Articles de revues sur le sujet « Organic and inorganic Lead »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Organic and inorganic Lead.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Organic and inorganic Lead ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Gonzalez-Carrero, Soranyel, Raquel E. Galian et Julia Pérez-Prieto. « Organic-inorganic and all-inorganic lead halide nanoparticles [Invited] ». Optics Express 24, no 2 (21 décembre 2015) : A285. http://dx.doi.org/10.1364/oe.24.00a285.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Verity, M. A. « Comparative observations on inorganic and organic lead neurotoxicity. » Environmental Health Perspectives 89 (novembre 1990) : 43–48. http://dx.doi.org/10.1289/ehp.908943.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lemmerer, Andreas, et David G. Billing. « Lead halide inorganic–organic hybrids incorporating diammonium cations ». CrystEngComm 14, no 6 (2012) : 1954. http://dx.doi.org/10.1039/c2ce06498g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ha, Son-Tung, Chao Shen, Jun Zhang et Qihua Xiong. « Laser cooling of organic–inorganic lead halide perovskites ». Nature Photonics 10, no 2 (21 décembre 2015) : 115–21. http://dx.doi.org/10.1038/nphoton.2015.243.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Eperon, Giles E., Giuseppe M. Paternò, Rebecca J. Sutton, Andrea Zampetti, Amir Abbas Haghighirad, Franco Cacialli et Henry J. Snaith. « Inorganic caesium lead iodide perovskite solar cells ». Journal of Materials Chemistry A 3, no 39 (2015) : 19688–95. http://dx.doi.org/10.1039/c5ta06398a.

Texte intégral
Résumé :
The vast majority of perovskite solar cell research has focused on organic–inorganic lead trihalide perovskites; herein, we present working inorganic CsPbI3perovskite solar cells for the first time.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Scally, Shaun, Hao Zhang et William Davison. « Measurements of Lead Complexation with Organic Ligands using DGT ». Australian Journal of Chemistry 57, no 10 (2004) : 925. http://dx.doi.org/10.1071/ch04076.

Texte intégral
Résumé :
The technique of diffusive gradients in thin films (DGT) was used to investigate the distribution of Pb between inorganic forms and organic complexes in various solutions that contained fulvic acid, humic acid, or nitrilotriacetic acid (NTA) over the pH range 4–8. Three types of DGT devices with diffusive gels of different pore sizes were used. When the diffusion coefficient of each species in each gel type was considered, the DGT measurements obtained agreed well with the distribution of species predicted by the ECOSAT equilibrium speciation model for all solutions and gel types. When an appreciable proportion of inorganic species was present in solution, direct measurements by DGT using the most restricted gel provided a reasonable estimate of the inorganic species in solution. This demonstrates that DGT is able to use differences in molecule mobility to distinguish between species in solution.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Billing, D. G., et A. Lemerrer. « Structural diversity in lead-halide based organic-inorganic hybrids ». Acta Crystallographica Section A Foundations of Crystallography 61, a1 (23 août 2005) : c357. http://dx.doi.org/10.1107/s0108767305084795.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Weber, Oliver J., Kayleigh L. Marshall, Lewis M. Dyson et Mark T. Weller. « Structural diversity in hybrid organic–inorganic lead iodide materials ». Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 71, no 6 (1 décembre 2015) : 668–78. http://dx.doi.org/10.1107/s2052520615019885.

Texte intégral
Résumé :
The structural chemistry of hybrid organic–inorganic lead iodide materials has become of increasing significance for energy applications since the discovery and development of perovskite solar cells based on methylammonium lead iodide. Seven new hybrid lead iodide compounds have been synthesized and structurally characterized using single-crystal X-ray diffraction. The lead iodide units in materials templated with bipyridyl, 1,2-bis(4-pyridyl)ethane, 1,2-di(4-pyridyl)ethylene and imidazole adopt one-dimensional chain structures, while crystallization from solutions containing piperazinium cations generates a salt containing isolated [PbI6]4−octahedral anions. Templating with 4-chlorobenzylammonium lead iodide adopts the well known two-dimensional layered perovskite structure with vertex shared sheets of composition [PbI4]2−separated by double layers of organic cations. The relationships between the various structures determined, their compositions, stability and hydrogen bonding between the protonated amine and the iodide ions of the PbI6octahedra are described.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wang, Bin, Dangwu Ma, Haixia Zhao, Lasheng Long et Lansun Zheng. « Room Temperature Lead-Free Multiaxial Inorganic–Organic Hybrid Ferroelectric ». Inorganic Chemistry 58, no 20 (26 septembre 2019) : 13953–59. http://dx.doi.org/10.1021/acs.inorgchem.9b01793.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Green, Martin A., Yajie Jiang, Arman Mahboubi Soufiani et Anita Ho-Baillie. « Optical Properties of Photovoltaic Organic–Inorganic Lead Halide Perovskites ». Journal of Physical Chemistry Letters 6, no 23 (18 novembre 2015) : 4774–85. http://dx.doi.org/10.1021/acs.jpclett.5b01865.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Han, Huilan, Alexander M. Sutherland, Frank Yaghmaie et Cristina E. Davis. « Development of a lead oxide photopatternable organic-inorganic film ». Applied Physics Letters 94, no 14 (6 avril 2009) : 144106. http://dx.doi.org/10.1063/1.3109798.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Peng, Yu, Yunpeng Yao, Lina Li, Xitao Liu, Xinyuan Zhang, Zhenyue Wu, Sasa Wang, Chengmin Ji, Weichuan Zhang et Junhua Luo. « Exploration of Chiral Organic–Inorganic Hybrid Semiconducting Lead Halides ». Chemistry – An Asian Journal 14, no 13 (27 mai 2019) : 2273–77. http://dx.doi.org/10.1002/asia.201900288.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zhou, Jiachen, et Jia Huang. « Photodetectors Based on Organic-Inorganic Hybrid Lead Halide Perovskites ». Advanced Science 5, no 1 (15 septembre 2017) : 1700256. http://dx.doi.org/10.1002/advs.201700256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Sirenko, Valerii Y., Olesia I. Kucheriv, Dina D. Naumova, Igor V. Fesych, Rostyslav P. Linnik, Ioan-Andrei Dascălu, Sergiu Shova, Igor O. Fritsky et Il'ya A. Gural'skiy. « Chiral organic–inorganic lead halide perovskites based on α-alanine ». New Journal of Chemistry 45, no 28 (2021) : 12606–12. http://dx.doi.org/10.1039/d1nj01089a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Gao, Rui, Suanny Mosquera-Romero, Eleftheria Ntagia, Xiaofei Wang, Korneel Rabaey et Luiza Bonin. « Review—Electrochemical Separation of Organic and Inorganic Contaminants in Wastewater ». Journal of The Electrochemical Society 169, no 3 (1 mars 2022) : 033505. http://dx.doi.org/10.1149/1945-7111/ac51f9.

Texte intégral
Résumé :
High energy input and chemicals additions are typically needed to deal with persistent pollutants, organic and inorganic, and organometallic complexes in wastewater. Particularly, organometallic complexes decrease the removal efficiency for other pollutants being treated with conventional technologies, which can lead to high operational costs and residues formation. The improperly treated wastewater contains nutrients (nitrogen and phosphorus), heavy metals, and persistent organics, which should be removed or recovered before discharging. Electrochemical technologies can achieve concomitant removal of persistent pollutants and resource recovery from wastewater, with the benefits of low chemical input, cost-effectiveness and reduced water consumption. In this review, we provide an overview of electrochemical technologies for the separation of organics and inorganics and their subsequent recovery. The focus is placed into electrodeposition, electrodialysis, membrane electrolysis, electrochemical oxidation, capacitive deionization, and bioelectrochemical systems. The main challenges considered at present are i) the cost and longevity of the materials, ii) the process efficiency and selectivity and iii) the complexity of the wastewater matrices. In this review it is projected that in the near future, the electrochemical separation and recovery of organics and inorganics will be preferred, as electrochemical cells powered by renewable energy can serve for decentralized and off-grid treatment approaches.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Noel, Nakita K., Samuel D. Stranks, Antonio Abate, Christian Wehrenfennig, Simone Guarnera, Amir-Abbas Haghighirad, Aditya Sadhanala et al. « Lead-free organic–inorganic tin halide perovskites for photovoltaic applications ». Energy Environ. Sci. 7, no 9 (2014) : 3061–68. http://dx.doi.org/10.1039/c4ee01076k.

Texte intégral
Résumé :
Perovskite solar cells based on abundant low cost materials promise to compete on performance with mainstream PV. Here we demonstrate lead-free perovskite solar cells, removing a potential barrier to widespread deployment.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Hao, Feng, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang et Mercouri G. Kanatzidis. « Lead-free solid-state organic–inorganic halide perovskite solar cells ». Nature Photonics 8, no 6 (4 mai 2014) : 489–94. http://dx.doi.org/10.1038/nphoton.2014.82.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Myung, Chang Woo, Saqib Javaid, Kwang S. Kim et Geunsik Lee. « Rashba–Dresselhaus Effect in Inorganic/Organic Lead Iodide Perovskite Interfaces ». ACS Energy Letters 3, no 6 (7 mai 2018) : 1294–300. http://dx.doi.org/10.1021/acsenergylett.8b00638.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Li, Tianyang, Wiley A. Dunlap-Shohl, Qiwei Han et David B. Mitzi. « Melt Processing of Hybrid Organic–Inorganic Lead Iodide Layered Perovskites ». Chemistry of Materials 29, no 15 (18 juillet 2017) : 6200–6204. http://dx.doi.org/10.1021/acs.chemmater.7b02363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Swainson, I. P., M. G. Tucker, D. J. Wilson, B. Winkler et V. Milman. « Pressure Response of an Organic−Inorganic Perovskite : Methylammonium Lead Bromide ». Chemistry of Materials 19, no 10 (mai 2007) : 2401–5. http://dx.doi.org/10.1021/cm0621601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Cao, Guozhong. « Lead-free organic-inorganic halide perovskites grown with nontoxic solvents ». Science Bulletin 62, no 13 (juillet 2017) : 901–2. http://dx.doi.org/10.1016/j.scib.2017.05.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Jiang, Yajie, Martin A. Green, Rui Sheng et Anita Ho-Baillie. « Room temperature optical properties of organic–inorganic lead halide perovskites ». Solar Energy Materials and Solar Cells 137 (juin 2015) : 253–57. http://dx.doi.org/10.1016/j.solmat.2015.02.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Tuoc, Vu Ngoc, et Tran Doan Huan. « Lead-free hybrid organic-inorganic perovskites for solar cell applications ». Journal of Chemical Physics 152, no 1 (7 janvier 2020) : 014104. http://dx.doi.org/10.1063/1.5128603.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Fang, Hong-Hua, Raissa Raissa, Mustapha Abdu-Aguye, Sampson Adjokatse, Graeme R. Blake, Jacky Even et Maria Antonietta Loi. « Photophysics of Organic-Inorganic Hybrid Lead Iodide Perovskite Single Crystals ». Advanced Functional Materials 25, no 16 (13 février 2015) : 2378–85. http://dx.doi.org/10.1002/adfm.201404421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lu, Haipeng, Jingying Wang, Chuanxiao Xiao, Xin Pan, Xihan Chen, Roman Brunecky, Joseph J. Berry, Kai Zhu, Matthew C. Beard et Zeev Valy Vardeny. « Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites ». Science Advances 5, no 12 (décembre 2019) : eaay0571. http://dx.doi.org/10.1126/sciadv.aay0571.

Texte intégral
Résumé :
Chiral-induced spin selectivity (CISS) occurs when the chirality of the transporting medium selects one of the two spin ½ states to transport through the media while blocking the other. Monolayers of chiral organic molecules demonstrate CISS but are limited in their efficiency and utility by the requirement of a monolayer to preserve the spin selectivity. We demonstrate CISS in a system that integrates an inorganic framework with a chiral organic sublattice inducing chirality to the hybrid system. Using magnetic conductive-probe atomic force microscopy, we find that oriented chiral 2D-layered Pb-iodide organic/inorganic hybrid perovskite systems exhibit CISS. Electron transport through the perovskite films depends on the magnetization of the probe tip and the handedness of the chiral molecule. The films achieve a highest spin-polarization transport of up to 86%. Magnetoresistance studies in modified spin-valve devices having only one ferromagnet electrode confirm the occurrence of spin-dependent charge transport through the organic/inorganic layers.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Shoyama, Kazutaka, Wataru Sato, Yunlong Guo et Eiichi Nakamura. « Effects of water on the forward and backward conversions of lead(ii) iodide to methylammonium lead perovskite ». Journal of Materials Chemistry A 5, no 45 (2017) : 23815–21. http://dx.doi.org/10.1039/c7ta08042e.

Texte intégral
Résumé :
This work has chemically addressed the enigmatic effects of water on solar cell devices based on an organic–inorganic hybrid perovskite, i.e., water can exert either beneficial or detrimental effects on device fabrication and device stability.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Hewitt, C. Nicholas, et M. B. Rashed. « Organic lead compounds in vehicle exhaust ». Applied Organometallic Chemistry 2, no 2 (1988) : 95–100. http://dx.doi.org/10.1002/aoc.590020202.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Cheng, Ling, et Yingjie Cao. « A two-dimensional organic–inorganic hybrid perovskite-type semiconductor : poly[(2-azaniumylethyl)trimethylphosphanium [tetra-μ-bromido-plumbate(II)]] ». Acta Crystallographica Section C Structural Chemistry 75, no 3 (21 février 2019) : 354–58. http://dx.doi.org/10.1107/s2053229619001712.

Texte intégral
Résumé :
Recently, with the prevalence of `perovskite fever', organic–inorganic hybrid perovskites (OHPs) have attracted intense attention due to their remarkable structural variability and highly tunable properties. In particular, the optical and electrical properties of organic–inorganic hybrid lead halides are typical of the OHP family. Besides, although three-dimensional hybrid perovskites, such as [CH3NH3]PbX 3 (X = Cl, Br or I), have been reported, the development of new organic–inorganic hybrid semiconductors is still an area in urgent need of exploration. Here, an organic–inorganic hybrid lead halide perovskite is reported, namely poly[(2-azaniumylethyl)trimethylphosphanium [tetra-μ-bromido-plumbate(II)]], {(C5H16NP)[PbBr4]} n , in which an organic cation is embedded in inorganic two-dimensional (2D) mesh layers to produce a sandwich structure. This unique sandwich 2D hybrid perovskite material shows an indirect band gap of ∼2.700 eV. The properties of this compound as a semiconductor are demonstrated by a series of optical characterizations and indicate potential applications for optical devices.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Hussain, Syed Sajjad, Saira Riaz, Ghazi Aman Nowsherwan, Khizer Jahangir, Akram Raza, Muhammad Javaid Iqbal, Imran Sadiq, Syed Mutahir Hussain et Shahzad Naseem. « Numerical Modeling and Optimization of Lead-Free Hybrid Double Perovskite Solar Cell by Using SCAPS-1D ». Journal of Renewable Energy 2021 (16 juillet 2021) : 1–12. http://dx.doi.org/10.1155/2021/6668687.

Texte intégral
Résumé :
The highest power conversion efficiency (PCE) for organic-inorganic perovskite solar cells based on lead is reported as 25.2% in 2019. Lead-based hybrid perovskite materials are used in several photovoltaics applications, but these are not highly favored due to the toxicity of lead and volatility of organic cations. On the other hand, hybrid lead-free double perovskite has no such harm. In this research study, SCAPS numerical simulation is utilized to evaluate and compare the results of perovskite solar cell based on double perovskite FA 2 BiCuI 6 and standard perovskite CH 3 NH 3 PbI 3 as an active layer. The results show that the power conversion efficiency obtained in the case of FA 2 BiCuI 6 is 24.98%, while in the case of CH 3 NH 3 PbI 3 , it is reported as 26.42%. This indicates that the hybrid organic-inorganic double perovskite FA 2 BiCuI 6 has the ability to replace hybrid organic-inorganic perovskite CH 3 NH 3 PbI 3 to expand next-generation lead-free harmless materials for solar cell applications.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Katoh, Masahiko, Wataru Kitahara et Takeshi Sato. « Role of Inorganic and Organic Fractions in Animal Manure Compost in Lead Immobilization and Microbial Activity in Soil ». Applied and Environmental Soil Science 2016 (2016) : 1–9. http://dx.doi.org/10.1155/2016/7872947.

Texte intégral
Résumé :
This study aimed to identify how the ratio of inorganic-to-organic components in animal manure compost (AMC) affected both lead immobilization and microbial activity in lead-contaminated soil. When AMC containing 50% or more inorganic fraction with high phosphorous content was applied to contaminated soil, the amounts of water-soluble lead in it were suppressed by over 88% from the values in the soil without compost. The residual fraction under sequential extraction increased with the inorganic fraction in the AMC; however, in those AMCs, the levels of microbial enzyme activity were the same or less than those in the control soil. The application of AMC containing 25% inorganic fraction could alter the lead phases to be more insoluble while improving microbial enzyme activities; however, no suppression of the level of water-soluble lead existed during the first 30 days. These results indicate that compost containing an inorganic component of 50% or more with high phosphorus content is suitable for immobilizing lead; however, in the case where low precipitation is expected for a month, AMC containing 25% inorganic component could be used to both immobilize lead and restore microbial activity.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Guo, Yongchang, Bingsuo Zou, Fan Yang, Xuan Zheng, Hui Peng et Jianping Wang. « Dielectric polarization effect and transient relaxation in FAPbBr3 films before and after PMMA passivation ». Physical Chemistry Chemical Physics 23, no 17 (2021) : 10153–63. http://dx.doi.org/10.1039/d1cp01136g.

Texte intégral
Résumé :
In organic–inorganic hybrid lead halide perovskites with a naturally arranged layered structure, the dielectric polarization effect caused by the dielectric mismatch between the organic and inorganic layers takes effect in their optical responses.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Shen, Hong-Yi, Lei He, Ping-Ping Shi et Qiong Ye. « Lead-free organic–inorganic hybrid semiconductors and NLO switches tuned by dimensional design ». Journal of Materials Chemistry C 9, no 12 (2021) : 4338–43. http://dx.doi.org/10.1039/d1tc00278c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Poll, Christopher G., Geoffrey W. Nelson, David M. Pickup, Alan V. Chadwick, D. Jason Riley et David J. Payne. « Electrochemical recycling of lead from hybrid organic–inorganic perovskites using deep eutectic solvents ». Green Chemistry 18, no 10 (2016) : 2946–55. http://dx.doi.org/10.1039/c5gc02734a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Deng, Bin-Bin, Ting-Ting Cheng, Yan-Ting Hu, Shu-Ping Cheng, Chao-Ran Huang, Hang Yu et Zhong-Xia Wang. « The first salicylaldehyde Schiff base organic–inorganic hybrid lead iodide perovskite ferroelectric ». Chemical Communications 58, no 13 (2022) : 2192–95. http://dx.doi.org/10.1039/d1cc05278k.

Texte intégral
Résumé :
The first salicylaldehyde Schiff base organic–inorganic hybrid perovskite ferroelectric [SAPD]PbI3 (SAPD = 1-((2-hydroxybenzylidene)amino)pyridin-1-ium) has been synthesized, which shows large spontaneous polarization and SHG response.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Duong, Thi-Mai Huong, Shunpei Nobusue et Hirokazu Tada. « Face-shared structures of one-dimensional organic–inorganic lead iodide perovskites ». Applied Physics Express 11, no 11 (23 octobre 2018) : 115502. http://dx.doi.org/10.7567/apex.11.115502.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zhevstovskikh, Irina V., Nikita S. Averkiev, Maksim N. Sarychev, Olga I. Semenova et Oleg E. Tereshchenko. « Low-temperature luminescence in organic-inorganic lead iodide perovskite single crystals ». Journal of Physics D : Applied Physics 55, no 9 (23 novembre 2021) : 095105. http://dx.doi.org/10.1088/1361-6463/ac38e3.

Texte intégral
Résumé :
Abstract We present a temperature and laser-power dependent photoluminescence (PL) study of methylammonium lead iodide (CH3NH3PbI3) single crystals in the orthorhombic phase. At temperatures below 140 K, we revealed the multi-component PL emission. In addition to a free exciton with an energy of 1.65 eV, we found emission bands with peaks approximately equal to 1.6 eV, 1.52 eV, and 1.48 eV. Analysis of the thermal evolution of the intensities, peak positions, and linewidths of all the PL bands allowed one to determine their origin. We attributed the PL peak with energy of 1.6 eV to a bound exciton, while the free exciton-bound exciton splitting energy is 50–60 meV. The PL emission with an energy of 1.52 eV can be explained by the donor-acceptor pair (DAP) recombination, where donor and acceptor defects have a depth of about 12 meV and 120 meV, respectively. MA (CH3NH3) interstitials (MA i + ) and lead vacancies (V P b 2 − ) are the most suitable for the DAP transition to occur in CH3NH3PbI3 crystals. The 1.48 eV PL emission is consistent with the recombination of self-trapped excitons, and interstitial iodine is likely to be an active trap source. We found the variation of the self-trapped depth from 15 meV (at T < 80 K) to 53 meV (at T > 80 K) with increasing the temperature. Although the multi-component PL emission in CH3NH3PbI3 single crystals appears at low temperatures, defects and excitonic traps that cause this emission can affect the photophysics of hybrid perovskites at higher temperatures.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zhao, Yixin, et Kai Zhu. « Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications ». Chemical Society Reviews 45, no 3 (2016) : 655–89. http://dx.doi.org/10.1039/c4cs00458b.

Texte intégral
Résumé :
This article reviews recent progress on hybrid perovskites including crystal/thin-film synthesis, structural/chemical/electro-optical properties, (opto)electronic applications, and research issues/challenges.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zhang, Weining, Qingguo Zhao, Xiaohong Wang, Xiaoxia Yan, Jiaqiang Xu et Zhigang Zeng. « Lead-free organic–inorganic hybrid perovskite heterojunction composites for photocatalytic applications ». Catalysis Science & ; Technology 7, no 13 (2017) : 2753–62. http://dx.doi.org/10.1039/c7cy00389g.

Texte intégral
Résumé :
Heterojunction structured MASnI3/TiO2 photocatalysts (MA represents CH3NH3+) are prepared via a facile wet-chemical method and characterized by various techniques.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Jia, Yufei, Ross A. Kerner, Alex J. Grede, Barry P. Rand et Noel C. Giebink. « Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor ». Nature Photonics 11, no 12 (20 novembre 2017) : 784–88. http://dx.doi.org/10.1038/s41566-017-0047-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Khan, Ubaid, Yu Zhinong, Abbas Ahmad Khan, Almas Zulfiqar et Qudrat Ullah khan. « Organic–inorganic hybrid perovskites based on methylamine lead halide solar cell ». Solar Energy 189 (septembre 2019) : 421–25. http://dx.doi.org/10.1016/j.solener.2019.06.061.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Xie, Wanying, Yimeng Wang et Xinping Zhang. « Synthesizing conditions for organic-inorganic hybrid perovskite using methylammonium lead iodide ». Journal of Physics and Chemistry of Solids 105 (juin 2017) : 16–22. http://dx.doi.org/10.1016/j.jpcs.2017.02.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Li, Tianyue, Yue Hu, Carole A. Morrison, Wenjun Wu, Hongwei Han et Neil Robertson. « Lead-free pseudo-three-dimensional organic–inorganic iodobismuthates for photovoltaic applications ». Sustainable Energy & ; Fuels 1, no 2 (2017) : 308–16. http://dx.doi.org/10.1039/c6se00061d.

Texte intégral
Résumé :
X-ray diffraction, electronic characterisation and mesoscopic solar cell evaluation were performed for two novel iodobismuthates, C5H6NBiI4 ([py][BiI4]) and C6H8NBiI4 ([mepy][BiI4]).
Styles APA, Harvard, Vancouver, ISO, etc.
43

Nayakasinghe, M. T., Yulun Han, N. Sivapragasam, Dmitri S. Kilin, N. Oncel et U. Burghaus. « Adsorption of Formic Acid on CH3NH3PbI3 Lead–Halide Organic–Inorganic Perovskites ». Journal of Physical Chemistry C 123, no 37 (19 août 2019) : 22873–86. http://dx.doi.org/10.1021/acs.jpcc.9b03319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Mehta, Aarti, Jino Im, Bo Hyung Kim, Hanul Min, Riming Nie et Sang Il Seok. « Stabilization of Lead–Tin-Alloyed Inorganic–Organic Halide Perovskite Quantum Dots ». ACS Nano 12, no 12 (11 décembre 2018) : 12129–39. http://dx.doi.org/10.1021/acsnano.8b05478.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Filip, Marina R., et Feliciano Giustino. « Computational Screening of Homovalent Lead Substitution in Organic–Inorganic Halide Perovskites ». Journal of Physical Chemistry C 120, no 1 (24 décembre 2015) : 166–73. http://dx.doi.org/10.1021/acs.jpcc.5b11845.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Loghman-Estarki, Mohammad Reza, et Mahdi Rafiei. « Synthesis and characterization of mercaptoacetic acid/lead sulfide inorganic/organic nanocomposite ». Journal of Materials Science : Materials in Electronics 27, no 12 (28 juillet 2016) : 12852–59. http://dx.doi.org/10.1007/s10854-016-5420-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Zhou, Xianzhong, et Ziyang Zhang. « Strain induced Rashba splitting in CH3NH3PbBr3 organic–inorganic lead halide perovskite ». AIP Advances 10, no 8 (1 août 2020) : 085210. http://dx.doi.org/10.1063/5.0020236.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Socha, Pawel, Lukasz Dobrzycki et Michal Ksawery Cyranski. « Designing two-dimensional organic–inorganic structures : piperidinium derivates of lead chlorides ». Acta Crystallographica Section A Foundations and Advances 73, a2 (1 décembre 2017) : C665. http://dx.doi.org/10.1107/s2053273317089082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Shrivastava, Megha, Maryna I. Bodnarchuk, Abhijit Hazarika, Joseph M. Luther, Matthew C. Beard, Maksym V. Kovalenko et K. V. Adarsh. « Polaron and Spin Dynamics in Organic–Inorganic Lead Halide Perovskite Nanocrystals ». Advanced Optical Materials 8, no 24 (23 octobre 2020) : 2001016. http://dx.doi.org/10.1002/adom.202001016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Liang, Zhenye, Chen Tian, Xiaoxi Li, Liwei Cheng, Shanglei Feng, Lifeng Yang, Yingguo Yang et Lina Li. « Organic–Inorganic Lead Halide Perovskite Single Crystal : From Synthesis to Applications ». Nanomaterials 12, no 23 (28 novembre 2022) : 4235. http://dx.doi.org/10.3390/nano12234235.

Texte intégral
Résumé :
Organic–inorganic lead halide perovskite is widely used in the photoelectric field due to its excellent photoelectric characteristics. Among them, perovskite single crystals have attracted much attention due to its lower trap density and better carrier transport capacity than their corresponding polycrystalline materials. Owing to these characteristics, perovskite single crystals have been widely used in solar cells, photodetectors, light-emitting diode (LED), and so on, which have greater potential than polycrystals in a series of optoelectronic applications. However, the fabrication of single-crystal devices is limited by size, thickness, and interface problems, which makes the development of single-crystal devices inferior to polycrystalline devices, which also limits their future development. Here, several representative optoelectronic applications of perovskite single crystals are introduced, and some existing problems and challenges are discussed. Finally, we outlook the growth mechanism of single crystals and further the prospects of perovskite single crystals in the further field of microelectronics.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie