Littérature scientifique sur le sujet « Omics data analysi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Omics data analysi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Omics data analysi"
Rappoport, Nimrod, et Ron Shamir. « NEMO : cancer subtyping by integration of partial multi-omic data ». Bioinformatics 35, no 18 (30 janvier 2019) : 3348–56. http://dx.doi.org/10.1093/bioinformatics/btz058.
Texte intégralLancaster, Samuel M., Akshay Sanghi, Si Wu et Michael P. Snyder. « A Customizable Analysis Flow in Integrative Multi-Omics ». Biomolecules 10, no 12 (27 novembre 2020) : 1606. http://dx.doi.org/10.3390/biom10121606.
Texte intégralOromendia, Ana, Dorina Ismailgeci, Michele Ciofii, Taylor Donnelly, Linda Bojmar, John Jyazbek, Arnaub Chatterjee, David Lyden, Kenneth H. Yu et David Paul Kelsen. « Error-free, automated data integration of exosome cargo protein data with extensive clinical data in an ongoing, multi-omic translational research study. » Journal of Clinical Oncology 38, no 15_suppl (20 mai 2020) : e16743-e16743. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e16743.
Texte intégralMadrid-Márquez, Laura, Cristina Rubio-Escudero, Beatriz Pontes, Antonio González-Pérez, José C. Riquelme et Maria E. Sáez. « MOMIC : A Multi-Omics Pipeline for Data Analysis, Integration and Interpretation ». Applied Sciences 12, no 8 (14 avril 2022) : 3987. http://dx.doi.org/10.3390/app12083987.
Texte intégralUgidos, Manuel, Sonia Tarazona, José M. Prats-Montalbán, Alberto Ferrer et Ana Conesa. « MultiBaC : A strategy to remove batch effects between different omic data types ». Statistical Methods in Medical Research 29, no 10 (4 mars 2020) : 2851–64. http://dx.doi.org/10.1177/0962280220907365.
Texte intégralYang, Xiaoxi, Yuqi Wen, Xinyu Song, Song He et Xiaochen Bo. « Exploring the classification of cancer cell lines from multiple omic views ». PeerJ 8 (18 août 2020) : e9440. http://dx.doi.org/10.7717/peerj.9440.
Texte intégralChauvel, Cécile, Alexei Novoloaca, Pierre Veyre, Frédéric Reynier et Jérémie Becker. « Evaluation of integrative clustering methods for the analysis of multi-omics data ». Briefings in Bioinformatics 21, no 2 (14 février 2019) : 541–52. http://dx.doi.org/10.1093/bib/bbz015.
Texte intégralAlizadeh, Madeline, Natalia Sampaio Moura, Alyssa Schledwitz, Seema A. Patil, Jacques Ravel et Jean-Pierre Raufman. « Big Data in Gastroenterology Research ». International Journal of Molecular Sciences 24, no 3 (27 janvier 2023) : 2458. http://dx.doi.org/10.3390/ijms24032458.
Texte intégralMisra, Biswapriya B., Carl Langefeld, Michael Olivier et Laura A. Cox. « Integrated omics : tools, advances and future approaches ». Journal of Molecular Endocrinology 62, no 1 (janvier 2019) : R21—R45. http://dx.doi.org/10.1530/jme-18-0055.
Texte intégralPan, Jianqiao, Baoshan Ma, Xiaoyu Hou, Chongyang Li, Tong Xiong, Yi Gong et Fengju Song. « The construction of transcriptional risk scores for breast cancer based on lightGBM and multiple omics data ». Mathematical Biosciences and Engineering 19, no 12 (2022) : 12353–70. http://dx.doi.org/10.3934/mbe.2022576.
Texte intégralThèses sur le sujet "Omics data analysi"
MASPERO, DAVIDE. « Computational strategies to dissect the heterogeneity of multicellular systems via multiscale modelling and omics data analysis ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/368331.
Texte intégralHeterogeneity pervades biological systems and manifests itself in the structural and functional differences observed both among different individuals of the same group (e.g., organisms or disease systems) and among the constituent elements of a single individual (e.g., cells). The study of the heterogeneity of biological systems and, in particular, of multicellular systems is fundamental for the mechanistic understanding of complex physiological and pathological phenomena (e.g., cancer), as well as for the definition of effective prognostic, diagnostic, and therapeutic strategies. This work focuses on developing and applying computational methods and mathematical models for characterising the heterogeneity of multicellular systems and, especially, cancer cell subpopulations underlying the evolution of neoplastic pathology. Similar methodologies have been developed to characterise viral evolution and heterogeneity effectively. The research is divided into two complementary portions, the first aimed at defining methods for the analysis and integration of omics data generated by sequencing experiments, the second at modelling and multiscale simulation of multicellular systems. Regarding the first strand, next-generation sequencing technologies allow us to generate vast amounts of omics data, for example, related to the genome or transcriptome of a given individual, through bulk or single-cell sequencing experiments. One of the main challenges in computer science is to define computational methods to extract useful information from such data, taking into account the high levels of data-specific errors, mainly due to technological limitations. In particular, in the context of this work, we focused on developing methods for the analysis of gene expression and genomic mutation data. In detail, an exhaustive comparison of machine-learning methods for denoising and imputation of single-cell RNA-sequencing data has been performed. Moreover, methods for mapping expression profiles onto metabolic networks have been developed through an innovative framework that has allowed one to stratify cancer patients according to their metabolism. A subsequent extension of the method allowed us to analyse the distribution of metabolic fluxes within a population of cells via a flux balance analysis approach. Regarding the analysis of mutational profiles, the first method for reconstructing phylogenomic models from longitudinal data at single-cell resolution has been designed and implemented, exploiting a framework that combines a Markov Chain Monte Carlo with a novel weighted likelihood function. Similarly, a framework that exploits low-frequency mutation profiles to reconstruct robust phylogenies and likely chains of infection has been developed by analysing sequencing data from viral samples. The same mutational profiles also allow us to deconvolve the signal in the signatures associated with specific molecular mechanisms that generate such mutations through an approach based on non-negative matrix factorisation. The research conducted with regard to the computational simulation has led to the development of a multiscale model, in which the simulation of cell population dynamics, represented through a Cellular Potts Model, is coupled to the optimisation of a metabolic model associated with each synthetic cell. Using this model, it is possible to represent assumptions in mathematical terms and observe properties emerging from these assumptions. Finally, we present a first attempt to combine the two methodological approaches which led to the integration of single-cell RNA-seq data within the multiscale model, allowing data-driven hypotheses to be formulated on the emerging properties of the system.
Wang, Zhi. « Module-Based Analysis for "Omics" Data ». Thesis, North Carolina State University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3690212.
Texte intégralThis thesis focuses on methodologies and applications of module-based analysis (MBA) in omics studies to investigate the relationships of phenotypes and biomarkers, e.g., SNPs, genes, and metabolites. As an alternative to traditional single–biomarker approaches, MBA may increase the detectability and reproducibility of results because biomarkers tend to have moderate individual effects but significant aggregate effect; it may improve the interpretability of findings and facilitate the construction of follow-up biological hypotheses because MBA assesses biomarker effects in a functional context, e.g., pathways and biological processes. Finally, for exploratory “omics” studies, which usually begin with a full scan of a long list of candidate biomarkers, MBA provides a natural way to reduce the total number of tests, and hence relax the multiple-testing burdens and improve power.
The first MBA project focuses on genetic association analysis that assesses the main and interaction effects for sets of genetic (G) and environmental (E) factors rather than for individual factors. We develop a kernel machine regression approach to evaluate the complete effect profile (i.e., the G, E, and G-by-E interaction effects separately or in combination) and construct a kernel function for the Gene-Environmental (GE) interaction directly from the genetic kernel and the environmental kernel. We use simulation studies and real data applications to show improved performance of the Kernel Machine (KM) regression method over the commonly adapted PC regression methods across a wide range of scenarios. The largest gain in power occurs when the underlying effect structure is involved complex GE interactions, suggesting that the proposed method could be a useful and powerful tool for performing exploratory or confirmatory analyses in GxE-GWAS.
In the second MBA project, we extend the kernel machine framework developed in the first project to model biomarkers with network structure. Network summarizes the functional interplay among biological units; incorporating network information can more precisely model the biological effects, enhance the ability to detect true signals, and facilitate our understanding of the underlying biological mechanisms. In the work, we develop two kernel functions to capture different network structure information. Through simulations and metabolomics study, we show that the proposed network-based methods can have markedly improved power over the approaches ignoring network information.
Metabolites are the end products of cellular processes and reflect the ultimate responses of biology system to genetic variations or environment exposures. Because of the unique properties of metabolites, pharmcometabolomics aims to understand the underlying signatures that contribute to individual variations in drug responses and identify biomarkers that can be helpful to response predictions. To facilitate mining pharmcometabolomic data, we establish an MBA pipeline that has great practical value in detection and interpretation of signatures, which may potentially indicate a functional basis for the drug response. We illustrate the utilities of the pipeline by investigating two scientific questions in aspirin study: (1) which metabolites changes can be attributed to aspirin intake, and (2) what are the metabolic signatures that can be helpful in predicting aspirin resistance. Results show that the MBA pipeline enables us to identify metabolic signatures that are not found in preliminary single-metabolites analysis.
Zheng, Ning. « Mediation modeling and analysis forhigh-throughput omics data ». Thesis, Uppsala universitet, Statistiska institutionen, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-256318.
Texte intégralCampanella, Gianluca. « Statistical analysis of '-omics' data : developments and applications ». Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/32109.
Texte intégralBudimir, Iva <1992>. « Stochastic Modeling and Correlation Analysis of Omics Data ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9792/1/Budimir_Iva_tesi.pdf.
Texte intégralKim, Jieun. « Computational tools for the integrative analysis of muti-omics data to decipher trans-omics networks ». Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28524.
Texte intégralDing, Hao. « Visualization and Integrative analysis of cancer multi-omics data ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1467843712.
Texte intégralCastleberry, Alissa. « Integrated Analysis of Multi-Omics Data Using Sparse Canonical Correlation Analysis ». The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu15544898045976.
Texte intégralTellaroli, Paola. « Three topics in omics research ». Doctoral thesis, Università degli studi di Padova, 2015. http://hdl.handle.net/11577/3423912.
Texte intégralIl titolo piuttosto generico di questa tesi è dovuto al fatto che sono stati indagati diversi aspetti di fenomeni biologici. La maggior parte di questo lavoro è stato rivolto alla ricerca dei limiti di uno degli strumenti essenziali per l'analisi di dati di espressione genica: l'analisi dei gruppi. Esistendo diverse centinaia di metodi di raggruppamento, chiaramente non c'è carenza di algoritmi di analisi dei gruppi, ma, allo stesso tempo, alcuni quesiti fondamentali non hanno ancora ricevuto risposte soddisfacenti. In particolare, presentiamo un nuovo algoritmo di analisi dei gruppi per dati statici ed una nuova strategia per il raggruppamento di dati temporali di breve lunghezza. Infine, abbiamo analizzato dati provenienti da una tecnologia relativamente nuova, chiamata Cap Analysis Gene Expression, utile per l'analisi dei promotori su tutto il genoma e ancora in gran parte inesplorata.
Ayati, Marzieh. « Algorithms to Integrate Omics Data for Personalized Medicine ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1527679638507616.
Texte intégralLivres sur le sujet "Omics data analysi"
Azuaje, Francisco. Bioinformatics and biomarker discovery : "omic" data analysis for personalised medicine. Hoboken, NJ : John Wiley & Sons, 2010.
Trouver le texte intégralAzuaje, Francisco. Bioinformatics and biomarker discovery : "omic" data analysis for personalised medicine. Hoboken, NJ : John Wiley & Sons, 2010.
Trouver le texte intégralAzuaje, Francisco. Bioinformatics and biomarker discovery : "omic" data analysis for personalised medicine. Hoboken, NJ : John Wiley & Sons, 2010.
Trouver le texte intégralBioinformatics and biomarker discovery : "omic" data analysis for personalised medicine. Hoboken, NJ : John Wiley & Sons, 2010.
Trouver le texte intégralTseng, George C., Debashis Ghosh et Xianghong Jasmine Zhou. Integrating Omics Data. Cambridge University Press, 2015.
Trouver le texte intégralIntegrating Omics Data. Cambridge University Press, 2015.
Trouver le texte intégralTseng, George, Debashis Ghosh et Xianghong Jasmine Zhou. Integrating Omics Data. Cambridge University Press, 2015.
Trouver le texte intégralBig Data in Omics and Imaging : Association Analysis. Taylor & Francis Group, 2017.
Trouver le texte intégralXiong, Momiao. Big Data in Omics and Imaging : Association Analysis. Taylor & Francis Group, 2017.
Trouver le texte intégralQingfeng, Chen, Wei Lan, Yi-Ping Phoebe Chen et Wilson Wen Bin Goh, dir. Graph Embedding Methods for Multiple-Omics Data Analysis. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88971-600-5.
Texte intégralChapitres de livres sur le sujet "Omics data analysi"
Ghantasala, Saicharan, Shabarni Gupta, Vimala Ashok Mani, Vineeta Rai, Tumpa Raj Das, Panga Jaipal Reddy et Veenita Grover Shah. « Omics : Data Processing and Analysis ». Dans Biomarker Discovery in the Developing World : Dissecting the Pipeline for Meeting the Challenges, 19–39. New Delhi : Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2837-0_3.
Texte intégralÖsterlund, Tobias, Marija Cvijovic et Erik Kristiansson. « Integrative Analysis of Omics Data ». Dans Systems Biology, 1–24. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527696130.ch1.
Texte intégralYu, Xiang-Tian, et Tao Zeng. « Integrative Analysis of Omics Big Data ». Dans Methods in Molecular Biology, 109–35. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7717-8_7.
Texte intégralDunkler, Daniela, Fátima Sánchez-Cabo et Georg Heinze. « Statistical Analysis Principles for Omics Data ». Dans Methods in Molecular Biology, 113–31. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-027-0_5.
Texte intégralLü, Jinhu, et Pei Wang. « Data-Driven Statistical Approaches for Omics Data Analysis ». Dans Modeling and Analysis of Bio-molecular Networks, 429–59. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9144-0_9.
Texte intégralHan, Maozhen, Na Zhang, Zhangjie Peng, Yujie Mao, Qianqian Yang, Yiyang Chen, Mengfei Ren et Weihua Jia. « Multi-Omics Data Analysis for Inflammation Disease Research : Correlation Analysis, Causal Analysis and Network Analysis ». Dans Methodologies of Multi-Omics Data Integration and Data Mining, 101–18. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8210-1_6.
Texte intégralChen, Yi-An, Lokesh P. Tripathi et Kenji Mizuguchi. « Data Warehousing with TargetMine for Omics Data Analysis ». Dans Methods in Molecular Biology, 35–64. New York, NY : Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9442-7_3.
Texte intégralHabyarimana, Ephrem, et Sofia Michailidou. « Genomics Data ». Dans Big Data in Bioeconomy, 69–76. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71069-9_6.
Texte intégralZhou, Guangyan, Shuzhao Li et Jianguo Xia. « Network-Based Approaches for Multi-omics Integration ». Dans Computational Methods and Data Analysis for Metabolomics, 469–87. New York, NY : Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0239-3_23.
Texte intégralMühlberger, Irmgard, Julia Wilflingseder, Andreas Bernthaler, Raul Fechete, Arno Lukas et Paul Perco. « Computational Analysis Workflows for Omics Data Interpretation ». Dans Methods in Molecular Biology, 379–97. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-027-0_17.
Texte intégralActes de conférences sur le sujet "Omics data analysi"
Occhipinti, Annalisa, et Claudio Angione. « A Computational Model of Cancer Metabolism for Personalised Medicine ». Dans Building Bridges in Medical Science 2021. Cambridge Medicine Journal, 2021. http://dx.doi.org/10.7244/cmj.2021.03.001.3.
Texte intégralKovatch, Patricia, Anthony Costa, Zachary Giles, Eugene Fluder, Hyung Min Cho et Svetlana Mazurkova. « Big omics data experience ». Dans SC15 : The International Conference for High Performance Computing, Networking, Storage and Analysis. New York, NY, USA : ACM, 2015. http://dx.doi.org/10.1145/2807591.2807595.
Texte intégralKlabukov, Il'ya. « ELEMENTS FOR SYSTEMS MEDICINE OF CHOLANGIOPATHIES ». Dans XIV International Scientific Conference "System Analysis in Medicine". Far Eastern Scientific Center of Physiology and Pathology of Respiration, 2020. http://dx.doi.org/10.12737/conferencearticle_5fe01d9b506245.44352217.
Texte intégralSunghoon Choi, Soo-yeon Park, Hoejin Kim, Oran Kwon et Taesung Park. « Analysis for doubly repeated omics data from crossover design ». Dans 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016. http://dx.doi.org/10.1109/bibm.2016.7822782.
Texte intégralXing, Wei, Jon Smith, Mike Gavrielides, Steve Hindmarsh, Adam Huffman et Hai H. Wang. « Nautilus : A Precision-Guided Open Data Architecture for Big Omics Data Analysis ». Dans 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD). IEEE, 2019. http://dx.doi.org/10.1109/icaibd.2019.8836977.
Texte intégralMa, Yingning. « Cluster analysis for cancer omics data using Neural Network with data augmentation ». Dans SPML 2022 : 2022 5th International Conference on Signal Processing and Machine Learning. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3556384.3556388.
Texte intégralJain, Yashita, et Shanshan Ding. « Integrative Sufficient Dimension Reduction Methods for Multi-Omics Data Analysis ». Dans BCB '17 : 8th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. New York, NY, USA : ACM, 2017. http://dx.doi.org/10.1145/3107411.3108225.
Texte intégralSun Kim. « Networks and models for the integrated analysis of multi omics data ». Dans 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016. http://dx.doi.org/10.1109/bibm.2016.7822479.
Texte intégralFernandez-Banet, Julio, Anthony Esposito, Scott Coffin, Sabine Schefzick, Ying Ding, Keith Ching, Istvan Horvath, Peter Roberts, Paul Rejto et Zhengyan Kan. « Abstract 4874 : OASIS : A centralized portal for cancer omics data analysis ». Dans Proceedings : AACR 106th Annual Meeting 2015 ; April 18-22, 2015 ; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4874.
Texte intégralMin, Eun Jeong, Changgee Chang et Qi Long. « Generalized Bayesian Factor Analysis for Integrative Clustering with Applications to Multi-Omics Data ». Dans 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA). IEEE, 2018. http://dx.doi.org/10.1109/dsaa.2018.00021.
Texte intégralRapports d'organisations sur le sujet "Omics data analysi"
Wrinn, Michael. Platform for efficient large-scale storage and analysis of multi-omics data in plant and microbial systems. Final Technical Report. Office of Scientific and Technical Information (OSTI), septembre 2020. http://dx.doi.org/10.2172/1659436.
Texte intégralVillamizar-Villegas, Mauricio, et Yasin Kursat Onder. Uncovering Time-Specific Heterogeneity in Regression Discontinuity Designs. Banco de la República de Colombia, novembre 2020. http://dx.doi.org/10.32468/be.1141.
Texte intégralFait, Aaron, Grant Cramer et Avichai Perl. Towards improved grape nutrition and defense : The regulation of stilbene metabolism under drought. United States Department of Agriculture, mai 2014. http://dx.doi.org/10.32747/2014.7594398.bard.
Texte intégral