Littérature scientifique sur le sujet « Ocean circulation Mathematical models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ocean circulation Mathematical models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Ocean circulation Mathematical models"
Koutitas, Christopher, et Maria Gousidou-Koutita. « A comparative study of three mathematical models for wind-generated circulation in coastal areas ». Coastal Engineering 10, no 2 (juillet 1986) : 127–38. http://dx.doi.org/10.1016/0378-3839(86)90013-x.
Texte intégralLucas, Carine, Madalina Petcu et Antoine Rousseau. « Quasi-hydrostatic primitive equations for ocean global circulation models ». Chinese Annals of Mathematics, Series B 31, no 6 (22 octobre 2010) : 939–52. http://dx.doi.org/10.1007/s11401-010-0611-6.
Texte intégralQiao, Fangli, Yeli Yuan, Jia Deng, Dejun Dai et Zhenya Song. « Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 374, no 2065 (13 avril 2016) : 20150201. http://dx.doi.org/10.1098/rsta.2015.0201.
Texte intégralBelyaev, K. P., A. A. Kuleshov, I. N. Smirnov et C. A. S. Tanajura. « Comparison of Data Assimilation Methods in Hydrodynamics Ocean Circulation Models ». Mathematical Models and Computer Simulations 11, no 4 (juillet 2019) : 564–74. http://dx.doi.org/10.1134/s2070048219040045.
Texte intégralZanna, Laure, et Eli Tziperman. « Optimal Surface Excitation of the Thermohaline Circulation ». Journal of Physical Oceanography 38, no 8 (1 août 2008) : 1820–30. http://dx.doi.org/10.1175/2008jpo3752.1.
Texte intégralJanecki, Maciej, Dawid Dybowski, Jaromir Jakacki, Artur Nowicki et Lidia Dzierzbicka-Glowacka. « The Use of Satellite Data to Determine the Changes of Hydrodynamic Parameters in the Gulf of Gdańsk via EcoFish Model ». Remote Sensing 13, no 18 (8 septembre 2021) : 3572. http://dx.doi.org/10.3390/rs13183572.
Texte intégralSaenz, Juan A., Qingshan Chen et Todd Ringler. « Prognostic Residual Mean Flow in an Ocean General Circulation Model and its Relation to Prognostic Eulerian Mean Flow ». Journal of Physical Oceanography 45, no 9 (septembre 2015) : 2247–60. http://dx.doi.org/10.1175/jpo-d-15-0024.1.
Texte intégralThompson, Andrew F. « The atmospheric ocean : eddies and jets in the Antarctic Circumpolar Current ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 366, no 1885 (25 septembre 2008) : 4529–41. http://dx.doi.org/10.1098/rsta.2008.0196.
Texte intégralBelyaev, Konstantin P., et Clemente A. S. Tanajura. « On the correction of perturbations due to data assimilation in ocean circulation models ». Applied Mathematical Modelling 29, no 7 (juillet 2005) : 690–709. http://dx.doi.org/10.1016/j.apm.2004.10.001.
Texte intégralHogg, Andrew McC, et David R. Munday. « Does the sensitivity of Southern Ocean circulation depend upon bathymetric details ? » Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 372, no 2019 (13 juillet 2014) : 20130050. http://dx.doi.org/10.1098/rsta.2013.0050.
Texte intégralThèses sur le sujet "Ocean circulation Mathematical models"
Bermejo-Bermejo, Rodolfo. « A finite element model of ocean circulation ». Thesis, University of British Columbia, 1986. http://hdl.handle.net/2429/26166.
Texte intégralScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Kiss, Andrew Elek. « Dynamics of laboratory models of the wind-driven ocean circulation ». View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20011018.115707/index.html.
Texte intégralVillanoy, Cesar Laurel. « Modification of the throughflow water properties in the Indonesian seas ». Thesis, The University of Sydney, 1993. https://hdl.handle.net/2123/26591.
Texte intégralJung, Kyung Tae. « On three-dimensional hydrodynamic numerical modelling of wind induced flows in stably stratified waters : a Galerkin-finite difference approach ». Title page, contents and summary only, 1989. http://web4.library.adelaide.edu.au/theses/09PH/09phj95.pdf.
Texte intégralWeaver, Anthony T. « On assimilating sea surface temperature data into an ocean general circulation model ». Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29204.
Texte intégralScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
BRIKOWSKI, TOM HARRY. « A QUANTITATIVE ANALYSIS OF HYDROTHERMAL CIRCULATION AROUND MID-OCEAN RIDGE MAGMA CHAMBERS ». Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184128.
Texte intégralCirano, Mauro School of Mathematics UNSW. « Wintertime Circulation within the Southeast Indian Ocean : a Numerical Study ». Awarded by:University of New South Wales. School of Mathematics, 2000. http://handle.unsw.edu.au/1959.4/17820.
Texte intégralDuhaut, Thomas H. A. « Wind-driven circulation : impact of a surface velocity dependent wind stress ». Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101117.
Texte intégralThe ocean current signature is clearly visible in the scatterometer-derived wind stress fields. We argue that because the actual ocean velocity differs from the modeled ocean velocities, care must be taken in directly applying scatterometer-derived wind stress products to the ocean circulation models. This is not to say that the scatterometer-derived wind stress is not useful. Clearly the great spatial and temporal coverage make these data sets invaluable. Our point is that it is better to separate the atmospheric and oceanic contribution to the stresses.
Finally, the new wind stress decreases the sensitivity of the solution to the (poorly known) bottom friction coefficient. The dependence of the circulation strength on different values of bottom friction is examined under the standard and the new wind stress forcing for two topographic configurations. A flat bottom and a meridional ridge case are studied. In the flat bottom case, the new wind stress leads to a significant reduction of the sensitivity to the bottom friction parameter, implying that inertial runaway occurs for smaller values of bottom friction coefficient. The ridge case also gives similar results. In the case of the ridge and the new wind stress formulation, no real inertial runaway regime has been found over the range of parameters explored.
Dail, Holly Janine. « Atlantic Ocean circulation at the last glacial maximum : inferences from data and models ». Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78367.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 221-236).
This thesis focuses on ocean circulation and atmospheric forcing in the Atlantic Ocean at the Last Glacial Maximum (LGM, 18-21 thousand years before present). Relative to the pre-industrial climate, LGM atmospheric CO₂ concentrations were about 90 ppm lower, ice sheets were much more extensive, and many regions experienced significantly colder temperatures. In this thesis a novel approach to dynamical reconstruction is applied to make estimates of LGM Atlantic Ocean state that are consistent with these proxy records and with known ocean dynamics. Ocean dynamics are described with the MIT General Circulation Model in an Atlantic configuration extending from 35°S to 75°N at 1° resolution. Six LGM proxy types are used to constrain the model: four compilations of near sea surface temperatures from the MARGO project, as well as benthic isotope records of [delta]¹⁸O and [delta]¹³C compiled by Marchal and Curry; 629 individual proxy records are used. To improve the fit of the model to the data, a least-squares fit is computed using an algorithm based on the model adjoint (the Lagrange multiplier methodology). The adjoint is used to compute improvements to uncertain initial and boundary conditions (the control variables). As compared to previous model-data syntheses of LGM ocean state, this thesis uses a significantly more realistic model of oceanic physics, and is the first to incorporate such a large number and diversity of proxy records. A major finding is that it is possible to find an ocean state that is consistent with all six LGM proxy compilations and with known ocean dynamics, given reasonable uncertainty estimates. Only relatively modest shifts from modern atmospheric forcing are required to fit the LGM data. The estimates presented herein succesfully reproduce regional shifts in conditions at the LGM that have been inferred from proxy records, but which have not been captured in the best available LGM coupled model simulations. In addition, LGM benthic [delta]¹⁸O and [delta]¹³C records are shown to be consistent with a shallow but robust Atlantic meridional overturning cell, although other circulations cannot be excluded.
by Holly Janine Dail.
Ph.D.
Mazloff, Matthew R. « Production and analysis of a Southern Ocean state estimate ». Thesis, Online version, 2006. http://hdl.handle.net/1912/1282.
Texte intégral"September 2006." Bibliography: p. 97-106.
Livres sur le sujet "Ocean circulation Mathematical models"
A, Beckmann, dir. Numerical ocean circulation modeling. London : Imperial College Press, 1999.
Trouver le texte intégralMarchuk, G. I. Mathematical modelling of the ocean circulation. Berlin : Springer-Verlag, 1988.
Trouver le texte intégralModeli okeanskikh prot︠s︡essov. Moskva : "Nauka", 1989.
Trouver le texte intégralChechelnitsky, Michael Y. Adaptive error estimation in linearized ocean general circulation models. Cambridge, Mass : Massachusetts Institute of Technology, 1999.
Trouver le texte intégralOberhuber, Josef M. Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model. Hamburg, Germany : Max-Planck-Institut fuer Meteorologie, 1990.
Trouver le texte intégralStanev, Emil V. Numerical study on the Black Sea circulation. Hamburg : Eigenverlag des Instituts für Meereskunde der Universität Hamburg, 1988.
Trouver le texte intégralWunsch, Carl. The ocean circulation inverse problem. Cambridge : Cambridge University Press, 1996.
Trouver le texte intégralFundamentals of ocean climate models. Princeton, N.J : Princeton University Press, 2004.
Trouver le texte intégralTsujino, Hiroyuki. Modelling study on thermohaline circulation in the Pacific Ocean. [Tokyo] : Center for Climate System Research, University of Tokyo, 1999.
Trouver le texte intégralWang, Xiao Hua. Open boundary conditions in a three dimentional coastal ocean model. Canberra, ACT, Australia : School of Geography and Oceanography, University College, The University of New South Wales, Australian Defence Force Academy, 1996.
Trouver le texte intégralChapitres de livres sur le sujet "Ocean circulation Mathematical models"
Marchuk, G. I., et A. S. Sarkisyan. « Formulation of the Problem, Transformation of Equations and Elaboration of Ocean Circulation Models ». Dans Mathematical Modelling of Ocean Circulation, 1–52. Berlin, Heidelberg : Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-61376-0_1.
Texte intégralSaint-Raymond, Laure. « The Role of Boundary Layers in the Large-scale Ocean Circulation ». Dans Mathematical Models and Methods for Planet Earth, 11–24. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02657-2_2.
Texte intégralOlbers, Dirk, Carsten Eden, Erich Becker, Friederike Pollmann et Johann Jungclaus. « The IDEMIX Model : Parameterization of Internal Gravity Waves for Circulation Models of Ocean and Atmosphere ». Dans Mathematics of Planet Earth, 87–125. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05704-6_3.
Texte intégralHodnett, P. F., et Raymond McNamara. « Baroclinic Structure of a Modified Stommel-Arons Model of the Abyssal Ocean Circulation ». Dans IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, 161–66. Dordrecht : Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0792-4_19.
Texte intégralOlbers, Dirk, Jürgen Willebrand et Carsten Eden. « Models of the Ocean Circulation ». Dans Ocean Dynamics, 663–86. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23450-7_18.
Texte intégralPedlosky, Joseph. « Homogeneous Models of the Ocean Circulation ». Dans Ocean Circulation Theory, 25–92. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03204-6_2.
Texte intégralPedlosky, Joseph. « Vertical Structure : Baroclinic Quasi-Geostrophic Models ». Dans Ocean Circulation Theory, 93–170. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-03204-6_3.
Texte intégralMcWilliams, James C. « Oceanic General Circulation Models ». Dans Ocean Modeling and Parameterization, 1–44. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5096-5_1.
Texte intégralGangopadhyay, Avijit. « Multiscale Ocean Models ». Dans Introduction to Ocean Circulation and Modeling, 223–50. Boca Raton : CRC Press, 2022. http://dx.doi.org/10.1201/9780429347221-10.
Texte intégralOlbers, Dirk J. « Diagnostic Models of Ocean Circulation ». Dans Large-Scale Transport Processes in Oceans and Atmosphere, 201–23. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4768-9_5.
Texte intégralActes de conférences sur le sujet "Ocean circulation Mathematical models"
Farina, R., S. Cuomo et P. De Michele. « An inverse preconditioner for a free surface ocean circulation model ». Dans 9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES : ICNPAA 2012. AIP, 2012. http://dx.doi.org/10.1063/1.4765513.
Texte intégralBarzegar, Sadegh, Alireza Elhami Amiri, Pooyan Rahbar et Mehdi Assadi Niazi. « Sea Water Pump Station Basin Mathematical Hydraulic Model Test (CFD Analysis) ». Dans ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79245.
Texte intégralSaasen, Arild, Jan David Ytrehus et Bjørnar Lund. « Annular Frictional Pressure Losses for Drilling Fluids ». Dans ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18709.
Texte intégralVankevich, Roman, Roman Vankevich, Ekaterina Sofina, Ekaterina Sofina, Tatjana Eremina, Tatjana Eremina, Mikhail Molchanov et al. « DEVELOPMENT OF A NEMO BASED OPERATIONAL SYSTEM FOR THE GULF OF FINLAND AND THE KALININGRAD SHELF ». Dans Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93cbe18747.49034561.
Texte intégralVankevich, Roman, Roman Vankevich, Mikhail Molchanov, Mikhail Molchanov, Ekaterina Sofina, Ekaterina Sofina, Vladimir Ryabchenko et al. « DEVELOPMENT OF A NEMO BASED OPERATIONAL SYSTEM FOR THE GULF OF FINLAND AND THE KALININGRAD SHELF ». Dans Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93f0b46083.45377437.
Texte intégralVankevich, Roman, Roman Vankevich, Mikhail Molchanov, Mikhail Molchanov, Ekaterina Sofina, Ekaterina Sofina, Vladimir Ryabchenko et al. « DEVELOPMENT OF A NEMO BASED OPERATIONAL SYSTEM FOR THE GULF OF FINLAND AND THE KALININGRAD SHELF ». Dans Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58cb90a34d5c8.
Texte intégralMonier, L., F. Brossier, F. Razafimahery et Michail D. Todorov. « Validation of a Three-Dimensional Model of the Ocean Circulation ». Dans APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS : Proceedings of the 34th Conference on Applications of Mathematics in Engineering and Economics (AMEE '08). AIP, 2008. http://dx.doi.org/10.1063/1.3030795.
Texte intégralFarina, R., S. Cuomo, P. De Michele, Theodore E. Simos, George Psihoyios, Ch Tsitouras et Zacharias Anastassi. « A CUBLAS-CUDA Implementation of PCG Method of an Ocean Circulation Model ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011 : International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636988.
Texte intégralGriffies, S. M., S. M. Griffies, S. M. Griffies, S. M. Griffies, S. M. Griffies, S. M. Griffies, S. M. Griffies et al. « Problems and Prospects in Large-Scale Ocean Circulation Models ». Dans OceanObs'09 : Sustained Ocean Observations and Information for Society. European Space Agency, 2010. http://dx.doi.org/10.5270/oceanobs09.cwp.38.
Texte intégralTANAKA, Y., M. TSUGAWA, Y. MIMURA et T. SUZUKI. « DEVELOPMENT OF PARALLEL OCEAN GENERAL CIRCULATION MODELS ON THE EARTH SIMULATOR ». Dans Proceedings of the Tenth ECMWF Workshop on the Use of High Performance Computers in Meteorology. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704832_0005.
Texte intégralRapports d'organisations sur le sujet "Ocean circulation Mathematical models"
Whitehead, John A. Laboratory Models of Ocean Circulation. Fort Belvoir, VA : Defense Technical Information Center, juin 1997. http://dx.doi.org/10.21236/ada326697.
Texte intégralIskandarani, Mohamed, Omar Knio, Ashwanth Srinivasan et William C. Thacker. Quantifying Prediction Fidelity in Ocean Circulation Models. Fort Belvoir, VA : Defense Technical Information Center, septembre 2012. http://dx.doi.org/10.21236/ada590693.
Texte intégralIskandarani, Mohamed, Omar Knio, Ashwanth Srinivasan et William C. Thacker. Quantifying Prediction Fidelity in Ocean Circulation Models. Fort Belvoir, VA : Defense Technical Information Center, septembre 2013. http://dx.doi.org/10.21236/ada601423.
Texte intégralPoling, D. A. Benchmarking ocean circulation models on massively parallel computers. Office of Scientific and Technical Information (OSTI), août 1997. http://dx.doi.org/10.2172/515635.
Texte intégralHallberg, Robert, Rainer Bleck, Eric Chassignet, Roland deSzoeke, Stephen Griffies, Paul Schoft, Scott Springer et Alan Walicraft. A Vision for Ocean Circulation Models : Generalized Vertical Coordinates. Fort Belvoir, VA : Defense Technical Information Center, mars 2004. http://dx.doi.org/10.21236/ada593098.
Texte intégralSmith, Raymond C. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA : Defense Technical Information Center, septembre 1999. http://dx.doi.org/10.21236/ada629643.
Texte intégralMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA : Defense Technical Information Center, septembre 1999. http://dx.doi.org/10.21236/ada630449.
Texte intégralMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA : Defense Technical Information Center, septembre 2006. http://dx.doi.org/10.21236/ada630666.
Texte intégralMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA : Defense Technical Information Center, septembre 2003. http://dx.doi.org/10.21236/ada619153.
Texte intégralMobley, Curtis D. Modeling Coastal Ocean Optical Properties for Coupled Circulation and Ecosystem Models. Fort Belvoir, VA : Defense Technical Information Center, septembre 2001. http://dx.doi.org/10.21236/ada622170.
Texte intégral