Livres sur le sujet « NUCLEON SPIN »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : NUCLEON SPIN.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs livres pour votre recherche sur le sujet « NUCLEON SPIN ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les livres sur diverses disciplines et organisez correctement votre bibliographie.

1

Steffens, Erhard, et Revaz Shanidze, dir. Spin Structure of the Nucleon. Dordrecht : Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-010-0165-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Erhard, Steffens, et Shanidze Revaz, dir. Spin structure of the nucleon. Dordrecht : Kluwer Academic, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ernst Emiel Herman van Faassen. Relativistic NN scattering with isobaric degrees of freedom. [Utrecht, Netherlands : Rijksuniversiteit te Utrecht, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

B, Frois, Hughes Vernon W et De Groot N, dir. The spin structure of the nucleon : International School of Nucleon Structure, 1st Course, Erice, Italy, 3-10 August 1995. Singapore : World Scientific, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Symposium on the Internal Spin Structure of the Nucleon (1994 Yale University). Symposium on the Internal Spin Structure of the Nucleon : Yale University, 5-6 January 1994. Sous la direction de Hughes Vernon W et Cavata Christian. Singapore : World Scientific, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

-A, Shibata T., Ohta S et Saitō N. 1919-, dir. Proceedings of the RIKEN Symposium on Spin Structure of the Nucleon : 18-19 December 1995, RIKEN, Japan. Singapore : World Scientific, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

M, Anghinolfi, Battaglieri M et De Vita R, dir. GDH 2002 : Proceedings of the Second International Symposium on the Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon : Genova, Italy, 3-6 July, 2002. Singapore : World Scientific, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Pileio, Giuseppe, dir. Long-lived Nuclear Spin Order. Cambridge : Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788019972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Horowitz, Charles J., Charles D. Goodman et George E. Walker, dir. Spin Observables of Nuclear Probes. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0769-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Horowitz, Charles J. Spin Observables of Nuclear Probes. Boston, MA : Springer US, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Telluride International Conference on Spin Observables of Nuclear Probes (1988). Spin observables of nuclear probes. New York : Plenum Press, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

E, Ti͡u︡rin N., dir. Spin phenomena in particle interactions. Singapore : World Scientific, 1994.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

E, Ti͡u︡rin N., dir. Spin v fizike vysokikh ėnergiĭ. Moskva : "Nauka", 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

The story of spin. Chicago : University of Chicago Press, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wissink, Scott W., Charles D. Goodman et George E. Walker, dir. Spin and Isospin in Nuclear Interactions. Boston, MA : Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3834-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Wissink, Scott W. Spin and Isospin in Nuclear Interactions. Boston, MA : Springer US, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

W, Wissink Scott, Goodman Charles D et Walker George E, dir. Spin and isospin in nuclear interactions. New York : Plenum Press, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Crabb, D. G. (Don G.), dir. Spin physics : 18th International Spin Physics Symposium, Charlottesville, Virginia, 6-11 October 2008. Melville, N.Y : American Institute of Physics, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

International Spin Physics Symposium (14th 2000 Osaka, Japan). SPIN 2000 : 14th International Spin Physics Symposium, Osaka, Japan, 16-21 October 2000. Sous la direction de Hatanaka K et American Institute of Physics. Melville, N.Y : American Institute of Physics, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

I, Dyakonov M., dir. Spin physics in semiconductors. Berlin : Springer, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

G, Ratcliffe Philip, dir. Transverse spin physics. River Edge, N.J : World Scientific, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Lawson, H. Blaine. Spin geometry. Princeton, N.J : Princeton University Press, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Spin dynamics and snakes in synchrotrons. Singapore : World Scientific, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Spin dynamics : Basics of nuclear magnetic resonance. Chichester : John Wiley & Sons, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Agency, OECD Nuclear Energy, dir. Spin-off technologies developed through nuclear activities. Paris : Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Levitt, Malcolm H. Spin dynamics : Basics of nuclear magnetic resonance. Chichester : John Wiley & Sons, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Levitt, Malcolm H. Spin dynamics : Basics of nuclear magnetic resonance. 2e éd. Hoboken, NJ : John Wiley & Sons, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

N, Mukherjee S. Physics of rotating nuclei. New York : Wiley, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Exotic nuclear excitations. New York : Springer, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Yeung, Race R. Nuclear spin relaxation and morphology of solid polyolefins. Norwich : University of East Anglia, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Nagels, Boris. New light on nuclear spin conversion in molecules. [Leiden : University of Leiden, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Althoff, Karl-Heinz. High Energy Spin Physics : Volume 1 : Conference Report. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Shanidze, Revaz, et Erhard Steffens. Spin Structure of the Nucleon. Springer, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Mefford, Tim. A parallel numerical computation of nucleon scattering from nuclei, including full spin coupling and coulomb forces. 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

(Editor), Erhard Steffens, et Revaz Shanidze (Editor), dir. Spin Structure of the Nucleon (NATO Science Series II : Mathematics, Physics and Chemistry). Springer, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

(Editor), Vernon W. Hughes, et Christian Cavata (Editor), dir. Symposium on the Internal Spin Structure of the Nucleon : Yale University 5-6 January 1994. World Scientific Pub Co Inc, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Glazov, M. M. Strong Coupling of Electron and Nuclear Spins : Outlook and Prospects. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0011.

Texte intégral
Résumé :
In this chapter, some prospects in the field of electron and nuclear spin dynamics are outlined. Particular emphasis is put ona situation where the hyperfine interaction is so strong that it leads to a qualitative rearrangement of the energy spectrum resulting in the coherent excitation transfer between the electron and nucleus. The strong coupling between the spin of the charge carrier and of the nucleus is realized, for example in the case of deep impurity centers in semiconductors or in isotopically purified systems. We also discuss the effect of the nuclear spin polaron, that is ordered state, formation at low enough temperatures of nuclear spins, where the orientation of the carrier spin results in alignment of the spins of nucleus interacting with the electron or hole.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Glazov, M. M. Electron Spin Relaxation Beyond the Hyperfine Interaction. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0008.

Texte intégral
Résumé :
Here, some prospects for future studies in the field of electron and nuclear spin dynamics are outlined. In contrast to previous chapters where the electron interaction with multitude of nuclei was discussed, in Chapter 8 particular emphasis is put on a situation where hyperfine interaction is so strong that it leads to a qualitative rear rangement of the energy spectrum resulting in coherent excitation transfer between electron and nucleus. The strong coupling between the spin of the charge carrier and of the nucleus is realized; e.g., in the case of deep impurity centers in semiconductors or in isotopically purified systems. We also discuss the effect of the nuclear spin polaron; that is, the ordered state, where the carrier spin orientation results in alignment of spins of the nucleus interacting with the electron or hole. Such problems have been briefly discussed in the literature but, in our opinion, call for in-depth investigation.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Glazov, M. M. Electron & ; Nuclear Spin Dynamics in Semiconductor Nanostructures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.001.0001.

Texte intégral
Résumé :
In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, solid state systems, particularly semicon- ductors and semiconductor nanosystems, allow one to perform benchtop studies of quantum and relativistic phenomena. On the other hand, interest is supported by the prospects of realizing spin-based electronics where the electron or nuclear spins can play a role of quantum or classical information carriers. This book aims at rather detailed presentation of multifaceted physics of interacting electron and nuclear spins in semiconductors and, particularly, in semiconductor-based low-dimensional structures. The hyperfine interaction of the charge carrier and nuclear spins increases in nanosystems compared with bulk materials due to localization of electrons and holes and results in the spin exchange between these two systems. It gives rise to beautiful and complex physics occurring in the manybody and nonlinear system of electrons and nuclei in semiconductor nanosystems. As a result, an understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and control of spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and -Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focusing, as well as fluctuations of electron and nuclear spins.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Glazov, M. M. Electron Spin Decoherence by Nuclei. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0007.

Texte intégral
Résumé :
The discussion of the electron spin decoherence and relaxation phenomena via the hyperfine interaction with host lattice spins is presented here. The spin relaxation processes processes limit the conservation time of spin states as well as the response time of the spin system to external perturbations. The central spin model, where the spin of charge carrier interacts with the bath of nuclear spins, is formulated. We also present different methods to calculate the spin dynamics within this model. Simple but physically transparent semiclassical treatment where the nuclear spins are considered as largely static classical magnetic moments is followed by more advanced quantum mechanical approach where the feedback of electron spin dynamics on the nuclei is taken into account. The chapter concludes with an overview of experimental data and its comparison with model calculations.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Glazov, M. M. Dynamical Nuclear Polarization. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0005.

Texte intégral
Résumé :
The transfer of nonequilibrium spin polarization between the electron and nuclear subsystems is studied in detail. Usually, a thermal orientation of nuclei in magnetic field is negligible due to their small magnetic moments, but if electron spins are optically oriented, efficient nuclear spin polarization can occur. The microscopic approach to the dynamical nuclear polarization effect based on the kinetic equation method, along with a phenomenological but very powerful description of dynamical nuclear polarization in terms of the nuclear spin temperature concept is given. In this way, one can account for the interaction between neighbouring nuclei without solving a complex many-body problem. The hyperfine interaction also induces the feedback of polarized nuclei on the electron spin system giving rise to a number of nonlinear effects: bistability of nuclear spin polarization and anomalous Hanle effect, dragging and locking of optical resonances in quantum dots. Theory is illustrated by experimental data on dynamical nuclear polarization.
Styles APA, Harvard, Vancouver, ISO, etc.
42

(Editor), Dieter Drechsel, et Lothar Tiator (Editor), dir. Gdh 2000 : Proceedings of the Symposium on the Gerasimov-Drell-Hearn Sum Rule and the Nucleon Spin Structure in the Resonance Region Mainz, Germany 14-17 June 02. World Scientific Publishing Company, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Glazov, M. M. Spin Resonance. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0003.

Texte intégral
Résumé :
This chapter is devoted to one of key phenomena in the field of spin physics, namely, resonant absorption of electromagnetic waves under conditions where the Zeeman splitting of spin levels in magnetic field is equal to photon energy. This method is particularly important for identification of nuclear spin effects, because resonance spectra provide fingerprints of different involved spin species and make it possible to distinguish different nuclear isotopes. As discussed in this chapter the nuclear magnetic resonance provides also an access to local magnetic fields acting on nuclear spins. These fields are caused by the magnetic interactions between the nuclei and by the quadrupole splittings of nuclear spin states in anisotropic crystalline environment. Manifestations of spin resonance in optical responses of semiconductors–that is, optically detected magnetic resonance–are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Anghinolfi, M., Battaglieri et R. De Vita. Gdh 2002 : Proceedings of the Second International Symposium on the Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon. World Scientific Publishing Company, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Glazov, M. M. Hyperfine Interaction of Electron and Nuclear Spins. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0004.

Texte intégral
Résumé :
This chapter discusses the key interaction–hyperfine coupling–which underlies most of phenomena in the field of electron and nuclear spin dynamics. This interaction originates from magnetic interaction between the nuclear and electron spins. For conduction band electrons in III–V or II–VI semiconductors, it is reduced to a Fermi contact interaction whose strength is proportional to the probability of finding an electron at the nucleus. A more complex situation is realized for valence band holes where hole Bloch functions vanish at the nuclei. Here the hyperfine interaction is of the dipole–dipole type. The modification of the hyperfine coupling Hamiltonian in nanosystems is also analyzed. The chapter contains also an overview of experimental data aimed at determination of the hyperfine interaction parameters in semiconductors and semiconductor nanostructures.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Glazov, M. M. Fluctuations of Electron and Nuclear Spins. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0010.

Texte intégral
Résumé :
In thermal equilibrium, both electron and nuclear spin systems are unpolarized on average, but characterized by nonzero fluctuations. These fluctuations are inevitable due to the quantum-mechanical nature of spin. The physics of spin fluctuations in electron and nucelar systems is studied in this chapter. The intensity and dynamics of these inevitable stochastic fluctuations of spins contain information on spin relaxation and decoherence times, spin precession period, and interactions in spin systems. The theory of spin fluctuations in semiconductor nanosystems as well as experimental advances in the field of spin noise spectroscopy are reviewed. Specific situations where the spin noise spectroscopy can be particularly useful for spin dynamics studies are discussed, the analysis of recent progress in the field of nonequlibrium spin fluctuations is also presented.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Glazov, M. M. Interaction of Spins with Light. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0006.

Texte intégral
Résumé :
This chapter presents the details of the optical manipulation of electron spin states. It also addresses manifestations of the electron and nuclear spin dynamics in optical response of semiconductor nanostructures via spin-Faraday and -Kerr effects. Coupling of spins with light provides the most efficient method of nonmagnetic spin manipulation. The main aim of this chapter is to provide the theoretical grounds for optical spin injection, ultrafast spin control, and readout of spin states by means of circularly and linearly polarized light pulses. The Faraday and Kerr effects induced by the electron and nuclear spin polarization are analyzed both by means of a macroscopic, semi-phenomenological approach and by using the microscopic quantum mechanical model. Theoretical analysis is supported by experimental data.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Glazov, M. M. Spin Systems in Semiconductor Nanostructures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.003.0002.

Texte intégral
Résumé :
This chapter is an introduction to a rich variety of effects taking place in the interacting system of electrons and nuclei in semiconductors. It includes also the basics of electronic properties of nanostructures and of spin physics, an overview of fundamental interactions in the electron and nuclear spin systems, the selection rules at optical transitions in semiconductors, spin resonance effect, as well as optical orientation, and dynamical nuclear polarization. In this chapter an analysis of particular features of spin dynamics arising in the structures with localized electrons such as quantum dots, which are studied further in the book, are addressed. The aim of this chapter is to provide basic minimum of information needed to read the remaining chapters.
Styles APA, Harvard, Vancouver, ISO, etc.
49

(Editor), Kichiji Hatanaka, Takashi Nakano (Editor), Kenichi Imai (Editor) et Hiroyasu Ejiri (Editor), dir. Spin 2000. American Institute of Physics, 2001.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Gelman, Neil. 19F nuclear spin-spin relaxation in bone mineral. 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie