Articles de revues sur le sujet « One-Dimensional Bose Gases »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : One-Dimensional Bose Gases.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « One-Dimensional Bose Gases ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Yukalov, V. I., et M. D. Girardeau. « Fermi-Bose mapping for one-dimensional Bose gases ». Laser Physics Letters 2, no 8 (1 août 2005) : 375–82. http://dx.doi.org/10.1002/lapl.200510011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Baldovin, F., A. Cappellaro, E. Orlandini et L. Salasnich. « Nonequilibrium statistical mechanics in one-dimensional bose gases ». Journal of Statistical Mechanics : Theory and Experiment 2016, no 6 (13 juin 2016) : 063303. http://dx.doi.org/10.1088/1742-5468/2016/06/063303.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yngvason, Jakob, Elliott H. Lieb et Robert Seiringer. « One-Dimensional Behavior of Dilute, Trapped Bose Gases ». Communications in Mathematical Physics 244, no 2 (1 janvier 2004) : 347–93. http://dx.doi.org/10.1007/s00220-003-0993-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Cazalilla, M. A., A. F. Ho et T. Giamarchi. « Interacting Bose gases in quasi-one-dimensional optical lattices ». New Journal of Physics 8, no 8 (30 août 2006) : 158. http://dx.doi.org/10.1088/1367-2630/8/8/158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Salces-Carcoba, F., C. J. Billington, A. Putra, Y. Yue, S. Sugawa et I. B. Spielman. « Equations of state from individual one-dimensional Bose gases ». New Journal of Physics 20, no 11 (23 novembre 2018) : 113032. http://dx.doi.org/10.1088/1367-2630/aaef9b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hofferberth, S., I. Lesanovsky, B. Fischer, T. Schumm et J. Schmiedmayer. « Non-equilibrium coherence dynamics in one-dimensional Bose gases ». Nature 449, no 7160 (septembre 2007) : 324–27. http://dx.doi.org/10.1038/nature06149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Zhi-Qiang, et Yue-Ming Wang. « One-dimensional spin-orbit coupling Bose gases with harmonic trapping ». Acta Physica Sinica 68, no 17 (2019) : 173201. http://dx.doi.org/10.7498/aps.68.20190143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hou, Ji-Xuan. « Microcanonical condensate fluctuations in one-dimensional weakly-interacting Bose gases ». Modern Physics Letters B 34, no 35 (25 août 2020) : 2050410. http://dx.doi.org/10.1142/s0217984920504102.

Texte intégral
Résumé :
Weakly interacting Bose gases confined in a one-dimensional harmonic trap are studied using microcanonical ensemble approaches. Combining number theory methods, I present a new approach to calculate the particle number counting statistics of the ground state occupation. The results show that the repulsive interatomic interactions increase the ground state fraction and suppresses the fluctuation of ground state at low temperature.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Astrakharchik, G. E., D. Blume, S. Giorgini et B. E. Granger. « Quantum Monte Carlo study of quasi-one-dimensional Bose gases ». Journal of Physics B : Atomic, Molecular and Optical Physics 37, no 7 (24 mars 2004) : S205—S227. http://dx.doi.org/10.1088/0953-4075/37/7/066.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Frantzeskakis, D. J., P. G. Kevrekidis et N. P. Proukakis. « Crossover dark soliton dynamics in ultracold one-dimensional Bose gases ». Physics Letters A 364, no 2 (avril 2007) : 129–34. http://dx.doi.org/10.1016/j.physleta.2006.11.074.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Tomio, Lauro, A. Gammal, F. Kh Abdullaev et R. K. Kumar. « Faraday waves and droplets in quasi-one-dimensional Bose gases ». Journal of Physics : Conference Series 1508 (mars 2020) : 012007. http://dx.doi.org/10.1088/1742-6596/1508/1/012007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Rogel-Salazar, J. « Classification of quantum degenerate regimes in one-dimensional Bose gases ». European Physical Journal D 33, no 1 (25 janvier 2005) : 77–86. http://dx.doi.org/10.1140/epjd/e2005-00008-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Kolezhuk, A. K. « Effective many-body interactions in one-dimensional dilute Bose gases ». Low Temperature Physics 46, no 8 (août 2020) : 798–801. http://dx.doi.org/10.1063/10.0001543.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Izergin, A. G., et A. G. Pronko. « Correlators in the one-dimensional two-component Bose and Fermi gases ». Physics Letters A 236, no 5-6 (décembre 1997) : 445–54. http://dx.doi.org/10.1016/s0375-9601(97)00791-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Citro, R., S. De Palo, E. Orignac, P. Pedri et M.-L. Chiofalo. « Luttinger hydrodynamics of confined one-dimensional Bose gases with dipolar interactions ». New Journal of Physics 10, no 4 (30 avril 2008) : 045011. http://dx.doi.org/10.1088/1367-2630/10/4/045011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

HU, YING, et ZHAOXIN LIANG. « DIMENSIONAL CROSSOVER AND DIMENSIONAL EFFECTS IN QUASI-TWO-DIMENSIONAL BOSE GASES ». Modern Physics Letters B 27, no 14 (16 mai 2013) : 1330010. http://dx.doi.org/10.1142/s021798491330010x.

Texte intégral
Résumé :
This paper gives a systematic review on studies of dimensional effects in pure- and quasi-two-dimensional (2D) Bose gases, focusing on the role of dimensionality in the fundamental relation among the universal behavior of breathing mode, scale invariance and dynamic symmetry. First, we illustrate the emergence of universal breathing mode in the case of pure 2D Bose gases, and elaborate on its connection with the scale invariance of the Hamiltonian and the hidden SO(2, 1) symmetry. Next, we proceed to quasi-2D Bose gases, where excitations are frozen in one direction and the scattering behavior exhibits a 3D to 2D crossover. We show that the original SO(2, 1) symmetry is broken by arbitrarily small 2D effects in scattering, which consequently shifts the breathing mode from the universal frequency. The predicted shift rises significantly from the order of 0.5% to more than 5% in transiting from the 3D-scattering to the 2D-scattering regime. Observing this dimensional effect directly would present an important step in revealing the interplay between dimensionality and quantum fluctuations in quasi-2D.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Liu, T. G., M. Y. Niu et Q. H. Liu. « Chemical potential for the Bose gases in a one-dimensional harmonic trap ». European Journal of Physics 31, no 3 (9 avril 2010) : L51—L53. http://dx.doi.org/10.1088/0143-0807/31/3/l01.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hao, Ya-Jiang, et Xiang-Guo Yin. « Yang—Yang thermodynamics of one-dimensional Bose gases with anisotropic transversal confinement ». Chinese Physics B 20, no 9 (septembre 2011) : 090501. http://dx.doi.org/10.1088/1674-1056/20/9/090501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Stein, Enrico, et Axel Pelster. « Thermodynamics of trapped photon gases at dimensional crossover from 2D to 1D ». New Journal of Physics 24, no 2 (1 février 2022) : 023013. http://dx.doi.org/10.1088/1367-2630/ac4ee0.

Texte intégral
Résumé :
Abstract Photon Bose–Einstein condensates are characterised by a quite weak interaction, so they behave nearly as an ideal Bose gas. Moreover, since the current experiments are conducted in a microcavity, the longitudinal motion is frozen out and the photon gas represents effectively a two-dimensional trapped gas of massive bosons. In this paper we focus on a harmonically confined ideal Bose gas in two dimensions, where the anisotropy of the confinement allows for a dimensional crossover. If the confinement in one direction is strong enough so that this squeezed direction is frozen out, then only one degree of freedom survives and the system can be considered to be quasi-one dimensional. In view of an experimental set-up we work out analytically the thermodynamic properties for such a system with a finite number of photons. In particular, we focus on examining the dimensional information which is contained in the respective thermodynamic quantities.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Rodríguez-López, Omar Abel, et Elías Castellanos. « Oscillating Quantum Droplets From the Free Expansion of Logarithmic One-dimensional Bose Gases ». Journal of Low Temperature Physics 204, no 3-4 (11 juin 2021) : 111–28. http://dx.doi.org/10.1007/s10909-021-02601-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Langen, Tim, Michael Gring, Maximilian Kuhnert, Bernhard Rauer, Remi Geiger, David Adu Smith, Igor E. Mazets et Jörg Schmiedmayer. « Prethermalization in one-dimensional Bose gases : Description by a stochastic Ornstein-Uhlenbeck process ». European Physical Journal Special Topics 217, no 1 (février 2013) : 43–53. http://dx.doi.org/10.1140/epjst/e2013-01752-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hao, Ya-Jiang. « Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement ». Chinese Physics Letters 28, no 7 (juillet 2011) : 070501. http://dx.doi.org/10.1088/0256-307x/28/7/070501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Batchelor, M. T., M. Bortz, X. W. Guan et N. Oelkers. « Collective dispersion relations for the one-dimensional interacting two-component Bose and Fermi gases ». Journal of Statistical Mechanics : Theory and Experiment 2006, no 03 (24 mars 2006) : P03016. http://dx.doi.org/10.1088/1742-5468/2006/03/p03016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Bouchoule, Isabelle, et Jérôme Dubail. « Generalized hydrodynamics in the one-dimensional Bose gas : theory and experiments ». Journal of Statistical Mechanics : Theory and Experiment 2022, no 1 (1 janvier 2022) : 014003. http://dx.doi.org/10.1088/1742-5468/ac3659.

Texte intégral
Résumé :
Abstract We review the recent theoretical and experimental progress regarding the generalized hydrodynamics (GHD) behavior of the one-dimensional (1D) Bose gas with contact repulsive interactions, also known as the Lieb–Liniger gas. In the first section, we review the theory of the Lieb–Liniger gas, introducing the key notions of the rapidities and of the rapidity distribution. The latter characterizes the Lieb–Liniger gas after relaxation and is at the heart of GHD. We also present the asymptotic regimes of the Lieb–Liniger gas with their dedicated approximate descriptions. In the second section we enter the core of the subject and review the theoretical results of GHD in 1D Bose gases. The third and fourth sections are dedicated to experimental results obtained in cold atom experiments: the experimental realization of the Lieb–Liniger model is presented in section 3, with a selection of key results for systems at equilibrium, and section 4 presents the experimental tests of the GHD theory. In section 5 we review the effects of atom losses, which, assuming slow loss processes, can be described within the GHD framework. We conclude with a few open questions.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Guan, Xiwen. « Critical phenomena in one dimension from a Bethe ansatz perspective ». International Journal of Modern Physics B 28, no 24 (5 août 2014) : 1430015. http://dx.doi.org/10.1142/s0217979214300151.

Texte intégral
Résumé :
This article briefly reviews recent theoretical developments in quantum critical phenomena in one-dimensional (1D) integrable quantum gases of cold atoms. We present a discussion on quantum phase transitions, universal thermodynamics, scaling functions and correlations for a few prototypical exactly solved models, such as the Lieb–Liniger Bose gas, the spin-1 Bose gas with antiferromagnetic spin-spin interaction, the two-component interacting Fermi gas as well as spin-3/2 Fermi gases. We demonstrate that their corresponding Bethe ansatz solutions provide a precise way to understand quantum many-body physics, such as quantum criticality, Luttinger liquids (LLs), the Wilson ratio, Tan's Contact, etc. These theoretical developments give rise to a physical perspective using integrability for uncovering experimentally testable phenomena in systems of interacting bosonic and fermonic ultracold atoms confined to 1D.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Valiente, Manuel. « Exact equivalence between one-dimensional Bose gases interacting via hard-sphere and zero-range potentials ». EPL (Europhysics Letters) 98, no 1 (1 avril 2012) : 10010. http://dx.doi.org/10.1209/0295-5075/98/10010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Hao, Y. J., et S. Chen. « Ground-state properties of interacting two-component Bose gases in a one-dimensional harmonic trap ». European Physical Journal D 51, no 2 (18 décembre 2008) : 261–66. http://dx.doi.org/10.1140/epjd/e2008-00266-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Shu-Juan, Liu, Xiong Hong-Wei, Xu Zhi-Jun et Huang Lin. « Roles of Collective Excitations in the Anomalous Fluctuations of One-Dimensional Interacting Bose-Condensed Gases ». Chinese Physics Letters 20, no 10 (24 septembre 2003) : 1672–73. http://dx.doi.org/10.1088/0256-307x/20/10/305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Alferez, Nicolas, et Emile Touber. « One-dimensional refraction properties of compression shocks in non-ideal gases ». Journal of Fluid Mechanics 814 (2 février 2017) : 185–221. http://dx.doi.org/10.1017/jfm.2017.10.

Texte intégral
Résumé :
Non-ideal gases refer to deformable substances in which the speed of sound can decrease following an isentropic compression. This may occur near a phase transition such as the liquid–vapour critical point due to long-range molecular interactions. Isentropes can then become locally concave in the pressure/specific-volume phase diagram (e.g. Bethe–Zel’dovich–Thompson (BZT) gases). Following the pioneering work of Bethe (Tech. Rep. 545, Office of Scientific Research and Development, 1942) on shocks in non-ideal gases, this paper explores the refraction properties of stable compression shocks in non-reacting but arbitrary substances featuring a positive isobaric volume expansivity. A small-perturbation analysis is carried out to obtain analytical expressions for the thermo-acoustic properties of the refracted field normal to the shock front. Three new regimes are discovered: (i) an extensive but selective (in upstream Mach numbers) amplification of the entropy mode (hundreds of times larger than those of a corresponding ideal gas); (ii) discontinuous (in upstream Mach numbers) refraction properties following the appearance of non-admissible portions of the shock adiabats; (iii) the emergence of a phase shift for the generated acoustic modes and therefore the existence of conditions for which the perturbed shock does not produce any acoustic field (i.e. ‘quiet’ shocks, to contrast with the spontaneous D’yakov–Kontorovich acoustic emission expected in 2D or 3D). In the context of multidimensional flows, and compressible turbulence in particular, these results demonstrate a variety of pathways by which a supplied amount of energy (in the form of an entropy, vortical or acoustic mode) can be redistributed in the form of other entropy, acoustic and vortical modes in a manner that is simply not achievable in ideal gases. These findings are relevant for turbines and compressors operating close to the liquid–vapour critical point (e.g. organic Rankine cycle expanders, supercritical $\text{CO}_{2}$ compressors), astrophysical flows modelled as continuum media with exotic equations of state (e.g. the early Universe) or Bose–Einstein condensates with small but finite temperature effects.
Styles APA, Harvard, Vancouver, ISO, etc.
30

LIU, M., L. H. WEN, L. SHE, A. X. CHEN, H. W. XIONG et M. S. ZHAN. « SPLITTING AND TRAPPING OF BOSE-CONDENSED GASES IN MULTI-WELLS ». Modern Physics Letters B 19, no 06 (20 mars 2005) : 303–12. http://dx.doi.org/10.1142/s0217984905008244.

Texte intégral
Résumé :
For the Bose-condensed gas in a one-dimensional optical lattice, several far-off resonant laser beams are used to split and trap the matter wavepacket after switching off both the magnetic trap and optical lattices. In the presence of two far-off resonant laser beams which are not symmetric about the centre of the matter wavepacket, we propose an experimental scheme to observe the collision between two side peaks after switching off the magnetic trap and optical lattice. We also discuss an experimental scheme to realize a coherent splitting and trapping of the matter wavepacket which has potential application in atom optics.
Styles APA, Harvard, Vancouver, ISO, etc.
31

D'Errico, C., S. Scaffidi Abbate et G. Modugno. « Quantum phase slips : from condensed matter to ultracold quantum gases ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 375, no 2108 (30 octobre 2017) : 20160425. http://dx.doi.org/10.1098/rsta.2016.0425.

Texte intégral
Résumé :
Quantum phase slips (QPS) are the primary excitations in one-dimensional superfluids and superconductors at low temperatures. They have been well characterized in most condensed-matter systems, and signatures of their existence have been recently observed in superfluids based on quantum gases too. In this review, we briefly summarize the main results obtained on the investigation of phase slips from superconductors to quantum gases. In particular, we focus our attention on recent experimental results of the dissipation in one-dimensional Bose superfluids flowing along a shallow periodic potential, which show signatures of QPS. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.
Styles APA, Harvard, Vancouver, ISO, etc.
32

HUANG, KERSON. « COLD TRAPPED ATOMS : A MESOSCOPIC SYSTEM ». International Journal of Modern Physics B 15, no 05 (20 février 2001) : 425–41. http://dx.doi.org/10.1142/s0217979201004393.

Texte intégral
Résumé :
The Bose–Einstein condensates recently created in trapped atomic gases are mesocopic systems, in two senses: (a) Their size fall between macroscopic and microscopic systems; (b) They have a quantum phase that can be manipulated in experiments. We review the theoretical and experimental facts about trapped atomic gases, and give examples that emphasize their mesocopic characters. One is the dynamics of collapse of a condensate with attractive interactions. The other is the creation of a one-dimensional kink soliton that can be used as a mode-locked atom laser.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Mithun, Thudiyangal, Aleksandra Maluckov, Kenichi Kasamatsu, Boris A. Malomed et Avinash Khare. « Modulational Instability, Inter-Component Asymmetry, and Formation of Quantum Droplets in One-Dimensional Binary Bose Gases ». Symmetry 12, no 1 (18 janvier 2020) : 174. http://dx.doi.org/10.3390/sym12010174.

Texte intégral
Résumé :
Quantum droplets are ultradilute liquid states that emerge from the competitive interplay of two Hamiltonian terms, the mean-field energy and beyond-mean-field correction, in a weakly interacting binary Bose gas. We relate the formation of droplets in symmetric and asymmetric two-component one-dimensional boson systems to the modulational instability of a spatially uniform state driven by the beyond-mean-field term. Asymmetry between the components may be caused by their unequal populations or unequal intra-component interaction strengths. Stability of both symmetric and asymmetric droplets is investigated. Robustness of the symmetric solutions against symmetry-breaking perturbations is confirmed.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhu, Jiang, Cheng-Ling Bian et Hong-Chen Wang. « Dynamical properties of ultracold Bose atomic gases in one-dimensional optical lattices created by two schemes ». Chinese Physics B 28, no 9 (septembre 2019) : 093701. http://dx.doi.org/10.1088/1674-1056/ab3448.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

GHOSH, TARUN KANTI. « QUANTIZED HYDRODYNAMIC THEORY OF BOSONS IN QUASI-ONE-DIMENSIONAL HARMONIC TRAP ». International Journal of Modern Physics B 20, no 32 (30 décembre 2006) : 5443–62. http://dx.doi.org/10.1142/s0217979206035783.

Texte intégral
Résumé :
We analytically study effects of density and phase fluctuations of quasi-one-dimensional degenerate atomic Bose gases in the mean-field as well as in the hard-core bosons regimes. We obtain the analytic expressions for dynamic structure factors in both the regimes. We also calculate single-particle density matrix and momentum distribution by taking care of the phase fluctuations upto fourth-order term, the density fluctuations as well as the non-condensate density in both the regimes. In the mean-field regime, there is a long-tail in the momentum distributions at large temperature, which can be used to identify the quasi-condensate from a pure condensate. The single-particle correlation functions of hard-core bosons is almost zero even at zero temperature due to the fermionization of the bosonic systems. Two-particle correlation function in the hard-core bosons regime shows many deep valleys at various relative separations. These valleys at various relative separations imply shell structure due to the Pauli blocking in real space.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Oelkers, N., M. T. Batchelor, M. Bortz et X.-W. Guan. « Bethe ansatz study of one-dimensional Bose and Fermi gases with periodic and hard wall boundary conditions ». Journal of Physics A : Mathematical and General 39, no 5 (18 janvier 2006) : 1073–98. http://dx.doi.org/10.1088/0305-4470/39/5/005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

HOU, JI-XUAN, et JING YANG. « Bose gases in one-dimensional harmonic trap ». Pramana 87, no 4 (21 septembre 2016). http://dx.doi.org/10.1007/s12043-016-1262-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

van Nieuwkerk, Yuri Daniel, Jörg Schmiedmayer et Fabian Essler. « Josephson oscillations in split one-dimensional Bose gases ». SciPost Physics 10, no 4 (26 avril 2021). http://dx.doi.org/10.21468/scipostphys.10.4.090.

Texte intégral
Résumé :
We consider the non-equilibrium dynamics of a weakly interacting Bose gas tightly confined to a highly elongated double well potential. We use a self-consistent time-dependent Hartree--Fock approximation in combination with a projection of the full three-dimensional theory to several coupled one-dimensional channels. This allows us to model the time-dependent splitting and phase imprinting of a gas initially confined to a single quasi one-dimensional potential well and obtain a microscopic description of the ensuing damped Josephson oscillations.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Kinoshita, Toshiya, Trevor Wenger et David S. Weiss. « Local Pair Correlations in One-Dimensional Bose Gases ». Physical Review Letters 95, no 19 (3 novembre 2005). http://dx.doi.org/10.1103/physrevlett.95.190406.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Vogler, Andreas, Ralf Labouvie, Felix Stubenrauch, Giovanni Barontini, Vera Guarrera et Herwig Ott. « Thermodynamics of strongly correlated one-dimensional Bose gases ». Physical Review A 88, no 3 (11 septembre 2013). http://dx.doi.org/10.1103/physreva.88.031603.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

De Grandi, C., R. A. Barankov et A. Polkovnikov. « Adiabatic Nonlinear Probes of One-Dimensional Bose Gases ». Physical Review Letters 101, no 23 (2 décembre 2008). http://dx.doi.org/10.1103/physrevlett.101.230402.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Lelas, K., T. Ševa et H. Buljan. « Loschmidt echo in one-dimensional interacting Bose gases ». Physical Review A 84, no 6 (2 décembre 2011). http://dx.doi.org/10.1103/physreva.84.063601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

van Nieuwkerk, Yuri Daniel, Jörg Schmiedmayer et Fabian Essler. « Projective phase measurements in one-dimensional Bose gases ». SciPost Physics 5, no 5 (8 novembre 2018). http://dx.doi.org/10.21468/scipostphys.5.5.046.

Texte intégral
Résumé :
We consider time-of-flight measurements in split one-dimensional Bose gases. It is well known that the low-energy sector of such systems can be described in terms of two compact phase fields \hat{\phi}_{a,s}(x)ϕ̂a,s(x). Building on existing results in the literature we discuss how a single projective measurement of the particle density after trap release is in a certain limit related to the eigenvalues of the vertex operator e^{i\hat{\phi}_a(x)}eiϕ̂a(x). We emphasize the theoretical assumptions underlying the analysis of “single-shot” interference patterns and show that such measurements give direct access to multi-point correlation functions of e^{i\hat{\phi}_a(x)}eiϕ̂a(x) in a substantial parameter regime. For experimentally relevant situations, we derive an expression for the measured particle density after trap release in terms of convolutions of the eigenvalues of vertex operators involving both sectors of the two-component Luttinger liquid that describes the low-energy regime of the split condensate. This opens the door to accessing properties of the symmetric sector via an appropriate analysis of existing experimental data.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Fersino, E., G. Mussardo et A. Trombettoni. « One-dimensional Bose gases withN-body attractive interactions ». Physical Review A 77, no 5 (15 mai 2008). http://dx.doi.org/10.1103/physreva.77.053608.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Møller, Frederik, Thomas Schweigler, Mohammadamin Tajik, João Sabino, Federica Cataldini, Si-Cong Ji et Jörg Schmiedmayer. « Thermometry of one-dimensional Bose gases with neural networks ». Physical Review A 104, no 4 (11 octobre 2021). http://dx.doi.org/10.1103/physreva.104.043305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Fang, Bess, Giuseppe Carleo, Aisling Johnson et Isabelle Bouchoule. « Quench-Induced Breathing Mode of One-Dimensional Bose Gases ». Physical Review Letters 113, no 3 (15 juillet 2014). http://dx.doi.org/10.1103/physrevlett.113.035301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Ristivojevic, Zoran, et K. A. Matveev. « Decay of Bogoliubov excitations in one-dimensional Bose gases ». Physical Review B 94, no 2 (11 juillet 2016). http://dx.doi.org/10.1103/physrevb.94.024506.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Klümper, Andreas, et Ovidiu I. Pâţu. « Efficient thermodynamic description of multicomponent one-dimensional Bose gases ». Physical Review A 84, no 5 (21 novembre 2011). http://dx.doi.org/10.1103/physreva.84.051604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Chiquillo, Emerson. « Equation of state of the one- and three-dimensional Bose-Bose gases ». Physical Review A 97, no 6 (11 juin 2018). http://dx.doi.org/10.1103/physreva.97.063605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Bouchoule, I., et J. Dubail. « Breakdown of Tan’s Relation in Lossy One-Dimensional Bose Gases ». Physical Review Letters 126, no 16 (23 avril 2021). http://dx.doi.org/10.1103/physrevlett.126.160603.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie