Articles de revues sur le sujet « Optical tomography »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Optical tomography.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Optical tomography ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kalnaya, O. A., et Yu S. Kurskoy. « Femtosecond Optical Tomography ». Metrology and instruments, no 2 (21 mai 2020) : 57–60. http://dx.doi.org/10.33955/2307-2180(2)2020.57-60.

Texte intégral
Résumé :
The aim of the work is development of medical optical tomo­graphy technologies. The physical principles, tasks, and boundary possibilities of the optical tomography systems are considered. The autors propose to use the femtosecond lasers, operating in the «optical comb» mode, as a lught source in optical tomography system. The advantages of this source uses were analyzed and reso­lution power of femtosecond optical tomographs was calculated in the artical.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pattan, Anusha U., et Shubhangi D.C. « Optical Tomography : The Survey on Optical Tomographic Techniques ». International Journal of Advanced Research in Computer Science and Software Engineering 7, no 6 (30 juin 2017) : 376–81. http://dx.doi.org/10.23956/ijarcsse/v7i6/0300.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kumar Singh Anjali, Avanish. « Study of Clinical Evaluation of Glaucoma with Anterior Segment OCT (Optical Coherence Tomography) and Optic Nerve Head OCT (Optical Coherence Tomography) ». International Journal of Science and Research (IJSR) 12, no 8 (5 août 2023) : 627–32. http://dx.doi.org/10.21275/mr23728180729.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Haisch, Christoph. « Optical Tomography ». Annual Review of Analytical Chemistry 5, no 1 (19 juillet 2012) : 57–77. http://dx.doi.org/10.1146/annurev-anchem-062011-143138.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Coufal, Hans. « Optical tomography ? » Journal of Molecular Structure 347 (mars 1995) : 285–91. http://dx.doi.org/10.1016/0022-2860(95)08551-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Leutwyler, Kristin. « Optical Tomography ». Scientific American 270, no 1 (janvier 1994) : 147–49. http://dx.doi.org/10.1038/scientificamerican0194-147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Davis, Cole, et Wayne Kuang. « Optical coherence tomography : a novel modality for scrotal imaging ». Canadian Urological Association Journal 3, no 4 (1 mai 2013) : 319. http://dx.doi.org/10.5489/cuaj.1128.

Texte intégral
Résumé :
Background: For patients with nonobstructive azoospermia,sperm retrieval rates remain modest. We describe the use ofoptical coherence tomography to improve retrieval rates and todecrease tissue destruction.Methods: Four patients underwent diagnostic testicular biopsyand imaging with the Niris optical coherence tomography de -vice. We performed a descriptive comparison between optic alcoherence tomographic images and conventional histology.Results: The measured seminiferous tubule diameter differed by16 μm between comparative imaging from optical coherencetomography and conventional histology using hematoxylin andeosin staining.Conclusion: We illustrate the usefulness of optical coherencetomography in the setting of testicular biopsy and the managementof nonobstructive azoospermia.Contexte : Chez les patients atteints d'azoospermie non obstructive,les taux de collecte de spermatozoïdes demeurent modestes.Nous décrivons le recours à une tomographie optiquecohérente pour améliorer les taux de collecte et réduire ladestruction tissulaire.Méthodes : Quatre patients ont subi une biopsie testiculaire diagnostiqueet une épreuve d'imagerie à l'aide d'un appareil Nirisde tomographie optique cohérente. Une comparaison descriptivea été effectuée entre les images obtenues par tomographieoptique cohérente et les résultats des épreuves histologiquesstandard.Résultats : La différence dans le diamètre des tubules séminifèresmesuré par tomographie optique cohérente et par coloration histologiqueà l'hématoxyline-éosine n'était que de 16 μm.Conclusion : Nous présentons une étude descriptive illustrant l’uti -lité de la tomographie optique cohérente pendant une biopsietesticulaire en vue de la prise en charge d'une azoospermie nonobstructive.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Soeda, Tsunenari, Shiro Uemura, Yoshihiko Saito, Kyoichi Mizuno et Ik-Kyung Jang. « Optical Coherence Tomography and Coronary Plaque Characterization ». Journal of the Japanese Coronary Association 19, no 4 (2013) : 307–14. http://dx.doi.org/10.7793/jcoron.19.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

C. Kharmyssov, C. Kharmyssov, M. W. L. Ko M. W. L. Ko et J. R. Kim J. R. Kim. « Automated segmentation of optical coherence tomography images ». Chinese Optics Letters 17, no 1 (2019) : 011701. http://dx.doi.org/10.3788/col201917.011701.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rollins, Andrew M., et Joseph A. Izatt. « Optimal interferometer designs for optical coherence tomography ». Optics Letters 24, no 21 (1 novembre 1999) : 1484. http://dx.doi.org/10.1364/ol.24.001484.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

El-Sherif, Ashraf, Yasser El-Sharkawy et Ramy Yehia. « Optical Coherence Tomography ». International Conference on Mathematics and Engineering Physics 4, no 4 (1 mai 2008) : 1. http://dx.doi.org/10.21608/icmep.2008.29902.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Puliafito, Carmen A. « Optical Coherence Tomography ». Ophthalmic Surgery, Lasers and Imaging Retina 31, no 3 (mai 2000) : 181. http://dx.doi.org/10.3928/1542-8877-20000501-03.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

WADA, Yukihisa. « Optical Computed Tomography ». JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 21, no 1 (2000) : 83–92. http://dx.doi.org/10.2530/jslsm1980.21.1_83.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Ahmad, Faheem, et Muhmmad Hussian. « OPTICAL COHERENCE TOMOGRAPHY ». Professional Medical Journal 23, no 09 (10 septembre 2016) : 1149–56. http://dx.doi.org/10.29309/tpmj/2016.23.09.1713.

Texte intégral
Résumé :
“Glaucoma an optic neuropathy is a caused by progressive retinal ganglion cell(RGC) loss associated with characteristic structural changes in the optic nerve and retinal nervefiber layer (RNFL).Glaucoma induced damage causes the retinal ganglion cells loss that canresult in functional loss and decrease in vision of patient . Measurement of intraocular pressureby Tonometery, characteristics of the optic nerve head changes and associated visual fieldloss are used for diagnosis of Glaucoma. Objectives: To determine the diagnostic accuracy ofOptical Coherence Tomography in detection of glaucoma taking perimetry as gold standard.Study Design: Cross sectional (validation). Period: Six months from 17-02-2014 to 16-08-2014.Material and Method: Regarding the Inclusion Criteria patients of glaucoma suspects that meetthe criteria mentioned in operational definition of either gender with age range between 35- 60years were included while patients having refractive errors, hazy media, pupil size less than4mm after dilation were not included in this study. Also patients with history diabetes mellitus,refractive or retinal surgery were also excluded. All the data was entered and analyzed by usingSPSS V-16. Results: A total of 100 patients were included in this study during the study period.Majority of the patients were between 35-45 years of age and minimum patients were 56-60 years old. Mean age of the patients was 47.10±8.02 years. Males and females were 50(50%). At OCT glaucoma was present in 71 patients while at perimetry glaucoma was presentin 69 patients .Sensitivity, specificity and diagnostic accuracy of OCT was 92.7%, 77.4%, 88.0%,respectively .Positive predictive value and negative predictive value of OCT was 90.1% and82.7%, respectively. Discussion: Regarding the pathogenesis of Glaucoma induced damageis due to result of retinal ganglion cell (RGC) death with progressive loss of axons located inthe retinal nerve fiber layer (RNFL). Many clinical studies showed that optic nerve head (ONH)damage and thinning of the RNFL occur earlier than the appearance of Glaucoma inducedvisual field defects; Conclusion: In conclusion, glaucoma suspects undergoing the OCT canbe assessed for the presence of glaucoma based purely on the results of the OCT.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Huang, D., E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee et al. « Optical coherence tomography ». Science 254, no 5035 (22 novembre 1991) : 1178–81. http://dx.doi.org/10.1126/science.1957169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Sharpe, James. « Optical Projection Tomography ». Annual Review of Biomedical Engineering 6, no 1 (15 août 2004) : 209–28. http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140210.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Yelbuz, T. Mesud, Michael A. Choma, Lars Thrane, Margaret L. Kirby et Joseph A. Izatt. « Optical Coherence Tomography ». Circulation 106, no 22 (26 novembre 2002) : 2771–74. http://dx.doi.org/10.1161/01.cir.0000042672.51054.7b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Yonetsu, Taishi, Brett E. Bouma, Koji Kato, James G. Fujimoto et Ik-Kyung Jang. « Optical Coherence Tomography ». Circulation Journal 77, no 8 (2013) : 1933–40. http://dx.doi.org/10.1253/circj.cj-13-0643.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Podoleanu, A. Gh. « Optical coherence tomography ». British Journal of Radiology 78, no 935 (novembre 2005) : 976–88. http://dx.doi.org/10.1259/bjr/55735832.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Haruna, Masamitsu. « Optical Coherence Tomography ». Journal of The Institute of Image Information and Television Engineers 65, no 1 (2011) : 67–71. http://dx.doi.org/10.3169/itej.65.67.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Fercher, A. F., W. Drexler et C. K. Hitzenberger. « Optical ocular tomography ». Neuro-Ophthalmology 18, no 2 (janvier 1997) : 39–49. http://dx.doi.org/10.3109/01658109709044116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Chen, Zhongping, Thomas E. Milner, Shyam Srinivas et J. Stuart Nelson. « Optical Doppler Tomography ». Optics and Photonics News 8, no 12 (1 décembre 1997) : 31. http://dx.doi.org/10.1364/opn.8.12.000031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Fercher, Adolf F. « Optical coherence tomography ». Journal of Biomedical Optics 1, no 2 (1996) : 157. http://dx.doi.org/10.1117/12.231361.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Zhongping Chen, Yonghua Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash et R. D. Frostig. « Optical Doppler tomography ». IEEE Journal of Selected Topics in Quantum Electronics 5, no 4 (1999) : 1134–42. http://dx.doi.org/10.1109/2944.796340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Podoleanu, Adrian, V. Lakshminarayanan et A. R. Harvey. « Optical coherence tomography ». Journal of Modern Optics 62, no 21 (17 novembre 2015) : 1757. http://dx.doi.org/10.1080/09500340.2015.1092220.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Gurwood, Andrew S., et Marc D. Myers. « Optical Coherence Tomography ». Optometry - Journal of the American Optometric Association 76, no 5 (mai 2005) : 282. http://dx.doi.org/10.1016/s1529-1839(05)70309-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

McCabe, James M., et Kevin J. Croce. « Optical Coherence Tomography ». Circulation 126, no 17 (23 octobre 2012) : 2140–43. http://dx.doi.org/10.1161/circulationaha.112.117143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kumar, Atul, et Subijoy Sinha. « Optical Coherence Tomography ». Ophthalmology 115, no 2 (février 2008) : 417–18. http://dx.doi.org/10.1016/j.ophtha.2007.07.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Carmichael, Stephen W., et Stephen A. Boppart. « Optical Projection Tomography ». Microscopy Today 10, no 5 (septembre 2002) : 3–4. http://dx.doi.org/10.1017/s1551929500058260.

Texte intégral
Résumé :
There are many approaches to obtaining high-resolution images and three dimensional volumetric data sets, but all have limitations. Many techniques involve reconstructing volumes of information from sections, either physical sections or optical sections. Recently, James Sharpe, Ulf Ahlgren, Paul Perry, Bill Hill, Allyson Ross, Jacob Hecksher-Sørensen, Richard Baldock, and Duncan Davidson have developed an optical technique that is analogous to computed tomography (CT). Whereas clinical CT involves an X-ray source and detector rotating around the patient, optical projection tomography (OPT) has the specimen rotating within an optical pathway.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Katkar, Rujuta A., Satyashankara Aditya Tadinada, Bennett T. Amaechi et Daniel Fried. « Optical Coherence Tomography ». Dental Clinics of North America 62, no 3 (juillet 2018) : 421–34. http://dx.doi.org/10.1016/j.cden.2018.03.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Takano, Masamichi, Kyoichi Mizuno, SooJoong Kim et Ik-Kyung Jang. « Optical coherence tomography ». Current Cardiovascular Imaging Reports 2, no 4 (août 2009) : 275–83. http://dx.doi.org/10.1007/s12410-009-0032-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Di Mario, Carlo, et Peter Barlis. « Optical Coherence Tomography ». JACC : Cardiovascular Interventions 1, no 2 (avril 2008) : 174–75. http://dx.doi.org/10.1016/j.jcin.2008.01.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Fujimoto, James G. « Optical coherence tomography ». Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no 8 (octobre 2001) : 1099–111. http://dx.doi.org/10.1016/s1296-2147(01)01257-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Ripandelli, Guido, Andrea M. Coppé, Antonella Capaldo et Mario Stirpe. « Optical Coherence Tomography ». Seminars in Ophthalmology 13, no 4 (janvier 1998) : 199–202. http://dx.doi.org/10.3109/08820539809056053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Burns, James A. « Optical coherence tomography ». Current Opinion in Otolaryngology & ; Head and Neck Surgery 20, no 6 (décembre 2012) : 477–81. http://dx.doi.org/10.1097/moo.0b013e3283582d7d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

PODOLEANU, A. Gh. « Optical coherence tomography ». Journal of Microscopy 247, no 3 (18 juin 2012) : 209–19. http://dx.doi.org/10.1111/j.1365-2818.2012.03619.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Chen, Ching-Jen, Jeyan S. Kumar, Stephanie H. Chen, Dale Ding, Thomas J. Buell, Samir Sur, Natasha Ironside et al. « Optical Coherence Tomography ». Stroke 49, no 4 (avril 2018) : 1044–50. http://dx.doi.org/10.1161/strokeaha.117.019818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Corbett, Crystal. « Optical Coherence Tomography ». Cardiac Cath Lab Director 1, no 5-6 (octobre 2011) : 135–37. http://dx.doi.org/10.1177/2150133511433992.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Folio, Lindsey S., Gadi Wollstein et Joel S. Schuman. « Optical Coherence Tomography ». Optometry and Vision Science 89, no 5 (mai 2012) : E554—E562. http://dx.doi.org/10.1097/opx.0b013e31824eeb43.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Testoni, Pier Alberto. « Optical Coherence Tomography ». Scientific World JOURNAL 7 (2007) : 87–108. http://dx.doi.org/10.1100/tsw.2007.29.

Texte intégral
Résumé :
Optical coherence tomography (OCT) is an optical imaging modality that performs high-resolution, cross-sectional, subsurface tomographic imaging of the microstructure of tissues. The physical principle of OCT is similar to that of B-mode ultrasound imaging, except that it uses infrared light waves rather than acoustic waves. Thein vivoresolution is 10–25 times better (about 10 µm) than with high-frequency ultrasound imaging, but the depth of penetration is limited to 1–3 mm, depending on tissue structure, depth of focus of the probe used, and pressure applied to the tissue surface. In the last decade, OCT technology has evolved from an experimental laboratory tool to a new diagnostic imaging modality with a wide spectrum of clinical applications in medical practice, including the gastrointestinal tract and pancreatico-biliary ductal system. OCT imaging from the gastrointestinal tract can be done in humans by using narrow-diameter, catheter-based probes that can be inserted through the accessory channel of either a conventional front-view endoscope, for investigating the epithelial structure of the gastrointestinal tract, or a side-view endoscope, inside a standard transparent ERCP (endoscopic retrograde cholangiopancreatography) catheter, for investigating the pancreatico-biliary ductal system. The esophagus and esophagogastric junction have been the most widely investigated organs so far; more recently, duodenum, colon, and the pancreatico-biliary ductal system have also been extensively investigated. OCT imaging of the gastrointestinal wall structure is characterized by a multiple-layer architecture that permits an accurate evaluation of the mucosa, lamina propria, muscularis mucosae, and part of the submucosa. The technique may therefore be used to identify preneoplastic conditions of the gastrointestinal tract, such as Barrett's epithelium and dysplasia, and evaluate the depth of penetration of early-stage neoplastic lesions. OCT imaging of the pancreatic and biliary ductal system could improve the diagnostic accuracy for ductal epithelial changes, and the differential diagnosis between neoplastic and non-neoplastic lesions.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Regar, E., J. A. Schaar, E. Mont, R. Virmani et P. W. Serruys. « Optical coherence tomography ». Cardiovascular Radiation Medicine 4, no 4 (octobre 2003) : 198–204. http://dx.doi.org/10.1016/j.carrad.2003.12.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ahmed, S. Hinan, et James Mancuso. « Optical Coherence Tomography ». Catheterization and Cardiovascular Interventions 81, no 3 (février 2013) : 573. http://dx.doi.org/10.1002/ccd.24827.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Kaschke, Michael, Scott Meyer, Matthew Everett et Marc Grahl. « Optical Coherence Tomography ». Optik & ; Photonik 4, no 4 (décembre 2009) : 24–28. http://dx.doi.org/10.1002/opph.201190057.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ha, Richard, Lauren C. Friedlander, Hanina Hibshoosh, Christine Hendon, Sheldon Feldman, Soojin Ahn, Hank Schmidt et al. « Optical Coherence Tomography ». Academic Radiology 25, no 3 (mars 2018) : 279–87. http://dx.doi.org/10.1016/j.acra.2017.09.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Vanore, Maria, et Marie-Odile Benoit-Biancamano. « Optical Coherence Tomography ». Veterinary Clinics of North America : Small Animal Practice 53, no 2 (mars 2023) : 319–38. http://dx.doi.org/10.1016/j.cvsm.2022.10.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Tong Wu, Tong Wu, et Youwen Liu Youwen Liu. « Optimal non-uniform fast Fourier transform for high-speed swept source optical coherence tomography ». Chinese Optics Letters 11, no 2 (2013) : 021702–21707. http://dx.doi.org/10.3788/col201311.021702.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Paczwa, Katarzyna, et Joanna Gołębiewska. « OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN OPHTHALMOLOGY ». Polish Journal of Aviation Medicine, Bioengineering and Psychology 26, no 4 (17 mai 2023) : 45–54. http://dx.doi.org/10.13174/pjambp.17.05.2023.05.

Texte intégral
Résumé :
Abstract: Optical coherence tomography is a non-invasive method of imagining the anterior and the posterior segment of the eye. It is commonly used in ophthalmic practice to diagnose and monitor various pathologies of the eyeball. Optical coherence tomography angiography (OCTA) is a useful tool to visualize the entire retinal and choroidal microvasculature, allowing the assessment of retinal perfusion without intravenous dye administration.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Oertel, Frederike Cosima, Svenja Specovius, Hanna G. Zimmermann, Claudia Chien, Seyedamirhosein Motamedi, Charlotte Bereuter, Lawrence Cook et al. « Retinal Optical Coherence Tomography in Neuromyelitis Optica ». Neurology - Neuroimmunology Neuroinflammation 8, no 6 (15 septembre 2021) : e1068. http://dx.doi.org/10.1212/nxi.0000000000001068.

Texte intégral
Résumé :
Background and ObjectivesTo determine optic nerve and retinal damage in aquaporin-4 antibody (AQP4-IgG)-seropositive neuromyelitis optica spectrum disorders (NMOSD) in a large international cohort after previous studies have been limited by small and heterogeneous cohorts.MethodsThe cross-sectional Collaborative Retrospective Study on retinal optical coherence tomography (OCT) in neuromyelitis optica collected retrospective data from 22 centers. Of 653 screened participants, we included 283 AQP4-IgG–seropositive patients with NMOSD and 72 healthy controls (HCs). Participants underwent OCT with central reading including quality control and intraretinal segmentation. The primary outcome was thickness of combined ganglion cell and inner plexiform (GCIP) layer; secondary outcomes were thickness of peripapillary retinal nerve fiber layer (pRNFL) and visual acuity (VA).ResultsEyes with ON (NMOSD-ON, N = 260) or without ON (NMOSD-NON, N = 241) were assessed compared with HCs (N = 136). In NMOSD-ON, GCIP layer (57.4 ± 12.2 μm) was reduced compared with HC (GCIP layer: 81.4 ± 5.7 μm, p < 0.001). GCIP layer loss (−22.7 μm) after the first ON was higher than after the next (−3.5 μm) and subsequent episodes. pRNFL observations were similar. NMOSD-NON exhibited reduced GCIP layer but not pRNFL compared with HC. VA was greatly reduced in NMOSD-ON compared with HC eyes, but did not differ between NMOSD-NON and HC.DiscussionOur results emphasize that attack prevention is key to avoid severe neuroaxonal damage and vision loss caused by ON in NMOSD. Therapies ameliorating attack-related damage, especially during a first attack, are an unmet clinical need. Mild signs of neuroaxonal changes without apparent vision loss in ON-unaffected eyes might be solely due to contralateral ON attacks and do not suggest clinically relevant progression but need further investigation.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Kitazawa, Takahiro, et Takanori Nomura. « Refractive index tomography based on optical coherence tomography and tomographic reconstruction algorithm ». Japanese Journal of Applied Physics 56, no 9S (24 août 2017) : 09NB03. http://dx.doi.org/10.7567/jjap.56.09nb03.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Kuś, Arkadiusz, Wojciech Krauze et Małgorzata Kujawińska. « From digital holographic microscopy to optical coherence tomography – separate past and a common goal ». Photonics Letters of Poland 13, no 4 (30 décembre 2021) : 91. http://dx.doi.org/10.4302/plp.v13i4.1130.

Texte intégral
Résumé :
In this paper we briefly present the history and outlook on the development of two seemingly distant techniques which may be brought close together with a unified theoretical model described as common k-space theory. This theory also known as the Fourier diffraction theorem is much less common in optical coherence tomography than its traditional mathematical model, but it has been extensively studied in digital holography and, more importantly, optical diffraction tomography. As demonstrated with several examples, this link is one of the important factors for future development of both techniques. Full Text: PDF ReferencesN. Leith, J. Upatnieks, "Reconstructed Wavefronts and Communication Theory", J. Opt. Soc. Am. 52(10), 1123 (1962). CrossRef Y. Park, C. Depeursinge, G. Popescu, "Quantitative phase imaging in biomedicine", Nat. Photonics 12, 578 (2018). CrossRef D. Huang et al., "Optical Coherence Tomography", Science 254(5035), 1178 (1991). CrossRef D. P. Popescu, C. Flueraru, S. Chang, J. Disano, S. Sherif, M.G. Sowa, "Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications", Biophys. Rev. 3(3), 155 (2011). CrossRef M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, "Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography", Ophthalmology 112(10), 1734 (2005). CrossRef K.C. Zhou, R. Qian, A.-H. Dhalla, S. Farsiu, J.A. Izatt, "Unified k-space theory of optical coherence tomography", Adv. Opt. Photon. 13(2), 462 (2021). CrossRef A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry", Opt. Comm. 117(1-2), 43 (1995). CrossRef E. Wolf, "Determination of the Amplitude and the Phase of Scattered Fields by Holography", J. Opt. Soc. Am. 60(1), 18 (1970). CrossRef E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data", Opt. Comm. 1(4), 153 (1969). CrossRef V. Balasubramani et al., "Roadmap on Digital Holography-Based Quantitative Phase Imaging", J. Imaging 7(12), 252 (2021). CrossRef A. Kuś, W. Krauze, P.L. Makowski, M. Kujawińska, "Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)", ETRI J. 41(1), 61 (2019). CrossRef A. Kuś, M. Dudek, M. Kujawińska, B. Kemper, A. Vollmer, "Tomographic phase microscopy of living three-dimensional cell cultures", J. Biomed. Opt. 19(4), 46009 (2014). CrossRef O. Haeberlé, K. Belkebir, H. Giovaninni, A. Sentenac, "Tomographic diffractive microscopy: basics, techniques and perspectives", J. Mod. Opt. 57(9), 686 (2010). CrossRef B. Simon et al., "Tomographic diffractive microscopy with isotropic resolution", Optica 4(4), 460 (2017). CrossRef B.A. Roberts, A.C. Kak, "Reflection Mode Diffraction Tomography", Ultrason. Imag. 7, 300 (1985). CrossRef M. Sarmis et al., "High resolution reflection tomographic diffractive microscopy", J. Mod. Opt. 57(9), 740 (2010). CrossRef L. Foucault et al., "Versatile transmission/reflection tomographic diffractive microscopy approach", J. Opt. Soc. Am. A 36(11), C18 (2019). CrossRef W. Krauze, P. Ossowski, M. Nowakowski, M. Szkulmowski, M. Kujawińska, "Enhanced QPI functionality by combining OCT and ODT methods", Proc. SPIE 11653, 116530B (2021). CrossRef E. Mudry, P.C. Chaumet, K. Belkebir, G. Maire, A. Sentenac, "Mirror-assisted tomographic diffractive microscopy with isotropic resolution", Opt. Lett. 35(11), 1857 (2010). CrossRef P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, P. So, "Scanning color optical tomography (SCOT)", Opt. Expr. 23(15), 19752 (2015). CrossRef J. Jung, K. Kim, J. Yoon, Y. Park, "Hyperspectral optical diffraction tomography", Opt. Expr. 24(3), 1881 (2016). CrossRef T. Zhang et al., Biomed. "Multi-wavelength multi-angle reflection tomography", Opt. Expr. 26(20), 26093 (2018). CrossRef R.A. Leitgeb, "En face optical coherence tomography: a technology review [Invited]", Biomed. Opt. Expr. 10(5), 2177 (2019). CrossRef J.F. de Boer, R. Leitgeb, M. Wojtkowski, "Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]", Biomed. Opt. Expr. 8(7), 3248 (2017). CrossRef T. Anna, V. Srivastava, C. Shakher, "Transmission Mode Full-Field Swept-Source Optical Coherence Tomography for Simultaneous Amplitude and Quantitative Phase Imaging of Transparent Objects", IEEE Photon. Technol. Lett. 23(11), 899 (2011). CrossRef M.T. Rinehart, V. Jaedicke, A. Wax, "Quantitative phase microscopy with off-axis optical coherence tomography", Opt. Lett. 39(7), 1996 (2014). CrossRef C. Photiou, C. Pitris, "Dual-angle optical coherence tomography for index of refraction estimation using rigid registration and cross-correlation", J. Biomed. Opt. 24(10), 1 (2019). CrossRef Y. Zhou, K.K.H. Chan, T. Lai, S. Tang, "Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography", Biomed. Opt. Expr. 4(1), 38 (2013). CrossRef K.C. Zhou, R. Qian, S. Degan, S. Farsiu, J.A. Izatt, "Optical coherence refraction tomography", Nat. Photon. 13, 794 (2019). CrossRef
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie