Littérature scientifique sur le sujet « Numerical modellng »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Numerical modellng ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Numerical modellng"

1

Jaichuang, Atit, et Wirawan Chinviriyasit. « Numerical Modelling of Influenza Model with Diffusion ». International Journal of Applied Physics and Mathematics 4, no 1 (2014) : 15–21. http://dx.doi.org/10.7763/ijapm.2014.v4.247.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Makokha, Mary, Akira Kobayashi et Shigeyasu Aoyama. « Numerical Modeling of Seawater Intrusion Management Measures ». Journal of Rainwater Catchment Systems 14, no 1 (2008) : 17–24. http://dx.doi.org/10.7132/jrcsa.kj00004978338.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gerya, Taras V., David Fossati, Curdin Cantieni et Diane Seward. « Dynamic effects of aseismic ridge subduction : numerical modelling ». European Journal of Mineralogy 21, no 3 (29 juin 2009) : 649–61. http://dx.doi.org/10.1127/0935-1221/2009/0021-1931.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

O. B. Silva, Augusto, Newton O. P. Júnior et João A. V. Requena. « Numerical Modeling of a Composite Hollow Vierendeel-Truss ». International Journal of Engineering and Technology 7, no 3 (juin 2015) : 176–82. http://dx.doi.org/10.7763/ijet.2015.v7.788.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

ADETU, Alina-Elena, Cătălin ADETU et Vasile NĂSTĂSESCU. « NUMERICAL MODELING OF ACOUSTIC WAVE PROPAGATION IN UNLIMITED SPACE ». SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 21, no 1 (8 octobre 2019) : 80–87. http://dx.doi.org/10.19062/2247-3173.2019.21.12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sosnowski, Marcin, et Jerzy Pisarek. « Analiza porównawcza wyników modelowania ewakuacji z wykorzystaniem różnych modeli numerycznych ». Prace Naukowe Akademii im. Jana Długosza w Częstochowie. Technika, Informatyka, Inżynieria Bezpieczeństwa 2 (2014) : 383–90. http://dx.doi.org/10.16926/tiib.2014.02.33.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

ITO, Yusuke, Toru KIZAKI, Naohiko SUGITA et Mamoru MITSUISHI. « 1206 Numerical Modeling of Picosecond Laser Drilling of Glass ». Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2015.8 (2015) : _1206–1_—_1206–5_. http://dx.doi.org/10.1299/jsmelem.2015.8._1206-1_.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Troyani, N., L. E. Montano et O. M. Ayala. « Numerical modeling of thermal evolution in hot metal coiling ». Revista de Metalurgia 41, Extra (17 décembre 2005) : 488–92. http://dx.doi.org/10.3989/revmetalm.2005.v41.iextra.1082.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hebda, Kamil, Łukasz Habera et Piotr Koślik. « Modelowanie numeryczne ładunków kumulacyjnych z wkładkami dzielonymi dwuczęściowymi ». Nafta-Gaz 77, no 4 (avril 2021) : 264–69. http://dx.doi.org/10.18668/ng.2021.04.06.

Texte intégral
Résumé :
The article was created on the grounds of numerical modelling of shaped charges with a focus on the unconventional shape of their liners. The standard shaped charge of the “deep penetrating” type is equipped with a conical liner made of copper. Three various geometries of shaped charges featuring unconventional shape have been modelled and compared with the classical model of a shaped charge. The shaped charges have been compared for maximum pressure during detonation, cumulative jet velocity, kinetic energy gained and length of cumulative jet after 22 µs. The purpose of modelling shaped charges, featuring unconventionally formed liners, was to check whether they are able to improve the perforation job parameters in oil and gas wells. Perforation of the borehole is a critical job, enabling the initiation of hydrocarbons production from a specific reservoir. The job consists in making series of channels perpendicular to the borehole axis, penetrating casing walls, the cement layer and the formation rock, in order to create a hydraulic link between the borehole and the reservoir of hydrocarbons. In the oil industry, the “deep penetrating” type shaped charges are designed in order to provide optimal length of the perforation channel, while maintaining its adequate perforating diameter. Nowadays, the most commonly deep-penetrating shaped charges used, are the axially-symmetric shaped charges with conical liners made of copper powders. The charges create a cumulative jet reaching a velocity of approx. 7000 m/sec and are able to penetrate up to 1 m of rock matrix in favourable conditions. The article describes the parameters of shaped charges, that have been obtained as a result of numerical modelling. In order to finally confirm the target penetrating ability by the modelled shaped charges, one should check their real physical models in fire-ground conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chenari, B., S. S. Saadatian et Almerindo D. Ferreira. « Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam ». Journal of Clean Energy Technologies 3, no 4 (2015) : 276–81. http://dx.doi.org/10.7763/jocet.2015.v3.208.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Numerical modellng"

1

De, Martino Giuseppe. « Multi-Value Numerical Modeling for Special Di erential Problems ». Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1982.

Texte intégral
Résumé :
2013 - 2014
The subject of this thesis is the analysis and development of new numerical methods for Ordinary Di erential Equations (ODEs). This studies are motivated by the fundamental role that ODEs play in applied mathematics and applied sciences in general. In particular, as is well known, ODEs are successfully used to describe phenomena evolving in time, but it is often very di cult or even impossible to nd a solution in closed form, since a general formula for the exact solution has never been found, apart from special cases. The most important cases in the applications are systems of ODEs, whose exact solution is even harder to nd; then the role played by numerical integrators for ODEs is fundamental to many applied scientists. It is probably impossible to count all the scienti c papers that made use of numerical integrators during the last century and this is enough to recognize the importance of them in the progress of modern science. Moreover, in modern research, models keep getting more complicated, in order to catch more and more peculiarities of the physical systems they describe, thus it is crucial to keep improving numerical integrator's e ciency and accuracy. The rst, simpler and most famous numerical integrator was introduced by Euler in 1768 and it is nowadays still used very often in many situations, especially in educational settings because of its immediacy, but also in the practical integration of simple and well-behaved systems of ODEs. Since that time, many mathematicians and applied scientists devoted their time to the research of new and more e cient methods (in terms of accuracy and computational cost). The development of numerical integrators followed both the scienti c interests and the technological progress of the ages during whom they were developed. In XIX century, when most of the calculations were executed by hand or at most with mechanical calculators, Adams and Bashfort introduced the rst linear multistep methods (1855) and the rst Runge- Kutta methods appeared (1895-1905) due to the early works of Carl Runge and Martin Kutta. Both multistep and Runge-Kutta methods generated an incredible amount of research and of great results, providing a great understanding of them and making them very reliable in the numerical integration of a large number of practical problems. It was only with the advent of the rst electronic computers that the computational cost started to be a less crucial problem and the research e orts started to move towards the development of problem-oriented methods. It is probably possible to say that the rst class of problems that needed an ad-hoc numerical treatment was that of sti problems. These problems require highly stable numerical integrators (see Section ??) or, in the worst cases, a reformulation of the problem itself. Crucial contributions to the theory of numerical integrators for ODEs were given in the XX century by J.C. Butcher, who developed a theory of order for Runge-Kutta methods based on rooted trees and introduced the family of General Linear Methods together with K. Burrage, that uni ed all the known families of methods for rst order ODEs under a single formulation. General Linear Methods are multistagemultivalue methods that combine the characteristics of Runge-Kutta and Linear Multistep integrators... [edited by Author]
XIII n.s.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Villa, A. « Three dimensional geophysical modeling : from physics to numerical simulation ». Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/148440.

Texte intégral
Résumé :
The main objective of this thesis is to provide a comprehensive numerical tool for the three-dimensional simulation of sedimentary basins. We have used a volume averaging technique to obtain a couple of basin-scale mathematical models. We have used some innovative numerical techniques to deal with such models. A multi-fluid implicit tracking technique is developed and integrated with a Stokes solver that is robust with respect to the variations of the coefficients. The movement of the basin boundaries and the evolution of the faults are treated with an Ale and a Finite Volume scheme respectively. Also some mesh refinement methods are used to guarantee a sufficient accuracy. The numerical experiments show a good qualitative agreement with the measured geometry of the sedimentary layers. (Pubblicata - vedi http://hdl.handle.net/2434/148441)
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lin, Yuan. « Numerical modeling of dielectrophoresis ». Licentiate thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zolfaghari, Reza. « Numerical Simulation of Reactive Transport Problems in Porous Media Using Global Implicit Approach ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-197853.

Texte intégral
Résumé :
This thesis focuses on solutions of reactive transport problems in porous media. The principle mechanisms of flow and reactive mass transport in porous media are investigated. Global implicit approach (GIA), where transport and reaction are fully coupled, and sequential noniterative approach (SNIA) are implemented into the software OpenGeoSys (OGS6) to couple chemical reaction and mass transport. The reduction scheme proposed by Kräutle is used in GIA to reduce the number of coupled nonlinear differential equations. The reduction scheme takes linear combinations within mobile species and immobile species and effectively separates the reaction-independent linear differential equations from coupled nonlinear ones (i.e. reducing the number of primary variables in the nonlinear system). A chemical solver is implemented using semi-smooth Newton iteration which employs complementarity condition to solve for equilibrium mineral reactions. The results of three benchmarks are used for code verification. Based on the solutions of these benchmarks, it is shown that GIA with the reduction scheme is faster (ca. 6.7 times) than SNIA in simulating homogeneous equilibrium reactions and (ca. 24 times) in simulating kinetic reaction. In simulating heterogeneous equilibrium mineral reactions, SNIA outperforms GIA with the reduction scheme by 4.7 times
Diese Arbeit konzentriert sich auf die numerische Berechnung reaktiver Transportprobleme in porösen Medien. Es werden prinzipielle Mechanismen von Fluidströmung und reaktive Stofftransport in porösen Medien untersucht. Um chemische Reaktionen und Stofftransport zu koppeln, wurden die Ansätze Global Implicit Approach (GIA) sowie Sequential Non-Iterative Approach (SNIA) in die Software OpenGeoSys (OGS6) implementiert. Das von Kräutle vorgeschlagene Reduzierungsschema wird in GIA verwendet, um die Anzahl der gekoppelten nichtlinearen Differentialgleichungen zu reduzieren. Das Reduzierungsschema verwendet Linearkombinationen von mobilen und immobile Spezies und trennt die reaktionsunabhngigen linearen Differentialgleichungen von den gekoppelten nichtlinearen Gleichungen (dh Verringerung der Anzahl der Primärvariablen des nicht-linearen Gleichungssystems). Um die Gleichgewichtsreaktionen der Mineralien zu berechnen, wurde ein chemischer Gleichungslaser auf Basis von ”semi-smooth Newton-Iterations” implementiert. Ergebnisse von drei Benchmarks wurden zur Code-Verifikation verwendet. Diese Ergebnisse zeigen, dass die Simulation homogener Equilibriumreaktionen mit GIA 6,7 mal schneller und bei kinetischen Reaktionen 24 mal schneller als SNIA sind. Bei Simulationen heterogener Equilibriumreaktionen ist SNIA 4,7 mal schneller als der GIA Ansatz
Styles APA, Harvard, Vancouver, ISO, etc.
5

Vedin, Jörgen. « Numerical modeling of auroral processes ». Doctoral thesis, Umeå University, Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.

Texte intégral
Résumé :

One of the most conspicuous problems in space physics for the last decades has been to theoretically describe how the large parallel electric fields on auroral field lines can be generated. There is strong observational evidence of such electric fields, and stationary theory supports the need for electric fields accelerating electrons to the ionosphere where they generate auroras. However, dynamic models have not been able to reproduce these electric fields. This thesis sheds some light on this incompatibility and shows that the missing ingredient in previous dynamic models is a correct description of the electron temperature. As the electrons accelerate towards the ionosphere, their velocity along the magnetic field line will increase. In the converging magnetic field lines, the mirror force will convert much of the parallel velocity into perpendicular velocity. The result of the acceleration and mirroring will be a velocity distribution with a significantly higher temperature in the auroral acceleration region than above. The enhanced temperature corresponds to strong electron pressure gradients that balance the parallel electric fields. Thus, in regions with electron acceleration along converging magnetic field lines, the electron temperature increase is a fundamental process and must be included in any model that aims to describe the build up of parallel electric fields. The development of such a model has been hampered by the difficulty to describe the temperature variation. This thesis shows that a local equation of state cannot be used, but the electron temperature variations must be descibed as a nonlocal response to the state of the auroral flux tube. The nonlocal response can be accomplished by the particle-fluid model presented in this thesis. This new dynamic model is a combination of a fluid model and a Particle-In-Cell (PIC) model and results in large parallel electric fields consistent with in-situ observations.

Styles APA, Harvard, Vancouver, ISO, etc.
6

Xie, Jinsong. « Numerical modeling of tsunami waves ». Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27936.

Texte intégral
Résumé :
This thesis provides a synthetic understanding and an extensive analysis on megathrust earthquake generated tsunamis, with emphasis on the application of numerical modeling. In the present thesis, the tsunami characteristics are first depicted as a special hydrodynamic phenomenon. Further, a detailed literature review on the recent developments in tsunami numerical modeling techniques and on their applications is presented. A common approach in modeling the generation, propagation and inundation of tsunamis is discussed and used in the thesis. Based on the assumption of a vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake, and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. A general analysis of the Indian Ocean Tsunami of December 26th, 2004 is provided; and tsunami generation and propagation is conducted for this tsunami, as well as for tsunamis occurring in the Arabian Sea and Northwest Pacific Ocean, near the coast of the Vancouver Island. The analyses are based on geological and seismological parameters collected by the author. In this paper the author uses the collected bathymetry and earthquake information, plus tide gauge records and field survey results, and focuses on the theoretical assumptions, validation and limitation of the existing numerical models. Numerical simulations are performed using MIRONE, a tsunami modelling software developed based on the nonlinear shallow water theory. Through numerical modeling of three tsunami scenarios, e.g. December 26, 2004 Indian Ocean Tsunami, November 28, 1945 Arabian Sea Tsunami and the potential Cascadia Tsunami, a vivid overview of the tsunami features is provided as discussed. Generally, the results fairly agree with the observed data. The GEOWARE software is used to compute the tsunami travel time necessary to calibrate the results from MIRONE, using different numerical techniques. Several sensitivity analyses are conducted so that one can understand how oceanic topography affects tsunami wave propagation, determine how smoothing the topography affects the simulated tsunami travel time, and interpret the tsunami wave-height patterns as seen in the model simulations. The model can predict reasonably the tsunami behaviour, and are thus useful for tsunami warning system (tsunami mitigation and preparedness); and coastal population and industry can prepare for such possible catastrophic events.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pak, Ali. « Numerical modeling of hydraulic fracturing ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21618.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Vedin, Jörgen. « Numerical modeling of auroral processes / ». Umeå : Dept. of Physics, Umeå Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Johansson, Christer. « Numerical methods for waveguide modeling / ». Stockholm : Numerical Analysis and Computing Science (NADA), Stockholm university, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-992.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kim, Chu-p'yŏ. « Numerical modeling of MILD combustion ». Aachen Shaker, 2008. http://d-nb.info/988365464/04.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Numerical modellng"

1

Miidla, Peep. Numerical modelling. Rijeka, Croatia : InTech, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Haidvogel, Dale B. Numerical ocean circulation modeling. London : Imperial College Press, 1999.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

1929-, Chung T. J., dir. Numerical modeling in combustion. Washington, DC : Taylor & Francis, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gerya, Taras. Introduction to numerical geodynamic modelling. New York : Cambridge University Press, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

S, Oran Elaine, et Boris Jay P, dir. Numerical approaches to combustion modeling. Washington, DC : American Institute of Aeronautics and Astronautics, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fischer, C. T. Numerical modelling of impedance spectra. Manchester : UMIST, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Schmidt, Wolfram. Numerical Modelling of Astrophysical Turbulence. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01475-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hofstetter, Günter, et Günther Meschke, dir. Numerical Modeling of Concrete Cracking. Vienna : Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0897-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chalikov, Dmitry V. Numerical Modeling of Sea Waves. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32916-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

O’Brien, James J., dir. Advanced Physical Oceanographic Numerical Modelling. Dordrecht : Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-017-0627-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Numerical modellng"

1

Greenspan, Donald. « Numerical Methodology ». Dans Particle Modeling, 7–21. Boston, MA : Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-1992-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Waugh, Rachael C. « Numerical Modelling ». Dans Development of Infrared Techniques for Practical Defect Identification in Bonded Joints, 77–95. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22982-9_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pesavento, Francesco, Agnieszka Knoppik, Vít Šmilauer, Matthieu Briffaut et Pierre Rossi. « Numerical Modelling ». Dans Thermal Cracking of Massive Concrete Structures, 181–255. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76617-1_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Leppäranta, Matti. « Numerical modelling ». Dans The Drift of Sea Ice, 259–97. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04683-4_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Helmig, Rainer. « Numerical modeling ». Dans Multiphase Flow and Transport Processes in the Subsurface, 141–227. Berlin, Heidelberg : Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60763-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Modaressi-Farahmand-Razavi, Arezou. « Numerical Modeling ». Dans Multiscale Geomechanics, 243–332. Hoboken, NJ USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118601433.ch9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vyzikas, Thomas, et Deborah Greaves. « Numerical Modelling ». Dans Wave and Tidal Energy, 289–363. Chichester, UK : John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119014492.ch8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gornitz, Vivian, Nicholas C. Kraus, Nicholas C. Kraus, Ping Wang, Ping Wang, Gregory W. Stone, Richard Seymour et al. « Numerical Modeling ». Dans Encyclopedia of Coastal Science, 730–33. Dordrecht : Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3880-1_232.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lee, Kun Sang, et Tae Hong Kim. « Numerical Modeling ». Dans Integrative Understanding of Shale Gas Reservoirs, 43–55. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29296-0_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Huilgol, Raja R., et Georgios C. Georgiou. « Numerical Modelling ». Dans Fluid Mechanics of Viscoplasticity, 323–86. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98503-5_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Numerical modellng"

1

Gale, J. D. « Modelling the thermal expansion of zeolites ». Dans Neutrons and numerical methods. AIP, 1999. http://dx.doi.org/10.1063/1.59485.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

French, S. A., et C. R. A. Catlow. « Molecular modelling of organic superconducting salts ». Dans Neutrons and numerical methods. AIP, 1999. http://dx.doi.org/10.1063/1.59479.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Kozák, Vladislav. « Cohesive Zone Modelling ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS : International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990924.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Szyszka, Barbara, Theodore E. Simos, George Psihoyios et Ch Tsitouras. « Mathematical Modeling of Secondary Timber Processing ». Dans Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Blacquière, Gerrit, et Edith van Veldhuizen. « Physical modeling versus numerical modeling ». Dans SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2003. http://dx.doi.org/10.1190/1.1817878.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Babovsky, Hans. « Numerical Modelling of Gelating Aerosols ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS : International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Malta, Edgard Borges, Marcos Cueva, Kazuo Nishimoto, Rodolfo Golc¸alves et Isai´as Masetti. « Numerical Moonpool Modeling ». Dans 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92456.

Texte intégral
Résumé :
The use of moonpools in offshore technology are normally related to the hull opening in drilling units with the objective to protect drilling equipment from environmental forces, and its design aims the minimum motion of the water inside the moonpool, avoiding water impacts when lowering an equipment. Several studies have been carried out to predict the water dynamics inside the moonpool. At most, analytical tools have been used with experimental results, to obtain a good evaluation of viscous effects. Another line of development uses the moonpools as a device to reduce motions of ships or oil platforms. In his context, the use of moonpools in monocolumn type platforms was studied during the development of the concept, through the partnership between PETROBRAS and University of Sa˜o Paulo–USP. An alternative that became viable in the last years is the use of numerical methods to evaluate potencial parameters, being only necessary simple experiments to obtains viscous data to complete the model. This work, that is a continuation of articles about the issue written before, intends to consolidate the calculation method of moonpool to monocolumn units.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Szyszka, Barbara, et Klaudyna Rozmiarek. « Mathematical Modeling of Primary Wood Processing ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS : International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990980.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Venturino, Ezio, et Andrea Ghersi. « Modelling Crop Biocontrol by Wanderer Spiders ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS : International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tomiya, Mitsuyoshi. « Numerical approach to spectral properties of coupled quartic oscillators ». Dans Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386841.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Numerical modellng"

1

Wang, Yao, Mirela D. Tumbeva et Ashley P. Thrall. Evaluating Reserve Strength of Girder Bridges Due to Bridge Rail Load Shedding. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317308.

Texte intégral
Résumé :
This research experimentally and numerically evaluated the reserve strength of girder bridges due to bridge rail load shedding. The investigation included: (1) performing non-destructive field testing on two steel girder bridges and one prestressed concrete girder bridge, (2) developing validated finite element numerical models, and (3) performing parametric numerical investigations using the validated numerical modeling approach. Measured data indicated that intact, integral, reinforced concrete rails participate in carrying live load. Research results culminated in recommendations to evaluate the reserve strength of girder bridges due to the participation of the rail, as well as recommendations for bridge inspectors for evaluating steel girder bridges subjected to vehicular collision.
Styles APA, Harvard, Vancouver, ISO, etc.
2

McAlpin, Jennifer, et Jason Lavecchia. Brunswick Harbor numerical model. Engineer Research and Development Center (U.S.), mai 2021. http://dx.doi.org/10.21079/11681/40599.

Texte intégral
Résumé :
The Brunswick area consists of many acres of estuarine and marsh environments. The US Army Corps of Engineers District, Savannah, requested that the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, develop a validated Adaptive Hydraulics model and assist in using it to perform hydrodynamic modeling of proposed navigation channel modifications. The modeling results are necessary to provide data for ship simulation. The model setup and validation are presented here.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Krzanowsky, R. M., R. K. Singhal et N. H. Wade. Numerical modelling of material diggability. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304973.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Delk, Tracey. Numerical Modeling of Slopewater Circulation. Fort Belvoir, VA : Defense Technical Information Center, janvier 1996. http://dx.doi.org/10.21236/ada375720.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Strain, John. Numerical Modelling of Crystal Growth. Fort Belvoir, VA : Defense Technical Information Center, septembre 1992. http://dx.doi.org/10.21236/ada271206.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Cohen, R. H., B. I. Cohen et P. F. Dubois. Comprehensive numerical modelling of tokamaks. Office of Scientific and Technical Information (OSTI), janvier 1991. http://dx.doi.org/10.2172/6205417.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Torres, Marissa, Michael-Angelo Lam et Matt Malej. Practical guidance for numerical modeling in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), octobre 2022. http://dx.doi.org/10.21079/11681/45641.

Texte intégral
Résumé :
This technical note describes the physical and numerical considerations for developing an idealized numerical wave-structure interaction modeling study using the fully nonlinear, phase-resolving Boussinesq-type wave model, FUNWAVE-TVD (Shi et al. 2012). The focus of the study is on the range of validity of input wave characteristics and the appropriate numerical domain properties when inserting partially submerged, impermeable (i.e., fully reflective) coastal structures in the domain. These structures include typical designs for breakwaters, groins, jetties, dikes, and levees. In addition to presenting general numerical modeling best practices for FUNWAVE-TVD, the influence of nonlinear wave-wave interactions on regular wave propagation in the numerical domain is discussed. The scope of coastal structures considered in this document is restricted to a single partially submerged, impermeable breakwater, but the setup and the results can be extended to other similar structures without a loss of generality. The intended audience for these materials is novice to intermediate users of the FUNWAVE-TVD wave model, specifically those seeking to implement coastal structures in a numerical domain or to investigate basic wave-structure interaction responses in a surrogate model prior to considering a full-fledged 3-D Navier-Stokes Computational Fluid Dynamics (CFD) model. From this document, users will gain a fundamental understanding of practical modeling guidelines that will flatten the learning curve of the model and enhance the final product of a wave modeling study. Providing coastal planners and engineers with ease of model access and usability guidance will facilitate rapid screening of design alternatives for efficient and effective decision-making under environmental uncertainty.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lips, Urmas, Oliver Samlas, Vasily Korabel, Jun She, Stella-Theresa Stoicescu et Caroline Cusack. Demonstration of annual/quarterly assessments and description of the production system. EuroSea, 2022. http://dx.doi.org/10.3289/eurosea_d6.2.

Texte intégral
Résumé :
This task set out to increase communication between the ocean monitoring and modelling communities in the Baltic Sea area. Through these improved communications, the goal was to advance and improve the HELCOM marine environmental assessments. To gain confidence in the numerical model outputs, an effort was undertaken to ensure ocean observing in-situ data, collected by multiple nations in the Baltic Sea, was assimilated into a numerical model. Here, we report on the development of indicators, as requested by our stakeholders, and we discuss if the Baltic Sea numerical modelling efforts are ready to augment regional environmental status reports, and can our results help guide environmental management in the region.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Federico, Ivan. CMEMS downscaled circulation operational forecast system. EuroSea, 2023. http://dx.doi.org/10.3289/eurosea_d5.3_v2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Frederico, Ivan. CMEMS downscaled circulation operational forecast system. EuroSea, 2021. http://dx.doi.org/10.3289/eurosea_d5.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie