Articles de revues sur le sujet « Optical orthogonal codes (OOC) »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Optical orthogonal codes (OOC).

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Optical orthogonal codes (OOC) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kumar, Ankit, Manisha Bharti et Tanya Kumar. « Performance Investigation of 2-D Optical Orthogonal Codes for OCDMA ». Journal of Optical Communications 40, no 4 (25 octobre 2019) : 455–62. http://dx.doi.org/10.1515/joc-2017-0112.

Texte intégral
Résumé :
Abstract In this paper, comparative analysis of code performance of dissimilar optical 2-D codes from Optical Orthogonal code family has been studied. Optical 2-D codes considered from OOC family are (n,w,1,2) OOC, SPS/OOC, OCFHC/OOC, EPC/OCS and VWOOC. By utilizing hard limiting error probability (HEP) equations and combinatorial method, code performance of each considered code is evaluated in detail. On the basis of detailed comparative performance analysis, EPC/OCS is concluded as best performing codes among all other optical codes under consideration. EPC/OCS possesses much better correlation properties, along with lower hit probability values which are responsible for its supremacy in performance characteristics to the other OOCs considered.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, X. B., H. B. Huang et L. C. Wang. « Discussion on Construction of OCDMA PON Address Code-(F,K,2) Optical Orthogonal Codes ». Advanced Materials Research 216 (mars 2011) : 804–8. http://dx.doi.org/10.4028/www.scientific.net/amr.216.804.

Texte intégral
Résumé :
Optical code division multiple access (OCDMA) passive optical network (PON) can find wide applications in the next optical access network. One of its key techniques of is construction of address code. Aiming at the facts that(F,K,1) optical orthogonal code (OOC) possesses good performance but capacity is small, and number of users in OCDMA PON is not very big thereafter OOC auto-correlation or cross-correlation may not be very strict,(F,K,2) OOC can be used as address codes for OCDMA PON. In this paper, the method of constructingOOC based on block design is discussed. The algorithm of construction (F,K,2) of OOC from block design is presented and simulated; several groups of(F,K,2) OOC are gained. The results show that the algorithm has good astringency and simplicity. It can construct(F,K,2) OOC effectively. It is feasible.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Asif, Muhammad, Wuyang Zhou, Qingping Yu, Xingwang Li et Nauman Ali Khan. « A Deterministic Construction for Jointly Designed Quasicyclic LDPC Coded-Relay Cooperation ». Wireless Communications and Mobile Computing 2019 (26 septembre 2019) : 1–12. http://dx.doi.org/10.1155/2019/5249373.

Texte intégral
Résumé :
This correspondence presents a jointly designed quasicyclic (QC) low-density parity-check (LDPC) coded-relay cooperation with joint-iterative decoding in the destination node. Firstly, a design-theoretic construction of QC-LDPC codes based on a combinatoric design approach known as optical orthogonal codes (OOC) is presented. Proposed OOC-based construction gives three classes of binary QC-LDPC codes with no length-4 cycles by utilizing some known ingredients including binary matrix dispersion of elements of finite field, incidence matrices, and circulant decomposition. Secondly, the proposed OOC-based construction gives an effective method to jointly design length-4 cycles free QC-LDPC codes for coded-relay cooperation, where sum-product algorithm- (SPA-) based joint-iterative decoding is used to decode the corrupted sequences coming from the source or relay nodes in different time frames over constituent Rayleigh fading channels. Based on the theoretical analysis and simulation results, proposed QC-LDPC coded-relay cooperations outperform their competitors under same conditions over the Rayleigh fading channel with additive white Gaussian noise.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Baicheva, Tsonka, et Svetlana Topalova. « Maximal (v, k, 2, 1) Optical Orthogonal Codes with k = 6 and 7 and Small Lengths ». Mathematics 11, no 11 (26 mai 2023) : 2457. http://dx.doi.org/10.3390/math11112457.

Texte intégral
Résumé :
Optical orthogonal codes (OOCs) are used in optical code division multiple access systems to allow a large number of users to communicate simultaneously with a low error probability. The number of simultaneous users is at most as big as the number of codewords of such a code. We consider (v,k,2,1)-OOCs, namely OOCs with length v, weight k, auto-correlation 2, and cross-correlation 1. An upper bound B0(v,k,2,1) on the maximal number of codewords of such an OOC was derived in 1995. The number of codes that meet this bound, however, is very small. For k≤5, the (v,k,2,1)-OOCs have already been thoroughly studied by many authors, and new upper bounds were derived for (v,4,2,1) in 2011, and for (v,5,2,1) in 2012. In the present paper, we determine constructively the maximal size of (v,6,2,1)- and (v,7,2,1)-OOCs for v≤165 and v≤153, respectively. Using the types of the possible codewords, we calculate an upper bound B1(v,k,2,1)≤B0(v,k,2,1) on the code size of (v,6,2,1)- and (v,7,2,1)-OOCs for each length v≤720 and v≤340, respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bouregaa, Mouweffeq, Mohammed El Kebir Chikh-Bled, Mohammed Debbal, Mohammed Chamse Eddine Ouadah et Hicham Chikh-Bled. « Optical Code Division Multiple Access for FTTH system ». Photonics Letters of Poland 10, no 4 (31 décembre 2018) : 121. http://dx.doi.org/10.4302/plp.v10i4.861.

Texte intégral
Résumé :
Many multiple access techniques have been proposed and demonstrated to provide flexible solutions for FTTH network configurations. The performance of this system suffers because of the correlation properties that contribute to a high level of Multiple Access Interference (MAI), low system capacity (users), and lower transmission rate. In this paper, we have proposed Optical CDMA (OCDMA) as a configuration solution for FTTH networks to improve the performance of this type of network. Full Text: PDF References. Z. Mateusz, M. Mariusz, On cost of the uniformity in FTTH network design, Conference on Transparent Optical Networks (2017), 87-90 CrossRef CEDRIC F. LAM, Passive Optical Networks- Principles and Practice, first ed., British Library, USA, 2007. DirectLink M.K. Abdullah, W.T. P'ng, P.W. Lau, E.R. Tee, FTTH access network protection using a switch, Asia Pacific Conference on Communications (APCC), 3(2003) 1219–1222. CrossRef J. Ronnakorn, S. Napat, L. Somkiat, Design and implement of GPON-FTTH network for residential condominium, Conference on Computer Science and Software Engineering, (2017), 333-339. CrossRef M. BOUREGAA, M. CHIKH-BLED, Comparative Study of Optical Unipolar Codes for Incoherent DS-OCDMA system, International Journal of Hybrid Information Technology, 6 (2013) 225-236. CrossRef M. BOUREGAA, M. CHIKH-BLED, The performance of a DS-OCDMA system using Orthogonal Optical Codes (OOC), European Scientific Journal, 9 (2013), 322-335 CrossRef M. Iwase, Y. Ishikawa, T. Komatsu, J. Kasahara, N. Hattori, M. Miura, N. Nakamura, K. Odaka, Optical transceiver modules for gigabit Ethernet PON FTTH systems, Furukawa Review, 28 (2005) 8-10. DirectLink
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chee, Yeow Meng, Han Mao Kiah, San Ling et Hengjia Wei. « Geometric Orthogonal Codes of Size Larger Than Optical Orthogonal Codes ». IEEE Transactions on Information Theory 64, no 4 (avril 2018) : 2883–95. http://dx.doi.org/10.1109/tit.2017.2788140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Murad, Mohsin, Imran A. Tasadduq et Pablo Otero. « Coded-GFDM for Reliable Communication in Underwater Acoustic Channels ». Sensors 22, no 7 (30 mars 2022) : 2639. http://dx.doi.org/10.3390/s22072639.

Texte intégral
Résumé :
The performance of the coded generalized frequency division multiplexing (GFDM) transceiver has been evaluated in a shallow underwater acoustic channel (UAC). Acoustic transmission is the scheme of choice for communication in UAC since radio waves suffer from absorption and light waves scatter. Although orthogonal frequency division multiplexing (OFDM) has found its ground for multicarrier acoustic underwater communication, it suffers from high peak to average power ratio (PAPR) and out of band (OOB) emissions. We propose a coded-GFDM based multicarrier system since GFDM has a higher spectral efficiency compared to a traditional OFDM system. In doing so, we assess two block codes, namely Bose, Chaudari, and Hocquenghem (BCH) codes, Reed-Solomon (RS) codes, and several convolutional codes. We present the error performances of these codes when used with GFDM. Furthermore, we evaluate the performance of the proposed system using two equalizers: Matched Filter (MF) and Zero-Forcing (ZF). Simulation results show that among the various block coding schemes that we tested, BCH (31,6) and RS (15,3) give the best error performance. Among the convolutional codes that we tested, rate 1/4 convolutional codes give the best performance. However, the performance of BCH and RS codes is much better than the convolutional codes. Moreover, the performance of the ZF equalizer is marginally better than the MF equalizer. In conclusion, using the channel coding schemes with GFDM improves error performance manifolds thereby increasing the reliability of the GFDM system despite slightly higher complexity.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sheng Peng Wan et Yu Hu. « Two-dimensional optical CDMA differential system with prime/OOC codes ». IEEE Photonics Technology Letters 13, no 12 (décembre 2001) : 1373–75. http://dx.doi.org/10.1109/68.969912.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Argon, Cenk. « Semi-randomly constructed optical orthogonal codes ». Optics Communications 282, no 4 (février 2009) : 500–503. http://dx.doi.org/10.1016/j.optcom.2008.10.043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chang, Yanxun, et Ying Miao. « Constructions for optimal optical orthogonal codes ». Discrete Mathematics 261, no 1-3 (janvier 2003) : 127–39. http://dx.doi.org/10.1016/s0012-365x(02)00464-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Dai, Xuan, Lili Fang, Chuanfang Zhang et Houjun Sun. « An Impedance-Loaded Orthogonal Frequency-Coded SAW Sensor for Passive Wireless Sensor Networks ». Sensors 20, no 7 (28 mars 2020) : 1876. http://dx.doi.org/10.3390/s20071876.

Texte intégral
Résumé :
A passive wireless impedance-loaded orthogonal frequency-coded (OFC) surface acoustic wave (SAW) sensor for wireless sensor networks was proposed in this paper. One of the chips on OFC SAW tag is connected to an external sensor, which could cause a phase shift in the time response of the corresponding part on the SAW device. The phase shift corresponds to the sensed quantity, which could be temperature, strain, vibration, pressure, etc. The OFC SAW tag is isolated by a proper package from the direct effect of the measurand on the device’s response which could avoid the multiple measurands coupling. The simultaneous work of multiple sensors is guaranteed by orthogonal frequency coding. By processing the response based on an extended matched filter algorithm, sensing information of the specific coded OFC device can be extracted from the superimposed response of multiple independent encoded sensors. Compared to previous methods, the proposed method can produce a more flexible passive (battery-free) wireless sensor suitable for large-scale wireless sensor networks. Simulation and experimental results demonstrate the effectiveness of the sensor.
Styles APA, Harvard, Vancouver, ISO, etc.
12

L. Alderson, T., et K. E. Mellinger. « Geometric constructions of optimal optical orthogonal codes ». Advances in Mathematics of Communications 2, no 4 (2008) : 451–67. http://dx.doi.org/10.3934/amc.2008.2.451.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Buratti, Marco. « On silver and golden optical orthogonal codes ». Art of Discrete and Applied Mathematics 1, no 2 (3 août 2018) : #P2.02. http://dx.doi.org/10.26493/2590-9770.1236.ce4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Chung, F. R. K., J. A. Salehi et V. K. Wei. « Optical orthogonal codes : design, analysis and applications ». IEEE Transactions on Information Theory 35, no 3 (mai 1989) : 595–604. http://dx.doi.org/10.1109/18.30982.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ji, Lijun, Baokun Ding, Xin Wang et Gennian Ge. « Asymptotically Optimal Optical Orthogonal Signature Pattern Codes ». IEEE Transactions on Information Theory 64, no 7 (juillet 2018) : 5419–31. http://dx.doi.org/10.1109/tit.2017.2787593.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ssang-Soo Lee et Seung-Woo Seo. « New construction of multiwavelength optical orthogonal codes ». IEEE Transactions on Communications 50, no 12 (décembre 2002) : 2003–8. http://dx.doi.org/10.1109/tcomm.2002.806504.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Ding, C., et C. Xing. « Cyclotomic Optical Orthogonal Codes of Composite Lengths ». IEEE Transactions on Communications 52, no 2 (février 2004) : 263–68. http://dx.doi.org/10.1109/tcomm.2003.822724.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Yi Xian Yang, Xin Xin Niu et Cheng Qian Xu. « Counterexample of truncated Costas optical orthogonal codes ». IEEE Transactions on Communications 45, no 6 (juin 1997) : 640–43. http://dx.doi.org/10.1109/26.592598.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Chi-Shun Weng et Jingshown Wu. « Optical orthogonal codes with nonideal cross correlation ». Journal of Lightwave Technology 19, no 12 (2001) : 1856–63. http://dx.doi.org/10.1109/50.971677.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Yin, Jianxing. « Some combinatorial constructions for optical orthogonal codes ». Discrete Mathematics 185, no 1-3 (avril 1998) : 201–19. http://dx.doi.org/10.1016/s0012-365x(97)00172-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Fuji-Hara, Ryoh, Ying Miao et Jianxing Yin. « Optimal (9v, 4, 1) Optical Orthogonal Codes ». SIAM Journal on Discrete Mathematics 14, no 2 (janvier 2001) : 256–66. http://dx.doi.org/10.1137/s0895480100377234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Chang, Yanxun, et L. Ji. « Optimal (4up, 5, 1) optical orthogonal codes ». Journal of Combinatorial Designs 12, no 5 (2004) : 346–61. http://dx.doi.org/10.1002/jcd.20011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Jazayerifar, M., et J. A. Salehi. « Atmospheric optical CDMA communication systems via optical orthogonal codes ». IEEE Transactions on Communications 54, no 9 (septembre 2006) : 1614–23. http://dx.doi.org/10.1109/tcomm.2006.881245.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Tarhuni, N. G., T. O. Korhonen, E. Mutafungwa et M. S. Elmusrati. « Multiclass optical orthogonal codes for multiservice optical CDMA networks ». Journal of Lightwave Technology 24, no 2 (février 2006) : 694–704. http://dx.doi.org/10.1109/jlt.2005.862439.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lin, Yu-Chei, Guu-Chang Yang, Cheng-Yuan Chang et Wing C. Kwong. « Construction of Optimal 2D Optical Codes Using (n,w,2,2) Optical Orthogonal Codes ». IEEE Transactions on Communications 59, no 1 (janvier 2011) : 194–200. http://dx.doi.org/10.1109/tcomm.2010.102910.100035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Xu, Dandan, et Haitao Cao. « Family of Optimal Multiple-Weight Optical Orthogonal Codes for Fiber-Optic Networks ». Computational Intelligence and Neuroscience 2022 (23 mai 2022) : 1–11. http://dx.doi.org/10.1155/2022/2499606.

Texte intégral
Résumé :
Optical orthogonal codes (OOCs) were designed for multimedia optical CDMA systems with quality of service requirements in optical fiber networks. Two-dimensional (2-D) multiple-weight optical orthogonal codes have been invested as they can overcome the drawbacks of nonlinear effects in large spreading sequences. In this paper, we reveal the combinatorial properties of optimal 2-D OOCs and focus our attention on the constructions for a family of optimal 2-D multiple-weight optical orthogonal codes by combinatorial methods, such as incomplete difference matrix, h-perfect cyclic packing, and skew starter. In particular, an improved construction of skew starters with multiple weights is also proposed to solve the existence of optimal multiple-weight optical orthogonal codes. Our numerical examples demonstrate that the proposed construction is very helpful for optimizing the utilization of optical network effectively.
Styles APA, Harvard, Vancouver, ISO, etc.
27

SHEN, Lin-Zhi. « New Asymptotically Optimal Optical Orthogonal Signature Pattern Codes from Cyclic Codes ». IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E102.A, no 10 (1 octobre 2019) : 1416–19. http://dx.doi.org/10.1587/transfun.e102.a.1416.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Fan, Cuiling, et Koji Momihara. « Unified combinatorial constructions of optimal optical orthogonal codes ». Advances in Mathematics of Communications 8, no 1 (janvier 2014) : 53–66. http://dx.doi.org/10.3934/amc.2014.8.53.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

SHEN, Lin-Zhi, et Xuan GUANG. « A Note on Two-Dimensional Optical Orthogonal Codes ». IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E98.A, no 10 (2015) : 2207–8. http://dx.doi.org/10.1587/transfun.e98.a.2207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Wensong Chu et S. W. Golomb. « A new recursive construction for optical orthogonal codes ». IEEE Transactions on Information Theory 49, no 11 (novembre 2003) : 3072–76. http://dx.doi.org/10.1109/tit.2003.818387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Rontani, D., A. Locquet, M. Sciamanna, D. S. Citrin et A. Uchida. « Generation of orthogonal codes with chaotic optical systems ». Optics Letters 36, no 12 (13 juin 2011) : 2287. http://dx.doi.org/10.1364/ol.36.002287.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chung, Jin-Ho, et Kyeongcheol Yang. « Asymptotically Optimal Optical Orthogonal Codes With New Parameters ». IEEE Transactions on Information Theory 59, no 6 (juin 2013) : 3999–4005. http://dx.doi.org/10.1109/tit.2013.2247092.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Alderson, T. L., et Keith E. Mellinger. « Constructions of Optical Orthogonal Codes from Finite Geometry ». SIAM Journal on Discrete Mathematics 21, no 3 (janvier 2007) : 785–93. http://dx.doi.org/10.1137/050632257.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhang, J. G. « Design of nonconstant-weight strict optical orthogonal codes ». Electronics Letters 41, no 22 (2005) : 1238. http://dx.doi.org/10.1049/el:20051903.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Charmchi, H., et J. A. Salehi. « Outer-Product Matrix Representation of Optical Orthogonal Codes ». IEEE Transactions on Communications 54, no 6 (juin 2006) : 983–89. http://dx.doi.org/10.1109/tcomm.2006.876839.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Neto, A. D., et E. Moschim. « New optical orthogonal codes by using diophantine equations ». IEEE Latin America Transactions 3, no 3 (juillet 2005) : 225–32. http://dx.doi.org/10.1109/tla.2005.1642412.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Xian Yang, Yi. « New enumeration results about the optical orthogonal codes ». Information Processing Letters 40, no 2 (octobre 1991) : 85–87. http://dx.doi.org/10.1016/0020-0190(91)90014-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Alderson, T. L., et Keith E. Mellinger. « 2-dimensional optical orthogonal codes from singer groups ». Discrete Applied Mathematics 157, no 14 (juillet 2009) : 3008–19. http://dx.doi.org/10.1016/j.dam.2009.06.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Zhao, Hengming, Dianhua Wu et Pingzhi Fan. « Constructions of optimal variable-weight optical orthogonal codes ». Journal of Combinatorial Designs 18, no 4 (22 janvier 2010) : 274–91. http://dx.doi.org/10.1002/jcd.20246.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Samanta, Supriti, Goutam K. Maity et Subhadipta Mukhopadhyay. « Implementation of Orthogonal Codes Using MZI ». Micro and Nanosystems 12, no 3 (1 décembre 2020) : 159–67. http://dx.doi.org/10.2174/1876402912666200211121624.

Texte intégral
Résumé :
Background: In Code Division Multiple Access (CDMA)/Multi-Carrier CDMA (MCCDMA), Walsh-Hadamard codes are widely used for its orthogonal characteristics, and hence, it leads to good contextual connection property. These orthogonal codes are important because of their various significant applications. Objective: To use the Mach–Zehnder Interferometer (MZI) for all-optical Walsh-Hadamard codes is implemented in this present paper. Method: The Mach–Zehnder Interferometer (MZI) is considered for the Tree architecture of Semiconductor Optical Amplifier (SOA). The second-ordered Hadamard and the inverse Hadamard matrix are constructed using SOA-MZIs. Higher-order Hadamard matrix (H4) formed by the process of Kronecker product with lower-order Hadamard matrix (H2) is also analyzed and constructed. Results: To experimentally get the result from these schemes, some design issues e,g Time delay, nonlinear phase modulation, extinction ratio, and synchronization of signals are the important issues. Lasers of wavelength 1552 nm and 1534 nm can be used as input and control signals, respectively. As the whole system is digital, intensity losses due to couplers in the interconnecting stage may not create many problems in producing the desired optical bits at the output. The simulation results were obtained by Matlab-9. Here, Hadamard H2 (2×2) matrix output beam intensity (I ≈ 108 w.m-2) for different values of inputs. Conclusion: Implementation of Walsh-Hadamard codes using MZI is explored in this paper, and experimental results show the better performance of the proposed scheme compared to recently reported methods using electronic circuits regarding the issues of versatility, reconfigurability, and compactness. The design can be used and extended for diverse applications for which Walsh-Hadamard codes are required.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kwong, W. C., et Guu-Chang Yang. « Design of multilength optical orthogonal codes for optical CDMA multimedia networks ». IEEE Transactions on Communications 50, no 8 (août 2002) : 1258–65. http://dx.doi.org/10.1109/tcomm.2002.801499.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Argon, Cenk, et Rüyal Ergül. « Optical CDMA via shortened optical orthogonal codes based on extended sets ». Optics Communications 116, no 4-6 (mai 1995) : 326–30. http://dx.doi.org/10.1016/0030-4018(95)00067-i.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Wen, Y. G., Y. Zhang et L. K. Chen. « On Architecture and Limitation of Optical Multiprotocol Label Switching (MPLS) Networks Using Optical-Orthogonal-Code (OOC)/Wavelength Label ». Optical Fiber Technology 8, no 1 (janvier 2002) : 43–70. http://dx.doi.org/10.1006/ofte.2001.0371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Yu, Huangsheng, Dianhua Wu et Jinhua Wang. « New optimal $(v, \{3,5\}, 1, Q)$ optical orthogonal codes ». Advances in Mathematics of Communications 10, no 4 (novembre 2016) : 811–23. http://dx.doi.org/10.3934/amc.2016042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Miao, Y., et R. Fuji-Hara. « Optical orthogonal codes : their bounds and new optimal constructions ». IEEE Transactions on Information Theory 46, no 7 (2000) : 2396–406. http://dx.doi.org/10.1109/18.887852.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ge, G., et J. Yin. « Constructions for optimal (υ, 4, 1) optical orthogonal codes ». IEEE Transactions on Information Theory 47, no 7 (2001) : 2998–3004. http://dx.doi.org/10.1109/18.959278.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Chung, H., et P. V. Kumar. « Optical orthogonal codes-new bounds and an optimal construction ». IEEE Transactions on Information Theory 36, no 4 (juillet 1990) : 866–73. http://dx.doi.org/10.1109/18.53748.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Lee, S. W., et D. H. Green. « Performance analysis of optical orthogonal codes in CDMA LANs ». IEE Proceedings - Communications 145, no 4 (1998) : 265. http://dx.doi.org/10.1049/ip-com:19982134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Wang, Lidong, et Yanxun Chang. « Combinatorial Constructions of Optimal Three-Dimensional Optical Orthogonal Codes ». IEEE Transactions on Information Theory 61, no 1 (janvier 2015) : 671–87. http://dx.doi.org/10.1109/tit.2014.2368133.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Cao, Haitao, et Ruizhong Wei. « Combinatorial Constructions for Optimal Two-Dimensional Optical Orthogonal Codes ». IEEE Transactions on Information Theory 55, no 3 (mars 2009) : 1387–94. http://dx.doi.org/10.1109/tit.2008.2011431.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie