The incorporation of these larger nanostructures into polymers has required optimization of blend morphology using solvent mixtures. Future advances will rely on new nanocrystals, such as cadmium telluride tetrapods, that have the potential to enhance light absorption and further improve charge transport. Gains can also be made by incorporating application-specific organic components, including electroactive surfactants which control the physical and electronic interactions between nanocrystals and polymer.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Wang, Ryan T., et Gu Xu. « Organic Inorganic Hybrid Perovskite Solar Cells ». Crystals 11, no 10 (27 septembre 2021) : 1171. http://dx.doi.org/10.3390/cryst11101171.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

McGehee, Michael D. « Nanostructured Organic–Inorganic Hybrid Solar Cells ». MRS Bulletin 34, no 2 (février 2009) : 95–100. http://dx.doi.org/10.1557/mrs2009.27.

Texte intégral
Résumé :
AbstractWhen light is absorbed in organic semiconductors, bound electron–hole pairs known as excitons are generated. The electrons and holes separate from each other at an interface between two semiconductors by electron transfer. It is advantageous to form well-ordered nanostructures so that all of the excitons can reach the interface between the two semiconductors and all of the charge carriers have a pathway to the appropriate electrode. This article discusses charge and exciton transport in organic semiconductors, as well as the opportunities for making highly efficient solar cells and for using carbon nanotubes to replace metal oxide electrodes.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Weickert, Jonas, Ricky B. Dunbar, Holger C. Hesse, Wolfgang Wiedemann et Lukas Schmidt-Mende. « Nanostructured Organic and Hybrid Solar Cells ». Advanced Materials 23, no 16 (15 février 2011) : 1810–28. http://dx.doi.org/10.1002/adma.201003991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Liu, Ruiyuan, et Baoquan Sun. « Silicon-based Organic/inorganic Hybrid Solar Cells ». Acta Chimica Sinica 73, no 3 (2015) : 225. http://dx.doi.org/10.6023/a14100693.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Alparslan, Zühal, Arif Kösemen, Osman Örnek, Yusuf Yerli et S. Eren San. « -Based Organic Hybrid Solar Cells with Doping ». International Journal of Photoenergy 2011 (2011) : 1–8. http://dx.doi.org/10.1155/2011/734618.

Texte intégral
Résumé :
A hybrid solar cell is designed and proposed as a feasible and reasonable alternative, according to acquired efficiency with the employment of TiO2(titanium dioxide) and Mn-doped TiO2thin films. In the scope of this work, TiO2(titanium dioxide) and Mn:TiO2hybrid organic thin films are proposed as charge transporter layer in polymer solar cells. Poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT: PCBM) is used as active layer. When the Mn-doped TiO2solar cells were compared with pure TiO2cells, Mn-doped samples revealed a noteworthy efficiency enhancement with respect to undoped-TiO2-based cells. The highest conversion efficiency was obtained to be 2.44% at the ratio of 3.5% (wt/wt) Mn doping.
Styles APA, Harvard, Vancouver, ISO, etc.
16

ADHIKARI, SUDIP, HIDEO UCHIDA et MASAYOSHI UMENO. « HYBRID ORGANIC SOLAR CELLS BLENDED WITH CNTs ». Surface Review and Letters 22, no 06 (20 octobre 2015) : 1550072. http://dx.doi.org/10.1142/s0218625x15500729.

Texte intégral
Résumé :
In this paper, composite carbon nanotubes (C-CNTs); single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are synthesized using an ultrasonic nebulizer in a large quartz tube for photovoltaic device fabrication in poly-3-octyl-thiophene (P3OT)/ n - Si heterojunction solar cells. We found that the device fabricated with C-CNTs shows much better photovoltaic performance than that of a device without C-CNTs. The device with C-CNTs shows open-circuit voltage (Voc) of 0.454 V, a short circuit current density (Jsc) of 12.792 mA/cm2, fill factor (FF) of 0.361 and power conversion efficiency of 2.098 %. Here, we proposed that SWCNTs and MWCNTs provide efficient percolation paths for both electron and hole transportation to opposite electrodes and leading to the suppression of charge carrier recombination, thereby increasing the photovoltaic device performance.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Liu, Qiming, Tatsuya Ohki, Dequan Liu, Hiromitsu Sugawara, Ryo Ishikawa, Keiji Ueno et Hajime Shirai. « Efficient organic/polycrystalline silicon hybrid solar cells ». Nano Energy 11 (janvier 2015) : 260–66. http://dx.doi.org/10.1016/j.nanoen.2014.10.032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Halim, Henry, et Yunlong Guo. « Flexible organic-inorganic hybrid perovskite solar cells ». Science China Materials 59, no 6 (juin 2016) : 495–506. http://dx.doi.org/10.1007/s40843-016-5048-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

YAMAMOTO, Chihiro, Katsunori MAEDA, Tetsuya KANEKO, Masao ISOMURA, Joel YAMAKAWA et Yoshihito KUNUGI. « Development of organic-inorganic hybrid perovskite solar cells ». Journal of Advanced Science 28 (2016) : n/a. http://dx.doi.org/10.2978/jsas.13001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Fan, Xia, Mingliang Zhang, Xiaodong Wang, Fuhua Yang et Xiangmin Meng. « Recent progress in organic–inorganic hybrid solar cells ». Journal of Materials Chemistry A 1, no 31 (2013) : 8694. http://dx.doi.org/10.1039/c3ta11200d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Jumabekov, A. N., E. Della Gaspera, Z. Q. Xu, A. S. R. Chesman, J. van Embden, S. A. Bonke, Q. Bao, D. Vak et U. Bach. « Back-contacted hybrid organic–inorganic perovskite solar cells ». Journal of Materials Chemistry C 4, no 15 (2016) : 3125–30. http://dx.doi.org/10.1039/c6tc00681g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Memesa, Mine, Stefan Weber, Sebastian Lenz, Jan Perlich, Rüdiger Berger, Peter Müller-Buschbaum et Jochen S. Gutmann. « Integrated blocking layers for hybrid organic solar cells ». Energy & ; Environmental Science 2, no 7 (2009) : 783. http://dx.doi.org/10.1039/b902754h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Ong, Pang-Leen, et Igor Levitsky. « Organic / IV, III-V Semiconductor Hybrid Solar Cells ». Energies 3, no 3 (5 mars 2010) : 313–34. http://dx.doi.org/10.3390/en3030313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Arici, Elif, et Smagul Karazhanov. « Carbon nanotubes for organic/inorganic hybrid solar cells ». Materials Science in Semiconductor Processing 41 (janvier 2016) : 137–49. http://dx.doi.org/10.1016/j.mssp.2015.07.086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Chen, Wei, Maxim P. Nikiforov et Seth B. Darling. « Morphology characterization in organic and hybrid solar cells ». Energy & ; Environmental Science 5, no 8 (2012) : 8045. http://dx.doi.org/10.1039/c2ee22056c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Elumalai, Naveen Kumar, et Ashraf Uddin. « Hysteresis in organic-inorganic hybrid perovskite solar cells ». Solar Energy Materials and Solar Cells 157 (décembre 2016) : 476–509. http://dx.doi.org/10.1016/j.solmat.2016.06.025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wright, Matthew, et Ashraf Uddin. « Organic—inorganic hybrid solar cells : A comparative review ». Solar Energy Materials and Solar Cells 107 (décembre 2012) : 87–111. http://dx.doi.org/10.1016/j.solmat.2012.07.006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Liu, Qiming, Ishwor Khatri, Ryo Ishikawa, Keiji Ueno et Hajime Shirai. « Efficient crystalline Si/organic hybrid heterojunction solar cells ». physica status solidi (c) 9, no 10-11 (14 septembre 2012) : 2101–6. http://dx.doi.org/10.1002/pssc.201200131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Colsmann, Alexander, et Holger Röhm. « Stability of Organic and Hybrid Perovskite Solar Cells ». Energy Technology 8, no 12 (décembre 2020) : 2000912. http://dx.doi.org/10.1002/ente.202000912.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Seo, Ji Hoon, Dong-Ho Kim, Se-Hun Kwon, Myungkwan Song, Min-Seung Choi, Seung Yoon Ryu, Hyung Woo Lee et al. « High Efficiency Inorganic/Organic Hybrid Tandem Solar Cells ». Advanced Materials 24, no 33 (16 juillet 2012) : 4523–27. http://dx.doi.org/10.1002/adma.201201419.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Yang, Zhibin, Adharsh Rajagopal et Alex K. Y. Jen. « Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells ». Advanced Materials 29, no 47 (14 novembre 2017) : 1704418. http://dx.doi.org/10.1002/adma.201704418.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Valadi, Kobra, et Ali Maleki. « Metal-Doped Copper Indium Disulfide Heterostructure : Environment-Friendly Hole-Transporting Material toward Photovoltaic Application in Organic-Inorganic Perovskite Solar Cell ». Proceedings 41, no 1 (14 novembre 2019) : 74. http://dx.doi.org/10.3390/ecsoc-23-06624.

Texte intégral
Résumé :
In this plan, we use Praseodymium metal-doped copper indium disulfide (Pr-doped CIS) heterostructure as hole-transporting materials (HTMs) in the FTO/TiO2/Perovskite absorber/HTM/ Au device. And photovoltaic performance of these Pr-doped CIS heterostructure was investigated in the fabrication of the organic-inorganic perovskite solar cells (organic-inorganic PSCs).
Styles APA, Harvard, Vancouver, ISO, etc.
33

Seo, Ji Hoon, Dong-Ho Kim, Se-Hun Kwon, Myungkwan Song, Min-Seung Choi, Seung Yoon Ryu, Hyung Woo Lee et al. « Solar Cells : High Efficiency Inorganic/Organic Hybrid Tandem Solar Cells (Adv. Mater. 33/2012) ». Advanced Materials 24, no 33 (20 août 2012) : 4587. http://dx.doi.org/10.1002/adma.201290200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhang, Liang Min. « Inorganic-Organic Hybrid Nanocomposites for Photovoltaic Applications ». Advanced Materials Research 571 (septembre 2012) : 120–24. http://dx.doi.org/10.4028/www.scientific.net/amr.571.120.

Texte intégral
Résumé :
Hybrid photovoltaic concepts based on a nanoscale combination of organic and inorganic semiconductors are promising way to enhance the cost efficiency of solar cells through a better use of the solar spectrum, a higher ratio of interface-to-volume, and the flexible processability of polymers. In this work, two types of thin film solar cells have been developed. In both types of solar cells, poly-N-vinylcarbazole (PVK) is used as electron donor, cadmium sulfide (CdS) and titanium dioxide (TiO2) nanocrystals are used as electron acceptors, respectively. Since TiO2 has a wide band gap and can only absorb UV light, in the second type of solar cell, ruthenium dye is used as photo-sensitizer. The preliminary results of photoconductive and photovoltaic characteristics of these two inorganic-organic composites are presented.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Noh, Jun Hong, et Sang Il Seok. « Steps toward efficient inorganic–organic hybrid perovskite solar cells ». MRS Bulletin 40, no 8 (août 2015) : 648–53. http://dx.doi.org/10.1557/mrs.2015.168.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ichwani, Reisya, Richard Koech, Oluwaseun K. Oyewole, Adri Huda, Deborah O. Oyewole, Jaya Cromwell, Julia L. Martin, Ronald L. Grimm et Winston O. Soboyejo. « Interfacial fracture of hybrid organic–inorganic perovskite solar cells ». Extreme Mechanics Letters 50 (janvier 2022) : 101515. http://dx.doi.org/10.1016/j.eml.2021.101515.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

He, Lining, Changyun Jiang, Hao Wang, Donny Lai et Rusli. « High efficiency planar Si/organic heterojunction hybrid solar cells ». Applied Physics Letters 100, no 7 (13 février 2012) : 073503. http://dx.doi.org/10.1063/1.3684872.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zhu, Mingzhe, Chongwen Li, Bingyu Li, Jiakang Zhang, Yuqian Sun, Weisi Guo, Zhongmin Zhou, Shuping Pang et Yanfa Yan. « Interaction engineering in organic–inorganic hybrid perovskite solar cells ». Materials Horizons 7, no 9 (2020) : 2208–36. http://dx.doi.org/10.1039/d0mh00745e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Jeon, Taewoo, Hyeong Min Jin, Seung Hyun Lee, Ju Min Lee, Hyung Il Park, Mi Kyung Kim, Keon Jae Lee, Byungha Shin et Sang Ouk Kim. « Laser Crystallization of Organic–Inorganic Hybrid Perovskite Solar Cells ». ACS Nano 10, no 8 (19 juillet 2016) : 7907–14. http://dx.doi.org/10.1021/acsnano.6b03815.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Plass, Robert, Serge Pelet, Jessica Krueger, Michael Grätzel et Udo Bach. « Quantum Dot Sensitization of Organic−Inorganic Hybrid Solar Cells ». Journal of Physical Chemistry B 106, no 31 (août 2002) : 7578–80. http://dx.doi.org/10.1021/jp020453l.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Li, Yong. « Organic-inorganic hybrid solar cells made from hyperbranched phthalocyanines ». Journal of Photonics for Energy 1, no 1 (1 janvier 2011) : 011115. http://dx.doi.org/10.1117/1.3565463.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Chen, Bo, Jian Shi, Xiaojia Zheng, Yuan Zhou, Kai Zhu et Shashank Priya. « Ferroelectric solar cells based on inorganic–organic hybrid perovskites ». Journal of Materials Chemistry A 3, no 15 (2015) : 7699–705. http://dx.doi.org/10.1039/c5ta01325a.

Texte intégral
Résumé :
Ferroelectric solar cells were fabricated by using the inorganic–organic hybrid perovskite materials, and power conversion efficieny as high as 6.7% had been obtained based on the MAPbI3−xClxthin film. This work provides an alternative avenue for high-performance ferroelectric solar cells beyond inorganic ferroelectric oxides.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Huang, Jia, Zhigang Yin et Qingdong Zheng. « Applications of ZnO in organic and hybrid solar cells ». Energy & ; Environmental Science 4, no 10 (2011) : 3861. http://dx.doi.org/10.1039/c1ee01873f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Furukawa, Yukio, Seiya Ikawa, Hanako Kiyohara, Yuki Sendai et Ayi Bahtiar. « Inorganic-Organic Hybrid Perovskite Solar Cells Fabricated with Additives ». Key Engineering Materials 860 (août 2020) : 3–8. http://dx.doi.org/10.4028/www.scientific.net/kem.860.3.

Texte intégral
Résumé :
We have studied the effect of lead (II) cyanate Pb (OCN)2 additive on photovoltaic properties of inverted planar solar cells based on inorganic-organic hybrid perovskite CH3NH3PbI3. The active layers of the solar cells were fabricated with a reaction between CH3NH3I and a mixture of PbI2 and Pb (OCN)2. The highest power conversion efficiency was 15%. Hysteresis behaviors in JV curves were reduced. The lifetime of the solar cells was dramatically increased. SEM images indicated that crystallite sizes were enlarged. The OCN groups were not incorporated into crystals from infrared measurements. These results suggest that Pb (OCN)2 affect mainly the crystallization process of CH3NH3PbI3.
Styles APA, Harvard, Vancouver, ISO, etc.
45

TANG Tong, 唐彤, 左红文 ZUO Hong-wen, 王亚凌 WANG Ya-ling, 秦文静 QIN Wen-jing, 曹焕奇 CAO Huan-qi, 杨利营 YANG Li-ying, 姚聪 YAO Cong, 葛子义 GE Zi-yi et 印寿根 YIN Shou-gen. « Efficient Perovskite-organic Bulk Heterojunction Hybrid Integrated Solar Cells ». Chinese Journal of Luminescence 36, no 9 (2015) : 1047–52. http://dx.doi.org/10.3788/fgxb20153609.1047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Sant, Sudhindra B. « Organic, Inorganic, and Hybrid Solar Cells : Principles and Practice ». Materials and Manufacturing Processes 29, no 1 (janvier 2014) : 83–84. http://dx.doi.org/10.1080/10426914.2013.864416.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Nogueira, Ana Flavia, et Garry Rumbles. « Special Section Guest Editorial : Hybrid Organic-Inorganic Solar Cells ». Journal of Photonics for Energy 5, no 1 (6 avril 2015) : 057401. http://dx.doi.org/10.1117/1.jpe.5.057401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Zhang, Yuan, Ashleigh Kirs, Filip Ambroz, Chieh‐Ting Lin, Abdulaziz S. R. Bati, Ivan P. Parkin, Joseph G. Shapter, Munkhbayar Batmunkh et Thomas J. Macdonald. « Ambient Fabrication of Organic–Inorganic Hybrid Perovskite Solar Cells ». Small Methods 5, no 1 (18 septembre 2020) : 2000744. http://dx.doi.org/10.1002/smtd.202000744.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Yang, Ning, Cheng Zhu, Yihua Chen, Huachao Zai, Chenyue Wang, Xi Wang, Hao Wang et al. « An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation ». Energy & ; Environmental Science 13, no 11 (2020) : 4344–52. http://dx.doi.org/10.1039/d0ee01736a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Zheng, Xuan, Huijun Zhang, Quanling Yang, Chuanxi Xiong, Wei Li, Yu Yan, Robert S. Gurney et Tao Wang. « Solution-processed Graphene-MoS2 heterostructure for efficient hole extraction in organic solar cells ». Carbon 142 (février 2019) : 156–63. http://dx.doi.org/10.1016/j.carbon.2018.10.038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie