Littérature scientifique sur le sujet « Optimisation du code latent »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Optimisation du code latent ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Optimisation du code latent"
Dubisz, Stanisław. « Najnowsze dzieje języka polskiego (1918–2018) ». Poradnik Językowy, no 10/2022(799) (5 septembre 2022) : 11–26. http://dx.doi.org/10.33896/porj.2022.10.1.
Texte intégralHetyei, Csaba, et Ferenc Szlivka. « COUNTER-ROTATING DUAL ROTOR WIND TURBINE LAYOUT OPTIMISATION ». Acta Polytechnica 61, no 2 (30 avril 2021) : 342–49. http://dx.doi.org/10.14311/ap.2021.61.0342.
Texte intégralYe, Fei, et Adrian G. Bors. « Task-Free Continual Generation and Representation Learning via Dynamic Expansionable Memory Cluster ». Proceedings of the AAAI Conference on Artificial Intelligence 38, no 15 (24 mars 2024) : 16451–59. http://dx.doi.org/10.1609/aaai.v38i15.29582.
Texte intégralDahlin, J. E. « Cook up better code [Software code optimisation] ». Electronics Systems and Software 5, no 6 (1 décembre 2007) : 24–27. http://dx.doi.org/10.1049/ess:20070606.
Texte intégralJindal, Richa, et Sanjay Singla. « Ant colony optimisation for latent fingerprint matching ». International Journal of Advanced Intelligence Paradigms 19, no 2 (2021) : 161. http://dx.doi.org/10.1504/ijaip.2021.115247.
Texte intégralLee, Isack, et Seok Bong Yoo. « Latent-PER : ICA-Latent Code Editing Framework for Portrait Emotion Recognition ». Mathematics 10, no 22 (14 novembre 2022) : 4260. http://dx.doi.org/10.3390/math10224260.
Texte intégralLienard, M., et P. Degauque. « Correlation radar : optimisation of code generator architecture ». Electronics Letters 39, no 19 (2003) : 1405. http://dx.doi.org/10.1049/el:20030844.
Texte intégralLewis, S. J., D. G. Ireland et W. Vanderbauwhede. « Code optimisation in a nested-sampling algorithm ». Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment 785 (juin 2015) : 105–9. http://dx.doi.org/10.1016/j.nima.2015.03.006.
Texte intégralDhamdhere, D. M. « A fast algorithm for code movement optimisation ». ACM SIGPLAN Notices 23, no 10 (octobre 1988) : 172–80. http://dx.doi.org/10.1145/51607.51621.
Texte intégralMerllié, Dominique, et Bruno Boussard. « «Comment vous étes-vous connus ?» - 2 - Code patent, code latent ». Actes de la recherche en sciences sociales 70, no 1 (1987) : 87–92. http://dx.doi.org/10.3406/arss.1987.2398.
Texte intégralThèses sur le sujet "Optimisation du code latent"
Li, Huiyu. « Exfiltration et anonymisation d'images médicales à l'aide de modèles génératifs ». Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4041.
Texte intégralThis thesis aims to address some specific safety and privacy issues when dealing with sensitive medical images within data lakes. This is done by first exploring potential data leakage when exporting machine learning models and then by developing an anonymization approach that protects data privacy.Chapter 2 presents a novel data exfiltration attack, termed Data Exfiltration by Compression (DEC), which leverages image compression techniques to exploit vulnerabilities in the model exporting process. This attack is performed when exporting a trained network from a remote data lake, and is applicable independently of the considered image processing task. By exploring both lossless and lossy compression methods, this chapter demonstrates how DEC can effectively be used to steal medical images and reconstruct them with high fidelity, using two public CT and MR datasets. This chapter also explores mitigation measures that a data owner can implement to prevent the attack. It first investigates the application of differential privacy measures, such as Gaussian noise addition, to mitigate this attack, and explores how attackers can create attacks resilient to differential privacy. Finally, an alternative model export strategy is proposed which involves model fine-tuning and code verification.Chapter 3 introduces the Generative Medical Image Anonymization framework, a novel approach to balance the trade-off between preserving patient privacy while maintaining the utility of the generated images to solve downstream tasks. The framework separates the anonymization process into two key stages: first, it extracts identity and utility-related features from medical images using specially trained encoders; then, it optimizes the latent code to achieve the desired trade-off between anonymity and utility. We employ identity and utility encoders to verify patient identities and detect pathologies, and use a generative adversarial network-based auto-encoder to create realistic synthetic images from the latent space. During optimization, we incorporate these encoders into novel loss functions to produce images that remove identity-related features while maintaining their utility to solve a classification problem. The effectiveness of this approach is demonstrated through extensive experiments on the MIMIC-CXR chest X-ray dataset, where the generated images successfully support lung pathology detection.Chapter 4 builds upon the work from Chapter 4 by utilizing generative adversarial networks (GANs) to create a more robust and scalable anonymization solution. The framework is structured into two distinct stages: first, we develop a streamlined encoder and a novel training scheme to map images into a latent space. In the second stage, we minimize the dual-loss functions proposed in Chapter 3 to optimize the latent representation of each image. This method ensures that the generated images effectively remove some identifiable features while retaining crucial diagnostic information. Extensive qualitative and quantitative experiments on the MIMIC-CXR dataset demonstrate that our approach produces high-quality anonymized images that maintain essential diagnostic details, making them well-suited for training machine learning models in lung pathology classification.The conclusion chapter summarizes the scientific contributions of this work, and addresses remaining issues and challenges for producing secured and privacy preserving sensitive medical data
Lomüller, Victor. « Générateur de code multi-temps et optimisation de code multi-objectifs ». Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM050/document.
Texte intégralCompilation is an essential step to create efficient applications.This step allows the use of high-level and target independent languages while maintaining good performances.However, many obstacle prevent compilers to fully optimize applications.For static compilers, the major obstacle is the poor knowledge of the execution context, particularly knowledge on the architecture and data.This knowledge is progressively known during the application life cycle.Compilers progressively integrated dynamic code generation techniques to be able to use this knowledge.However, those techniques usually focuses on improvement of hardware capabilities usage but don't take data into account.In this thesis, we investigate data usage in applications optimization process on Nvidia GPU.We present a method that uses different moments in the application life cycle to create adaptive libraries able to take into account data size.Those libraries can therefore provide more adapted kernels.With the GEMM algorithm, the method is able to provide gains up to 100~\% while avoiding code size explosion.The thesis also investigate runtime code generation gains and costs from the execution speed, memory footprint and energy consumption point of view.We present and study 2 light-weight runtime code generation approaches that can specialize code.We show that those 2 approaches can obtain comparable, and even superior, gains compared to LLVM but at a lower cost
Chaabane, Rim. « Analyse et optimisation de patterns de code ». Paris 8, 2011. http://www.theses.fr/2011PA084174.
Texte intégralNotre travail consiste en l’analyse et l’optimisation du code source d’applications de type système hérité (ou legacy system). Nous avons particulièrement travaillé sur un logiciel, appelé GP3, qui est développé et maintenu par la société de finances Sungard. Ce logiciel existe depuis plus d’une vingtaine d’années, il est écrit en un langage propriétaire, procédural et de 4ème génération, appelé ADL (ou Application Development Language). Ce logiciel à été initialement développé sous VMS et accédait à des bases de données d’ancienne génération. Pour des raisons commerciales, il fut porté sous UNIX et s’adresse maintenant à des SGBD-R de nouvelles génération ; Oracle et Sybase. Il a également été étendu de manière à offrir une interface web. Ce système hérité doit maintenant faire face à de nouveaux défis, comme la croissance de la taille des bases de données. Durant ces 20 dernières années, nous avons pu observer la fusion de plusieurs entreprises, ce qui implique la fusion de bases de données. Ces dernières peuvent dépasser les 1 Téra de données et plus encore sont à prévoir à l’avenir. Dans ce nouveau contexte, le langage ADL montre des limites à traiter une aussi importante masse de données. Des patterns de code, désignant des structures d’accès en base, sont suspectés d’être responsables de dégradations des performances. Notre travail consiste à détecter toutes les instances de patterns dans le code source, puis d’identifier les instances les plus consommatrices en temps d’exécution et en nombre d’appels. Nous avons développé un premier outil, nommé Adlmap, basé sur l’analyse statique de code, et qui permet de détecter toutes les accès en base dans le code source. Les accès en base identifiés comme patterns de code sont marqués. Le second outil que nous avons développé, nommé Pmonitor, est basé sur une analyse hybride ; combinaison d’analyses statique et dynamique. Cet outil nous permet de mesurer les performances des patterns de code et ainsi, d’identifier les instances les moins performantes
Jupp, Ian David. « The optimisation of discrete pixel code aperture telescopes ». Thesis, University of Southampton, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243190.
Texte intégralHalli, Abderrahmane Nassim. « Optimisation de code pour application Java haute-performance ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM047/document.
Texte intégralL'auteur n'a pas fourni de résumé en anglais
Adamczewski, Martine. « Vectorisation, analyse et optimisation d'un code bidimensionnel eulérien ». Bordeaux 1, 1986. http://www.theses.fr/1986BOR10603.
Texte intégralAdamczewski, Martine. « Vectorisation, analyse et optimisation d'un code bidimensionnel eulérien ». Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb375953123.
Texte intégralRastelli, Riccardo, et Nial Friel. « Optimal Bayesian estimators for latent variable cluster models ». Springer Nature, 2018. http://dx.doi.org/10.1007/s11222-017-9786-y.
Texte intégralCosma, Georgina. « An approach to source-code plagiarism detection investigation using latent semantic analysis ». Thesis, University of Warwick, 2008. http://wrap.warwick.ac.uk/3575/.
Texte intégralRadhouane, Ridha. « Optimisation de modems VDSL ». Valenciennes, 2000. https://ged.uphf.fr/nuxeo/site/esupversions/63219c61-e8b1-424c-a9aa-4c3502179c78.
Texte intégralLivres sur le sujet "Optimisation du code latent"
Adamczewski, Martine. Vectorisation, analyse et optimisation d'un code bidimensionnel eulérien. Grenoble : A.N.R.T, Université Pierre Mendes France (Grenoble II), 1986.
Trouver le texte intégralJaana, Laiho, Wacker Achim et Novosad Tomáš, dir. Radio network planning and optimisation for UMTS. Hoboken, N.J : Wiley, 2005.
Trouver le texte intégralJ, Nawrocki Maciej, Dohler Mischa et Aghvami A. Hamid, dir. Understanding UMTS radio network modelling, planning and automated optimisation : Theory and practice / edited by Maciej J. Nawrocki, Mischa Dohler, A. Hamid Aghvami. Chichester : John Wiley & Sons, 2006.
Trouver le texte intégralWille, Volker, et Phil Pickering. WCDMA Performance Optimisation. Wiley-Interscience, 2007.
Trouver le texte intégralBonaventura, Luca, René Redler et Reinhard Budich. Earth System Modelling - Volume 2 : Algorithms, Code Infrastructure and Optimisation. Springer, 2011.
Trouver le texte intégralPetoumenos, Pavlos. International Workshop on Code Optimisation for Multi and Many Cores. Association for Computing Machinery, 2017.
Trouver le texte intégralRadio network planning and optimisation for UMTS. 2e éd. Chichester, UK : John Wiley & Sons, 2004.
Trouver le texte intégralAWAKEN THE SLUMBERING GODDESS : THE LATENT CODE OF THE HINDU GODDESS ARCHETYPES. BookSurge Publishing, 2007.
Trouver le texte intégralAghvami, Hamid, Mischa Dohler et Maciej Nawrocki. Understanding Umts Radio Network Modelling, Planning and Automated Optimisation. Wiley & Sons, Incorporated, John, 2006.
Trouver le texte intégralProceedings of the 2015 International Workshop on Code Optimisation for Multi and Many Cores. Association for Computing Machinery, 2015.
Trouver le texte intégralChapitres de livres sur le sujet "Optimisation du code latent"
Mozdzynski, George. « Code Optimisation ». Dans Earth System Modelling - Volume 2, 67–76. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23831-4_7.
Texte intégralCapon, P. C., et P. J. Jinks. « Code optimisation ». Dans Compiler Engineering Using Pascal, 187–93. London : Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-10401-7_14.
Texte intégralSharp, Richard. « 6. Analysis and Optimisation of Intermediate Code ». Dans Higher-Level Hardware Synthesis, 87–111. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24657-2_6.
Texte intégralZhou, Jiayu, et Xiaoqiang Zhu. « EHA3D : Expressive Head Avatar via Disentangled Latent Code ». Dans Communications in Computer and Information Science, 243–57. Singapore : Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-3623-2_18.
Texte intégralZukerman, Moshe, Pang L. Hiew et Maxim Gitlits. « FEC Code Rate and Bandwidth Optimisation in WATM Networks ». Dans Multiaccess, Mobility and Teletraffic, 207–20. Boston, MA : Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5437-0_17.
Texte intégralWang, Shuo, Chen Qin, Nicolò Savioli, Chen Chen, Declan P. O’Regan, Stuart Cook, Yike Guo, Daniel Rueckert et Wenjia Bai. « Joint Motion Correction and Super Resolution for Cardiac Segmentation via Latent Optimisation ». Dans Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, 14–24. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87199-4_2.
Texte intégralGromniak, Martin, Sven Magg et Stefan Wermter. « Neural Field Conditioning Strategies for 2D Semantic Segmentation ». Dans Artificial Neural Networks and Machine Learning – ICANN 2023, 520–32. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44210-0_42.
Texte intégralXu, Ting, Dibo Shi, Yi Ji et Chunping Liu. « Image Generation with the Enhanced Latent Code and Sub-pixel Sampling ». Dans Neural Information Processing, 387–98. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63830-6_33.
Texte intégralLee, Isack, Jun-Seok Yun, Hee Hyeon Kim, Youngju Na et Seok Bong Yoo. « LatentGaze : Cross-Domain Gaze Estimation Through Gaze-Aware Analytic Latent Code Manipulation ». Dans Computer Vision – ACCV 2022, 161–78. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26348-4_10.
Texte intégralBeckmann, Olav, Alastair Houghton, Michael Mellor et Paul H. J. Kelly. « Runtime Code Generation in C++ as a Foundation for Domain-Specific Optimisation ». Dans Domain-Specific Program Generation, 291–306. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-25935-0_17.
Texte intégralActes de conférences sur le sujet "Optimisation du code latent"
Zhang, Chenyu. « Improving Depth Map Geometric Consistency Using an Enhanced Transformer Latent Code Model ». Dans 2024 9th International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), 586–89. IEEE, 2024. https://doi.org/10.1109/iciibms62405.2024.10792864.
Texte intégralAndreou, Thomas, Craig White, Konstantinos Kontis, Shahrokh Shahpar et Nicholas Brown. « Part 1 : A Swirl Vane Generation Code for Fuel Spray Nozzles ». Dans ASME Turbo Expo 2020 : Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15414.
Texte intégralLing, Wang, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiský, Fumin Wang et Andrew Senior. « Latent Predictor Networks for Code Generation ». Dans Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1 : Long Papers). Stroudsburg, PA, USA : Association for Computational Linguistics, 2016. http://dx.doi.org/10.18653/v1/p16-1057.
Texte intégralSchüle, Maximilian E., Maximilian Springer, Alfons Kemper et Thomas Neumann. « LLVM code optimisation for automatic differentiation ». Dans SIGMOD/PODS '22 : International Conference on Management of Data. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3533028.3533302.
Texte intégralRashed, Muhammad Salman, Marco Meijer et Paul D. Teal. « Doppler Tolerant Code Optimisation Scheme for Multi-code Sonar Systems ». Dans OCEANS 2019 - Marseille. IEEE, 2019. http://dx.doi.org/10.1109/oceanse.2019.8867543.
Texte intégralSolhjoo, Babak, et Emanuele Rodolà. « Latent Code Disentanglement Using Orthogonal Latent Codes and Inter-Domain Signal Transformation ». Dans 15th International Conference on Agents and Artificial Intelligence. SCITEPRESS - Science and Technology Publications, 2023. http://dx.doi.org/10.5220/0011860200003393.
Texte intégralde Gevigney, Valentin Durand, Pierre-Francois Marteau, Arnaud Delhay et Damien Lolive. « Video Latent Code Interpolation for Anomalous Behavior Detection ». Dans 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2020. http://dx.doi.org/10.1109/smc42975.2020.9282857.
Texte intégralZheng, Fengde, et Chunyu Yang. « Latent fingerprint match using Minutia Spherical Coordinate Code ». Dans 2015 International Conference on Biometrics (ICB). IEEE, 2015. http://dx.doi.org/10.1109/icb.2015.7139061.
Texte intégralScannell, Aidan, Carl Henrik Ek et Arthur Richards. « Trajectory Optimisation in Learned Multimodal Dynamical Systems via Latent-ODE Collocation ». Dans 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021. http://dx.doi.org/10.1109/icra48506.2021.9561362.
Texte intégralBarattin, Simone, Christos Tzelepis, Ioannis Patras et Nicu Sebe. « Attribute-Preserving Face Dataset Anonymization via Latent Code Optimization ». Dans 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2023. http://dx.doi.org/10.1109/cvpr52729.2023.00773.
Texte intégralRapports d'organisations sur le sujet "Optimisation du code latent"
Solomon, A. D., M. D. Morris, J. Martin et M. Olszewski. Development of a simulation code for a latent heat thermal energy storage system in a space station. Office of Scientific and Technical Information (OSTI), avril 1986. http://dx.doi.org/10.2172/5777340.
Texte intégral