Littérature scientifique sur le sujet « NV centers, quantum control, quantum sensing »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « NV centers, quantum control, quantum sensing ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "NV centers, quantum control, quantum sensing"

1

Dong, Yang, Haobin Lin, Wei Zhu et Fangwen Sun. « High-sensitivity double-quantum magnetometry in diamond via quantum control ». JUSTC 52, no 3 (2022) : 3. http://dx.doi.org/10.52396/justc-2021-0249.

Texte intégral
Résumé :
High-fidelity quantum operation of qubits plays an important role in magnetometry based on nitrogen-vacancy (NV) centers in diamonds. However, the nontrivial spin-spin coupling of the NV center decreases signal contrast and sensitivity. Here, we overcome this limitation by exploiting the amplitude modulation of microwaves, which allows us to perfectly detect magnetic signals at low fields. Compared with the traditional double-quantum sensing protocol, the full contrast of the detection signal was recovered, and the sensitivity was enhanced three times in the experiment. Our method is applicable to a wide range of sensing tasks, such as temperature, strain, and electric field.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sánchez Toural, J. L., V. Marzoa, R. Bernardo-Gavito, J. L. Pau et D. Granados. « Hands-On Quantum Sensing with NV− Centers in Diamonds ». C 9, no 1 (29 janvier 2023) : 16. http://dx.doi.org/10.3390/c9010016.

Texte intégral
Résumé :
The physical properties of diamond crystals, such as color or electrical conductivity, can be controlled via impurities. In particular, when doped with nitrogen, optically active nitrogen-vacancy centers (NV), can be induced. The center is an outstanding quantum spin system that enables, under ambient conditions, optical initialization, readout, and coherent microwave control with applications in sensing and quantum information. Under optical and radio frequency excitation, the Zeeman splitting of the degenerate states allows the quantitative measurement of external magnetic fields with high sensitivity. This study provides a pedagogical introduction to the properties of the NV centers as well as a step-by-step process to develop and test a simple magnetic quantum sensor based on color centers with significant potential for the development of highly compact multisensor systems.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Li, Ting-Wei, Xing Rong et Jiang-Feng Du. « Recent progress of quantum control in solid-state single-spin systems ». Acta Physica Sinica 71, no 6 (2022) : 060304. http://dx.doi.org/10.7498/aps.71.20211808.

Texte intégral
Résumé :
In the field of quantum physics, quantum control is essential. Precise and efficient quantum control is a prerequisite for the experimental research using quantum systems, and it is also the basis for applications such as in quantum computing and quantum sensing. As a solid-state spin system, the nitrogen-vacancy (NV) center in diamond has a long coherence time at room temperature. It can be initialized and read out by optical methods, and can achieve universal quantum control through the microwave field and radio frequency fields. It is an excellent experimental platform for studying quantum physics. In this review, we introduce the recent results of quantum control in NV center and discuss the following parts: 1) the physical properties of the NV center and the realization method of quantum control, 2) the decoherence mechanism of the NV center spin qubit, and 3) the application of single-spin quantum control and relevant research progress.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Basso, Luca, Mirko Sacco, Nicola Bazzanella, Massimo Cazzanelli, Alessandro Barge, Michele Orlandi, Angelo Bifone et Antonio Miotello. « Laser-Synthesis of NV-Centers-Enriched Nanodiamonds : Effect of Different Nitrogen Sources ». Micromachines 11, no 6 (9 juin 2020) : 579. http://dx.doi.org/10.3390/mi11060579.

Texte intégral
Résumé :
Due to the large number of possible applications in quantum technology fields—especially regarding quantum sensing—of nitrogen-vacancy (NV) centers in nanodiamonds (NDs), research on a cheap, scalable and effective NDs synthesis technique has acquired an increasing interest. Standard production methods, such as detonation and grinding, require multistep post-synthesis processes and do not allow precise control in the size and fluorescence intensity of NDs. For this reason, a different approach consisting of pulsed laser ablation of carbon precursors has recently been proposed. In this work, we demonstrate the synthesis of NV-fluorescent NDs through pulsed laser ablation of an N-doped graphite target. The obtained NDs are fully characterized in the morphological and optical properties, in particular with optically detected magnetic resonance spectroscopy to unequivocally prove the NV origin of the NDs photoluminescence. Moreover, to compare the different fluorescent NDs laser-ablation-based synthesis techniques recently developed, we report an analysis of the effect of the medium in which laser ablation of graphite is performed. Along with it, thermodynamic aspects of the physical processes occurring during laser irradiation are analyzed. Finally, we show that the use of properly N-doped graphite as a target for laser ablation can lead to precise control in the number of NV centers in the produced NDs.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Savitsky, Anton, Jingfu Zhang et Dieter Suter. « Variable bandwidth, high efficiency microwave resonator for control of spin-qubits in nitrogen-vacancy centers ». Review of Scientific Instruments 94, no 2 (1 février 2023) : 023101. http://dx.doi.org/10.1063/5.0125628.

Texte intégral
Résumé :
Nitrogen-Vacancy (NV) centers in diamond are attractive tools for sensing and quantum information. Realization of this potential requires effective tools for controlling the spin degree of freedom by microwave (mw) magnetic fields. In this work, we present a planar microwave resonator optimized for microwave-optical double resonance experiments on single NV centers in diamond. It consists of a piece of wide microstrip line, which is symmetrically connected to two 50 Ω microstrip feed lines. In the center of the resonator, an Ω-shaped loop focuses the current and the mw magnetic field. It generates a relatively homogeneous magnetic field over a volume of 0.07 × 0.1 mm3. It can be operated at 2.9 GHz in both transmission and reflection modes with bandwidths of 1000 and 400 MHz, respectively. The high power-to-magnetic field conversion efficiency allows us to produce π-pulses with a duration of 50 ns with only about 200 and 50 mW microwave power in transmission and reflection, respectively. The transmission mode also offers capability for efficient radio frequency excitation. The resonance frequency can be tuned between 1.3 and 6 GHz by adjusting the length of the resonator. This will be useful for experiments on NV-centers at higher external magnetic fields and on different types of optically active spin centers.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Perdriat, Maxime, Clément Pellet-Mary, Paul Huillery, Loïc Rondin et Gabriel Hétet. « Spin-Mechanics with Nitrogen-Vacancy Centers and Trapped Particles ». Micromachines 12, no 6 (1 juin 2021) : 651. http://dx.doi.org/10.3390/mi12060651.

Texte intégral
Résumé :
Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins’ inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists’ toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tabuchi, Hibiki, Yuichiro Matsuzaki, Noboru Furuya, Yuta Nakano, Hideyuki Watanabe, Norio Tokuda, Norikazu Mizuochi et Junko Ishi-Hayase. « Temperature sensing with RF-dressed states of nitrogen-vacancy centers in diamond ». Journal of Applied Physics 133, no 2 (14 janvier 2023) : 024401. http://dx.doi.org/10.1063/5.0129706.

Texte intégral
Résumé :
Using the electronic spin of nitrogen-vacancy (NV) centers in diamond is a promising approach to realizing high-precision temperature sensors; furthermore, pulsed optically detected magnetic resonance (pulsed-ODMR) is one way to measure the temperature using these NV centers. However, pulsed-ODMR techniques such as D-Ramsey, thermal echo, or thermal Carr–Purcell–Meiboom–Gill sequences require careful calibration and strict time synchronization to control the microwave (MW) pulses, which complicates their applicability. Continuous-wave ODMR (CW-ODMR) is a more advantageous way to measure temperature with NV centers because it can be implemented simply by continuous application of a green laser and MW radiation. However, CW-ODMR has lower sensitivity than pulsed-ODMR. Therefore, it is important to improve the temperature sensitivity of CW-ODMR techniques. Herein, we thus propose and demonstrate a method for measuring temperature using CW-ODMR with a quantum spin state dressed by a radio-frequency (RF) field under a transverse magnetic field. The use of an RF field is expected to suppress the inhomogeneous broadening resulting from strain and/or electric-field variations. The experimental results confirm that the linewidth is decreased in the proposed scheme when compared to the conventional scheme. In addition, we measured the temperature sensitivity to be about [Formula: see text], and this is approximately eight times better than that of the conventional scheme.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rovny, Jared, Zhiyang Yuan, Mattias Fitzpatrick, Ahmed I. Abdalla, Laura Futamura, Carter Fox, Matthew Carl Cambria, Shimon Kolkowitz et Nathalie P. de Leon. « Nanoscale covariance magnetometry with diamond quantum sensors ». Science 378, no 6626 (23 décembre 2022) : 1301–5. http://dx.doi.org/10.1126/science.ade9858.

Texte intégral
Résumé :
Nitrogen vacancy (NV) centers in diamond are atom-scale defects that can be used to sense magnetic fields with high sensitivity and spatial resolution. Typically, the magnetic field is measured by averaging sequential measurements of single NV centers, or by spatial averaging over ensembles of many NV centers, which provides mean values that contain no nonlocal information about the relationship between two points separated in space or time. Here, we propose and implement a sensing modality whereby two or more NV centers are measured simultaneously, and we extract temporal and spatial correlations in their signals that would otherwise be inaccessible. We demonstrate measurements of correlated applied noise using spin-to-charge readout of two NV centers and implement a spectral reconstruction protocol for disentangling local and nonlocal noise sources.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Goltaev, A. S., A. M. Mozharov, V. V. Yaroshenko, D. A. Zuev et I. S. Mukhin. « Investigation of a single-photon hybrid emitting system based on NV-centers in nanodiamonds integrated with GaP NWs ». Journal of Physics : Conference Series 2086, no 1 (1 décembre 2021) : 012142. http://dx.doi.org/10.1088/1742-6596/2086/1/012142.

Texte intégral
Résumé :
Abstract NV-centers can be used for quantum informatics, quantum communication and quantum sensing. The calculation of optical modes formed in a GaP cylindrical nanocavity covered by nanodiamonds has been performed. GaP nanowires have been synthesized with molecular beam epitaxy and played the role of optical resonators for light-emitting centers on the base of nanodiamonds with NV-centers. The optical characteristics of the GaP-based nanocavity were analyzed. The increase in the rate of spontaneous emission of NV-centers optically coupled to the nanocavity was estimated by the time correlated single photon counting method.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sakurai, Ryosuke, Yuta Kainuma, Toshu An, Hidemi Shigekawa et Muneaki Hase. « Ultrafast opto-magnetic effects induced by nitrogen-vacancy centers in diamond crystals ». APL Photonics 7, no 6 (1 juin 2022) : 066105. http://dx.doi.org/10.1063/5.0081507.

Texte intégral
Résumé :
The current generation of quantum sensing technologies using color centers in diamond crystals is primarily based on the principle that the resonant microwave frequency of the luminescence between quantum levels of the nitrogen-vacancy (NV) center varies with temperature and electric and magnetic fields. This principle enables us to measure, for instance, magnetic and electric fields, as well as local temperature with nanometer resolution in conjunction with a scanning probe microscope (SPM). However, the time resolution of conventional quantum sensing technologies has been limited to microseconds due to the limited luminescence lifetime. Here, we investigate ultrafast opto-magnetic effects in diamond crystals containing NV centers to improve the time resolution of quantum sensing to sub-picosecond time scales. The spin ensemble from diamond NV centers induces an inverse Cotton–Mouton effect (ICME) in the form of a sub-picosecond optical response in a femtosecond pump–probe measurement. The helicity and quadratic power dependence of the ICME can be interpreted as a second-order opto-magnetic effect in which ensembles of NV electron spins act as a source for the ICME. The results provide fundamental guidelines for enabling high-resolution spatial-time quantum sensing technologies when combined with SPM techniques.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "NV centers, quantum control, quantum sensing"

1

Lesik, Margarita. « Engineering of NV color centers in diamond for their applications in quantum information and magnetometry ». Thesis, Cachan, Ecole normale supérieure, 2015. http://www.theses.fr/2015DENS0008/document.

Texte intégral
Résumé :
Le centre coloré NV, constitué d’un atome d’azote et d’une lacune, est un défaut ponctuel du diamant qui se comporte comme un atome artificiel piégé dans cette matrice. Grâce aux propriétés de son spin électronique, qui peut être lu et manipulé comme un système quantique élémentaire, le centre NV as de nombreuses applications comme qubit pour l’information quantique ou comme sonde de champ magnétique. Cependant, ces applications nécessitent de contrôler les propriétés des centres NV ainsi que leur position dans le cristal. Cette thèse examine des méthodes pour atteindre ces objectifs en combinant des techniques d’implantation d’atomes et de croissance assistée par plasma (CVD) de diamant.Le mémoire est divisé en six chapitres. Le premier chapitre résume les propriétés des centres NV, ce qui permet de définir les objectifs principaux dans la fabrication des centres NV. Le chapitre deux montre qu’il est possible de créer un réseau de centres NV par implantation au moyen d’une colonne d’ions focalisés. Cette technique est adaptée à la création de centres NV dans des nanostructures comme des cristaux photoniques ou des pointes de type AFM. Cependant la faible énergie cinétique des ions, nécessaire pour atteindre une résolution meilleure que 10 nm en diamètre de spot, conduit à une implantation proche de la surface ce qui affecte fortement les propriétés des centres NV. Le troisième chapitre examine comment la recroissance d’une couche de diamant sur des centres NV implantés permet de réduire l’impact négatif de la surface. Les quatrième et cinquième chapitres décrivent des méthodes pour la fabrication des centres NV en contrôlant les paramètres de la croissance CVD. Des couches minces fortement dopées avec les centres NV peuvent être créées, et un contrôle quasi parfait de l’orientation de l’axe du centre NV peut être obtenu. Dans l’objectif d’optimiser les propriétés du temps de cohérence du spin, le sixième chapitre étudie comment le spin électronique du centre NV peut être protégé contre les effets de décohérence induits par les spins non-polarisés dans la matrice du diamant
The Nitrogen-Vacancy (NV) color center is a defect of diamond which behaves as an artificial atom hosted in a solid-state matrix. Due to its electron spin properties which can be read-out and manipulated as an elementary quantum system, the NV center has found a wide panel of applications as a qubit for quantum information and as a magnetic field sensor. However these applications require to control the properties of the NV centers and their localization. This doctoral thesis investigates methods allowing us to tailor the properties of NV centers by combining techniques for the implantation of nitrogen atoms and the plasma-assisted (CVD) synthesis of diamond.The manuscript is divided into six chapters. The first chapter summarizes the properties of the NV center which will set our objectives for the NV engineering. The second chapter will describe how arrays of NV centers can be created using Focused Ion Beam implantation. The results open a wide range of applications for the targeted creation of NV centers in diamond structures such as photonic crystals and tips. However the low kinetic energy which is required for achieving implantation within a spot of 10-nm diameter leads to shallow defects which properties are strongly affected by the sample surface. The third chapter investigates how the overgrowth of a diamond layer over implanted NV centers can remove the detrimental influence of the surface. The fourth and fifth chapters describe effective methods for NV center fabrication through the control of the CVD growth conditions of the hosting crystal. Thin layers with high NV doping can be grown and almost perfect control of the orientation of the NV axis can be achieved. With the goal to optimize the spin coherence properties, the sixth chapter investigates how the electron spin of the NV center can be protected from decoherence effects induced by magnetic noise due to the unpolarized spins in the diamond lattice
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Edward H. (Edward Hong). « Coherent control of nitrogen-vacancy centers in diamond nanostructures for quantum sensing and networking ». Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107324.

Texte intégral
Résumé :
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2016.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 99-123).
The exceptional optical and spin properties of the negatively charged nitrogen-vacancy (NV-) center in diamond have led to numerous applications ranging from super-resolution imaging to the exploration of previously untested new phenomena using quantum entanglement for information processing and sensing. The solid-state environment of the diamond allows us to engineer nanostructures, which are promising for enhancing the optical and spin properties of the NV-. To help develop a component needed for a diamond-based quantum network, we recently achieved coherent electron spin control of long-lived NV-s in diamond nanostructures using a transferrable hard-mask for both etching and ion implantation. We also developed a super-resolution imaging technique for characterizing such systems, and we furthermore demonstrate high-sensitivity electrometry using a large number of NV-s. However, it remains an open area of investigation whether certain nano-fabrication processes for patterning nanostructures into diamond cause irrecoverable damage or introduce atomic impurities to the crystal that would lead to a significant degradation of the NV- properties. Another remaining challenge is to produce fault-tolerant multi-qubit registers within nanostructures for improved robustness and scalability for use in compact quantum sensors or quantum networks. By building on the results in this thesis, it may be possible to design nanostructures for enhancing initialization, control and read-out fidelities of defect-based solid-state quantum technologies.
by Edward H. Chen.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dong, Wenzheng. « Quantum Information Processing with Color Center Qubits : Theory of Initialization and Robust Control ». Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103438.

Texte intégral
Résumé :
Quantum information technologies include secure quantum communications and ultra precise quantum sensing that are significantly more efficient than their classical counterparts. To enable such technologies, we need a scalable quantum platform in which qubits are con trollable. Color centers provide controllable optically-active spin qubits within the coherence time limit. Moreover, the nearby nuclear spins have long coherence times suitable for quantum memories. In this thesis, I present a theoretical understanding of and control protocols for various color centers. Using group theory, I explore the wave functions and laser pumping-induced dynamics of VSi color centers in silicon carbide. I also provide dynamical decoupling-based high-fidelity control of nuclear spins around the color center. I also present a control technique that combines holonomic control and dynamically corrected control to tolerate simultaneous errors from various sources. The work described here includes a theoretical understanding and control techniques of color center spin qubits and nuclear spin quantum memories, as well as a new platform-independent control formalism towards robust qubit control.
Doctor of Philosophy
Quantum information technologies promise to offer efficient computations of certain algorithms and secure communications beyond the reach of their classical counterparts. To achieve such technologies, we must find a suitable quantum platform to manipulate the quantum information units (qubits). Color centers host spin qubits that can enable such technologies. However, it is challenging due to our incomplete understanding of their physical properties and, more importantly, the controllability and scalability of such spin qubits. In this thesis, I present a theoretical understanding of and control protocols for various color centers. By using group theory that describes the symmetry of color centers, I give a phenomenological model of spin qubit dynamics under optical control of VSi color centers in silicon carbide. I also provide an improved technique for controlling nuclear spin qubits with higher precision. Moreover, I propose a new qubit control technique that combines two methods - holonomic control and dynamical corrected control - to provide further robust qubit control in the presence of multiple noise sources. The works in this thesis provide knowledge of color center spin qubits and concrete control methods towards quantum information technologies with color center spin qubits.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Niemeyer, Ingo Oliver [Verfasser], Dieter Akademischer Betreuer] Suter et Fedor [Gutachter] [Jelezko. « Broadband excitation and quantum control of single electron spins of diamond NV-centers / Ingo Oliver Niemeyer. Betreuer : Dieter Suter. Gutachter : Fedor Jelezko ». Dortmund : Universitätsbibliothek Dortmund, 2013. http://d-nb.info/1103591053/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kavatamane, Rathnakara Vinaya Kumar [Verfasser], Stefan [Akademischer Betreuer] Hell, Stefan [Gutachter] Hell, Claus [Gutachter] Ropers, Tim [Gutachter] Salditt, Gopalakrishnan [Gutachter] Balasubramanian, Marina [Gutachter] Bennati et Thomas [Gutachter] Burg. « Quantum Sensing with NV Centers in Diamond / Vinaya Kumar Kavatamane Rathnakara ; Gutachter : Stefan Hell, Claus Ropers, Tim Salditt, Gopalakrishnan Balasubramanian, Marina Bennati, Thomas Burg ; Betreuer : Stefan Hell ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/119790185X/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Poggiali, Francesco. « Single nitrogen-vacancy centers in diamond for spin quantum control ». Doctoral thesis, 2019. http://hdl.handle.net/2158/1153385.

Texte intégral
Résumé :
The thesis focuses on one of the most promising experimental platforms for quantum technologies: Single nitrogen-vacancy (NV) centers in diamond. This quantum system is composed by the spins of the valence electrons of the crystalline point defects and their nearby nuclei. Quite generally, a fundamental requirement to exploit the potentialities of the quantum nature of a system is its precise control. However, this always involves new challenges, related to the need to protect the quantum system from the environment (i.e. preserving the quantum nature of the system itself) and the desire to develop measurement protocols that can enhance its performance for quantum applications. Therefore, I focused my Ph.D. work to find novel solutions to these challenges.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kavatamane, Rathnakara Vinaya Kumar. « Quantum Sensing with NV Centers in Diamond ». Doctoral thesis, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-1280-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "NV centers, quantum control, quantum sensing"

1

Hui, Yuen Yung, Chi-An Cheng, Oliver Y. Chen et Huan-Cheng Chang. « Bioimaging and Quantum Sensing Using NV Centers in Diamond Nanoparticles ». Dans Carbon Nanoparticles and Nanostructures, 109–37. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28782-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zheng, Huijie, Arne Wickenbrock, Georgios Chatzidrosos, Lykourgos Bougas, Nathan Leefer, Samer Afach, Andrey Jarmola et al. « Novel Magnetic-Sensing Modalities with Nitrogen-Vacancy Centers in Diamond ». Dans Engineering Applications of Diamond. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95267.

Texte intégral
Résumé :
In modern-day quantum metrology, quantum sensors are widely employed to detect weak magnetic fields or nanoscale signals. Quantum devices, exploiting quantum coherence, are inevitably connected to physical constants and can achieve accuracy, repeatability, and precision approaching fundamental limits. As a result, these sensors have shown utility in a wide range of research domains spanning both science and technology. A rapidly emerging quantum sensing platform employs atomic-scale defects in crystals. In particular, magnetometry using nitrogen-vacancy (NV) color centers in diamond has garnered increasing interest. NV systems possess a combination of remarkable properties, optical addressability, long coherence times, and biocompatibility. Sensors based on NV centers excel in spatial resolution and magnetic sensitivity. These diamond-based sensors promise comparable combination of high spatial resolution and magnetic sensitivity without cryogenic operation. The above properties of NV magnetometers promise increasingly integrated quantum measurement technology, as a result, they have been extensively developed with various protocols and find use in numerous applications spanning materials characterization, nuclear magnetic resonance (NMR), condensed matter physics, paleomagnetism, neuroscience and living systems biology, and industrial vector magnetometry. In this chapter, NV centers are explored for magnetic sensing in a number of contexts. In general, we introduce novel regimes for magnetic-field probes with NV ensembles. Specifically, NV centers are developed for sensitive magnetometers for applications where microwaves (MWs) are prohibitively invasive and operations need to be carried out under zero ambient magnetic field. The primary goal of our discussion is to improve the utility of these NV center-based magnetometers.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "NV centers, quantum control, quantum sensing"

1

Zuev, Dmitry, Anastasia Zalogina, Roman Savelev, Elena Ushakova, Georgiy Zograf, Filipp Komissarenko, Valentin Milichko, Sergey Makarov, Yuri S. Kivshar et Ilya Shadrivov. « Control of the NV-centers fluorescence lifetime in resonant diamond particles (Conference Presentation) ». Dans Quantum Nanophotonics 2018, sous la direction de Mark Lawrence, Jennifer A. Dionne et Matthew T. Sheldon. SPIE, 2018. http://dx.doi.org/10.1117/12.2321196.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Poonia, Vishvendra S., Dipankar Saha et Swaroop Ganguly. « Quantum biomimetic modeling of magnetic field sensing using diamond NV−centers ». Dans 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2016. http://dx.doi.org/10.1109/nano.2016.7751335.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bogdanov, Simeon, Mikhail Y. Shalaginov, Abhishek Solanki, Oksana Makarova, Xiaohui Xu, Zachariah O. Martin, Pramey Upadhyaya, Alexandra Boltasseva et Vladimir M. Shalaev. « Optical readout of electron spin states in diamond NV centers for quantum and nanoscale photonics ». Dans Optical and Quantum Sensing and Precision Metrology, sous la direction de Selim M. Shahriar et Jacob Scheuer. SPIE, 2021. http://dx.doi.org/10.1117/12.2588371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chipaux, Mayeul, Stéphane Xavier, Alexandre Tallaire, Jocelyn Achard, Sébastien Pezzagna, Jan Meijer, Vincent Jacques, Jean-François Roch et Thierry Debuisschert. « Nitrogen vacancies (NV) centers in diamond for magnetic sensors and quantum sensing ». Dans SPIE OPTO, sous la direction de Manijeh Razeghi, Eric Tournié et Gail J. Brown. SPIE, 2015. http://dx.doi.org/10.1117/12.2084082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bukach, Alexander A., et Sergei Y. Kilin. « Optimization of qubits control in quantum repeater on NV+13C centers in diamond ». Dans The International Conference on Coherent and Nonlinear Optics, sous la direction de Mikhail V. Fedorov, Wolfgang Sandner, Elisabeth Giacobino, Sergey Kilin, Sergei Kulik, Alexander Sergienko, Andre Bandrauk et Alexander M. Sergeev. SPIE, 2007. http://dx.doi.org/10.1117/12.752299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hernández-Gómez, S., F. Poggiali, P. Cappellaro et Nicole Fabbri. « Quantum control-enhanced sensing and spectroscopy with NV qubits in diamond ». Dans Quantum Nanophotonic Materials, Devices, and Systems 2019, sous la direction de Mario Agio, Cesare Soci et Matthew T. Sheldon. SPIE, 2019. http://dx.doi.org/10.1117/12.2531734.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hopper, David A., Richard R. Grote et Lee C. Bassett. « Enhanced Quantum Sensing with Nitrogen-Vacancy Centers in Nanodiamonds Using All-Optical Charge Control ». Dans CLEO : QELS_Fundamental Science. Washington, D.C. : OSA, 2017. http://dx.doi.org/10.1364/cleo_qels.2017.ftu1e.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vorobyov, Vadim V., Vladimir V. Soshenko, Stepan Bolshedvorksii, Andrey N. Smolyaninov, Vadim N. Sorokin et Alexey V. Akimov. « Towards quantum control of nuclear 14N spin ensemble associated with NV ensemble in diamond for nuclear enhanced sensing applications ». Dans 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087441.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie