Articles de revues sur le sujet « Numbers, Rational »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Numbers, Rational.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Numbers, Rational ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

., Jyoti. « Rational Numbers ». Journal of Advances and Scholarly Researches in Allied Education 15, no 5 (1 juillet 2018) : 220–22. http://dx.doi.org/10.29070/15/57856.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Scott Malcom, P. « Understanding Rational Numbers ». Mathematics Teacher 80, no 7 (octobre 1987) : 518–21. http://dx.doi.org/10.5951/mt.80.7.0518.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Understanding is sometimes an elusive goal in mathematics. Although we may believe we have a complete understanding of a concept, another approach to this same concept may bring us additional insight.
3

Lennerstad, Håkan, et Lars Lundberg. « Decomposing rational numbers ». Acta Arithmetica 145, no 3 (2010) : 213–20. http://dx.doi.org/10.4064/aa145-3-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

PEYTON JONES, SIMON. « 12 Rational Numbers ». Journal of Functional Programming 13, no 1 (janvier 2003) : 149–52. http://dx.doi.org/10.1017/s0956796803001412.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Frougny, Christiane, et Karel Klouda. « Rational base number systems forp-adic numbers ». RAIRO - Theoretical Informatics and Applications 46, no 1 (22 août 2011) : 87–106. http://dx.doi.org/10.1051/ita/2011114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Roy, Damien, et Johannes Schleischitz. « Numbers with Almost all Convergents in a Cantor Set ». Canadian Mathematical Bulletin 62, no 4 (3 décembre 2018) : 869–75. http://dx.doi.org/10.4153/s0008439518000450.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractIn 1984, K. Mahler asked how well elements in the Cantor middle third set can be approximated by rational numbers from that set and by rational numbers outside of that set. We consider more general missing digit sets $C$ and construct numbers in $C$ that are arbitrarily well approximable by rationals in $C$, but badly approximable by rationals outside of $C$. More precisely, we construct them so that all but finitely many of their convergents lie in $C$.
7

Gong, Linming, Bo Yang, Tao Xue, Jinguang Chen et Wei Wang. « Secure rational numbers equivalence test based on threshold cryptosystem with rational numbers ». Information Sciences 466 (octobre 2018) : 44–54. http://dx.doi.org/10.1016/j.ins.2018.07.046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Korhonen, Risto. « Approximation of real numbers with rational number sequences ». Proceedings of the American Mathematical Society 137, no 01 (14 août 2008) : 107–13. http://dx.doi.org/10.1090/s0002-9939-08-09479-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Belin, Mervenur, et Gülseren Karagöz Akar. « Exploring Real Numbers as Rational Number Sequences With Prospective Mathematics Teachers ». Mathematics Teacher Educator 9, no 1 (1 septembre 2020) : 63–87. http://dx.doi.org/10.5951/mte.2020.9999.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The understandings prospective mathematics teachers develop by focusing on quantities and quantitative relationships within real numbers have the potential for enhancing their future students’ understanding of real numbers. In this article, we propose an instructional sequence that addresses quantitative relationships for the construction of real numbers as rational number sequences. We found that the instructional sequence enhanced prospective teachers’ understanding of real numbers by considering them as quantities and explaining them by using rational number sequences. In particular, results showed that prospective teachers reasoned about fractions and decimal representations of rational numbers using long division, the division algorithm, and diagrams. This further prompted their reasoning with decimal representations of rational and irrational numbers as rational number sequences, which leads to authentic construction of real numbers. Enacting the instructional sequence provides lenses for mathematics teacher educators to notice and eliminate difficulties of their students while developing relationships among multiple representations of real numbers.
10

Marcos, J. E. « Topological completions of the field of rational numbers which consist of Liouville numbers and rational numbers ». Journal of Pure and Applied Algebra 138, no 3 (mai 1999) : 251–77. http://dx.doi.org/10.1016/s0022-4049(98)00053-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Sándor, József. « On certain rational perfect numbers ». Notes on Number Theory and Discrete Mathematics 28, no 2 (12 mai 2022) : 281–85. http://dx.doi.org/10.7546/nntdm.2022.28.2.281-285.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Atanasiu, Dragu. « Laplace Integral on Rational Numbers. » MATHEMATICA SCANDINAVICA 76 (1 décembre 1995) : 152. http://dx.doi.org/10.7146/math.scand.a-12531.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Detorie, Rick. « Let's Be Rational about Numbers ». Mathematics Teaching in the Middle School 20, no 7 (mars 2015) : 394–97. http://dx.doi.org/10.5951/mathteacmiddscho.20.7.0394.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Goetz, Melanie. « The irrationality of rational numbers ». Journal - American Water Works Association 105, no 7 (juillet 2013) : 82–84. http://dx.doi.org/10.5942/jawwa.2013.105.0096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Almada, Carlos. « On counting the rational numbers ». International Journal of Mathematical Education in Science and Technology 41, no 8 (15 décembre 2010) : 1096–101. http://dx.doi.org/10.1080/0020739x.2010.500695.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Smith III, John P. « Competent Reasoning With Rational Numbers ». Cognition and Instruction 13, no 1 (mars 1995) : 3–50. http://dx.doi.org/10.1207/s1532690xci1301_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bowker, Geoffrey C., et Susan Leigh Star. « Pure, Real and Rational Numbers ». Social Studies of Science 31, no 3 (juin 2001) : 422–25. http://dx.doi.org/10.1177/030631201031003006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Rowland, Eric, et Jeffrey Shallit. « Automatic Sets of Rational Numbers ». International Journal of Foundations of Computer Science 26, no 03 (avril 2015) : 343–65. http://dx.doi.org/10.1142/s0129054115500197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The notion of a [Formula: see text]-automatic set of integers is well-studied. We develop a new notion — the [Formula: see text]-automatic set of rational numbers — and prove basic properties of these sets, including closure properties and decidability.
19

Vourdas, A. « Harmonic analysis on rational numbers ». Journal of Mathematical Analysis and Applications 394, no 1 (octobre 2012) : 48–60. http://dx.doi.org/10.1016/j.jmaa.2012.04.059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Tasoev, B. G. « Rational approximations to certain numbers ». Mathematical Notes 67, no 6 (juin 2000) : 786–91. http://dx.doi.org/10.1007/bf02675633.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Trespalacios, Jesús, et Barbara Chamberline. « Pearl diver : Identifying numbers on a number line ». Teaching Children Mathematics 18, no 7 (mars 2012) : 446–47. http://dx.doi.org/10.5951/teacchilmath.18.7.0446.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Elias, Henrique Rizek, Alessandro Jacques Ribeiro et Angela Marta Pereira das Dores Savioli. « Epistemological Matrix of Rational Number : a Look at the Different Meanings of Rational Numbers ». International Journal of Science and Mathematics Education 18, no 2 (19 mars 2019) : 357–76. http://dx.doi.org/10.1007/s10763-019-09965-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

BERGER, ARNO. « On linear independence of trigonometric numbers ». Carpathian Journal of Mathematics 34, no 2 (2018) : 157–66. http://dx.doi.org/10.37193/cjm.2018.02.04.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
A necessary and sufficient condition is established for 1, cos(πr1), and cos(πr2) to be rationally independent, where r1, r2 are rational numbers. The elementary computational argument yields linear independence over larger number fields as well.
24

Koo, Reginald. « 95.03 Geometric enumeration of the rationals between any two rational numbers ». Mathematical Gazette 95, no 532 (mars 2011) : 63–66. http://dx.doi.org/10.1017/s0025557200002357.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Hurst, Michelle, et Sara Cordes. « Rational-number comparison across notation : Fractions, decimals, and whole numbers. » Journal of Experimental Psychology : Human Perception and Performance 42, no 2 (2016) : 281–93. http://dx.doi.org/10.1037/xhp0000140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Mueller, Julia, et W. M. Schmidt. « On the number of good rational approximations to algebraic numbers ». Proceedings of the American Mathematical Society 106, no 4 (1 avril 1989) : 859. http://dx.doi.org/10.1090/s0002-9939-1989-0961415-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Van Hoof, Jo, Lieven Verschaffel et Wim Van Dooren. « Number sense in the transition from natural to rational numbers ». British Journal of Educational Psychology 87, no 1 (31 octobre 2016) : 43–56. http://dx.doi.org/10.1111/bjep.12134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

., Norris Sookoo, et Ashok Sahai . « Partial Densities on the Rational Numbers ». Journal of Applied Sciences 7, no 6 (1 mars 2007) : 830–34. http://dx.doi.org/10.3923/jas.2007.830.834.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Sándor, József. « On certain rational perfect numbers, II ». Notes on Number Theory and Discrete Mathematics 28, no 3 (10 août 2022) : 525–32. http://dx.doi.org/10.7546/nntdm.2022.28.3.525-532.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
We continue the study from [1], by studying equations of type $\psi(n) = \dfrac{k+1}{k} \cdot \ n+a,$ $a\in \{0, 1, 2, 3\},$ and $\varphi(n) = \dfrac{k-1}{k} \cdot \ n-a,$ $a\in \{0, 1, 2, 3\}$ for $k > 1,$ where $\psi(n)$ and $\varphi(n)$ denote the Dedekind, respectively Euler's, arithmetical functions.
30

Shulga, Nikita. « Rational approximations to two irrational numbers ». Moscow Journal of Combinatorics and Number Theory 11, no 1 (30 mars 2022) : 1–10. http://dx.doi.org/10.2140/moscow.2022.11.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

MILLER, RUSSELL. « HTP-COMPLETE RINGS OF RATIONAL NUMBERS ». Journal of Symbolic Logic 87, no 1 (22 novembre 2021) : 252–72. http://dx.doi.org/10.1017/jsl.2021.96.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractFor a ring R, Hilbert’s Tenth Problem $HTP(R)$ is the set of polynomial equations over R, in several variables, with solutions in R. We view $HTP$ as an enumeration operator, mapping each set W of prime numbers to $HTP(\mathbb {Z}[W^{-1}])$ , which is naturally viewed as a set of polynomials in $\mathbb {Z}[X_1,X_2,\ldots ]$ . It is known that for almost all W, the jump $W'$ does not $1$ -reduce to $HTP(R_W)$ . In contrast, we show that every Turing degree contains a set W for which such a $1$ -reduction does hold: these W are said to be HTP-complete. Continuing, we derive additional results regarding the impossibility that a decision procedure for $W'$ from $HTP(\mathbb {Z}[W^{-1}])$ can succeed uniformly on a set of measure $1$ , and regarding the consequences for the boundary sets of the $HTP$ operator in case $\mathbb {Z}$ has an existential definition in $\mathbb {Q}$ .
32

FURUTA, Koji. « A moment problem on rational numbers ». Hokkaido Mathematical Journal 46, no 2 (juin 2017) : 209–26. http://dx.doi.org/10.14492/hokmj/1498788018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Trushechkin, Anton S., et Igor V. Volovich. « Functional classical mechanics and rational numbers ». P-Adic Numbers, Ultrametric Analysis, and Applications 1, no 4 (15 novembre 2009) : 361–67. http://dx.doi.org/10.1134/s2070046609040086.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Poonen, Bjorn. « Multivariable polynomial injections on rational numbers ». Acta Arithmetica 145, no 2 (2010) : 123–27. http://dx.doi.org/10.4064/aa145-2-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Bradley, Christopher J. « 87.06 A theorem on rational numbers ». Mathematical Gazette 87, no 508 (mars 2003) : 107–11. http://dx.doi.org/10.1017/s0025557200172201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Du, Juan, Ron Goldman et Xuhui Wang. « Rational curves over generalized complex numbers ». Journal of Symbolic Computation 93 (juillet 2019) : 56–84. http://dx.doi.org/10.1016/j.jsc.2018.04.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Vallance, P. « Numbers alone cannot determine rational treatment ». BMJ 310, no 6975 (4 février 1995) : 330. http://dx.doi.org/10.1136/bmj.310.6975.330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Armstrong, Drew, Nicholas A. Loehr et Gregory S. Warrington. « Rational Parking Functions and Catalan Numbers ». Annals of Combinatorics 20, no 1 (25 novembre 2015) : 21–58. http://dx.doi.org/10.1007/s00026-015-0293-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Wimmer, Harald K. « Realizations of matrices of rational numbers ». Journal of Number Theory 25, no 2 (février 1987) : 169–83. http://dx.doi.org/10.1016/0022-314x(87)90023-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Gill, Judith. « Mathematics and gender : Beyond rational numbers ? » Mathematics Education Research Journal 9, no 3 (novembre 1997) : 343–46. http://dx.doi.org/10.1007/bf03217323.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

BENIOFF, PAUL. « COMPLEX RATIONAL NUMBERS IN QUANTUM MECHANICS ». International Journal of Modern Physics B 20, no 11n13 (20 mai 2006) : 1730–41. http://dx.doi.org/10.1142/s021797920603425x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
A binary representation of complex rational numbers and their arithmetic is described that is not based on qubits. It takes account of the fact that 0s in a qubit string do not contribute to the value of a number. They serve only as place holders. The representation is based on the distribution of four types of systems, corresponding to +1, -1, +i, -i, along an integer lattice. Complex rational numbers correspond to arbitrary products of four types of creation operators acting on the vacuum state. An occupation number representation is given for both bosons and fermions.
42

Félix, Yves, et Jean-Claude Thomas. « Rational Betti numbers of configuration spaces ». Topology and its Applications 102, no 2 (avril 2000) : 139–49. http://dx.doi.org/10.1016/s0166-8641(98)00148-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Alkan, Emre. « Series representing transcendental numbers that are not U-numbers ». International Journal of Number Theory 11, no 03 (31 mars 2015) : 869–92. http://dx.doi.org/10.1142/s1793042115500487.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Using integral representations with carefully chosen rational functions as integrands, we find new families of transcendental numbers that are not U-numbers, according to Mahler's classification, represented by a series whose terms involve rising factorials and reciprocals of binomial coefficients analogous to Apéry type series. Explicit descriptions of these numbers are given as linear combinations with coefficients lying in a suitable real algebraic extension of rational numbers using elementary functions evaluated at arguments belonging to the same field. In this way, concrete examples of transcendental numbers which can be expressed as combinations of classical mathematical constants such as π and Baker periods are given together with upper bounds on their wn measures.
44

Cilleruelo, J., D. S. Ramana et O. Ramaré. « The number of rational numbers determined by large sets of integers ». Bulletin of the London Mathematical Society 42, no 3 (18 avril 2010) : 517–26. http://dx.doi.org/10.1112/blms/bdq021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

KWON, DOYONG. « A devil's staircase from rotations and irrationality measures for Liouville numbers ». Mathematical Proceedings of the Cambridge Philosophical Society 145, no 3 (novembre 2008) : 739–56. http://dx.doi.org/10.1017/s0305004108001606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractFrom Sturmian and Christoffel words we derive a strictly increasing function Δ:[0,∞) → . This function is continuous at every irrational point, while at rational points, left-continuous but not right-continuous. Moreover, it assumes algebraic integers at rationals, and transcendental numbers at irrationals. We also see that the differentiation of Δ distinguishes some irrationality measures of real numbers.
46

Moss, Joan. « Research, Reflection, Practice : Introducing Percents in Linear Measurement to Foster an Understanding of Rational-Number Operations ». Teaching Children Mathematics 9, no 6 (février 2003) : 335–39. http://dx.doi.org/10.5951/tcm.9.6.0335.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
How do we foster computational fluency with rational numbers when this topic is known to pose so many conceptual challenges for young students? How can we help students understand the operations of rational numbers when their grasp of the quantities involved in the rational-number system is often very limited? Traditional instruction in rational numbers focuses on rules and memorization. Teachers often give students instructions such as, “To add fractions, first find a common denominator, then add only the numerators” or “To add and subtract decimal numbers, line up the decimals, then do your calculations.”
47

Lewis, Leslie D. « Irrational Numbers Can In-Spiral You ». Mathematics Teaching in the Middle School 12, no 8 (avril 2007) : 442–46. http://dx.doi.org/10.5951/mtms.12.8.0442.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Introducing students to the pythagorean theorem presents a natural context for investigating what irrational numbers are and how they differ from rational numbers. This artistic project allows students to visualize, discuss, and create a product that displays irrational and rational numbers.
48

Malcolmson, Peter, Frank Okoh et Vasuvedan Srinivas. « Factorial Fermat curves over the rational numbers ». Colloquium Mathematicum 142, no 2 (2016) : 285–300. http://dx.doi.org/10.4064/cm142-2-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Morozov, A. S., et J. K. Truss. « On computable automorphisms of the rational numbers ». Journal of Symbolic Logic 66, no 3 (septembre 2001) : 1458–70. http://dx.doi.org/10.2307/2695118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractThe relationship between ideals I of Turing degrees and groups of I-recursive automorphisms of the ordering on rationals is studied. We discuss the differences between such groups and the group of all automorphisms, prove that the isomorphism type of such a group completely defines the ideal I, and outline a general correspondence between principal ideals of Turing degrees and the first-order properties of such groups.
50

Adamczewski, Boris, Christiane Frougny, Anne Siegel et Wolfgang Steiner. « Rational numbers with purely periodic β -expansion ». Bulletin of the London Mathematical Society 42, no 3 (15 avril 2010) : 538–52. http://dx.doi.org/10.1112/blms/bdq019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie