Littérature scientifique sur le sujet « Nuclear magnetic resonace spectroscopy »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nuclear magnetic resonace spectroscopy ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Nuclear magnetic resonace spectroscopy"

1

Lehmann, Teresa. « Nuclear Magnetic Resonance Spectroscopy ». Magnetochemistry 4, no 2 (20 avril 2018) : 20. http://dx.doi.org/10.3390/magnetochemistry4020020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

MATSUNAGA, Sho. « Nuclear Magnetic Resonance Spectroscopy ». Journal of the Japan Society of Colour Material 64, no 4 (1991) : 247–54. http://dx.doi.org/10.4011/shikizai1937.64.247.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

FUJII, Naoyuki. « Nuclear Magnetic Resonance Spectroscopy ». Journal of the Japan Society of Colour Material 78, no 12 (2005) : 572–82. http://dx.doi.org/10.4011/shikizai1937.78.572.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rabenstein, Dallas L., et Wei Guo. « Nuclear magnetic resonance spectroscopy ». Analytical Chemistry 60, no 12 (15 juin 1988) : 1–28. http://dx.doi.org/10.1021/ac00163a001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Balaban, Robert S. « Nuclear Magnetic Resonance Spectroscopy ». Academic Radiology 2 (septembre 1995) : S136—S137. http://dx.doi.org/10.1016/s1076-6332(12)80056-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Haw, James F. « Nuclear magnetic resonance spectroscopy ». Analytical Chemistry 64, no 12 (15 juin 1992) : 243–54. http://dx.doi.org/10.1021/ac00036a014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Jelinski, Lynn W. « Nuclear magnetic resonance spectroscopy ». Analytical Chemistry 62, no 12 (15 juin 1990) : 212–23. http://dx.doi.org/10.1021/ac00211a017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mc Cully, Kevin, Donna Mancini et Sanford Levine. « Nuclear Magnetic Resonance Spectroscopy ». Chest 116, no 5 (novembre 1999) : 1434–41. http://dx.doi.org/10.1378/chest.116.5.1434.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Smith, Ian C. P., et Dorothea E. Blandford. « Nuclear magnetic resonance spectroscopy ». Analytical Chemistry 67, no 12 (15 juin 1995) : 509–18. http://dx.doi.org/10.1021/ac00108a037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Das, Susanta. « Nuclear magnetic resonance spectroscopy ». Resonance 9, no 1 (janvier 2004) : 34–49. http://dx.doi.org/10.1007/bf02902527.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Nuclear magnetic resonace spectroscopy"

1

Patel, Sunil U. « Nuclear magnetic resonance spectroscopy and ultrasound ». Thesis, Aston University, 1989. http://publications.aston.ac.uk/9708/.

Texte intégral
Résumé :
The work described in this thesis is directed to the examination of the hypothesis that ultrasound may be used to perturb molecular motion in the liquid phase. These changes can then be detected by nuclear magnetic resonance (NMR) in spin-lattice and spin-spin relaxation times. The objective being to develop a method capable of reducing the pulsed NMR acquisition times of slowly relaxing nuclei. The thesis describes the theoretical principles underlying both NMR spectroscopy and ultrasonics with particular attention being paid to factors that impinge on testing the above hypothesis. Apparatus has been constructed to enable ultrasound at frequencies between 1 and 10 mega-hertz with a variable power up to 100W/cm-2 to be introduced in the NMR sample. A broadband high frequency generator is used to drive PZT piezo-electric transducer via various transducer to liquid coupling arrangements. A commercial instrument of 20 kilo-hertz has also been employed to test the above hypothesis and also to demonstrate the usefulness of ultrasound in sonochemistry. The latter objective being, detection of radical formation in monomer and polymer ultrasonic degradation. The principle features of the results obtained are: Ultrasonic perturbation of T1 is far smaller for pure liquids than is for mixtures. The effects appear to be greater on protons (1H) than on carbon-13 nuclei (13C) relaxation times. The observed effect of ultrasonics is not due to temperature changes in the sample. As the power applied to the transducer is progressively increased T1 decreases to a minimum and then increases. The T1's of the same nuclei in different functional groups are influenced to different extents by ultrasound. Studies of the 14N resonances from an equimolar mixture of N, N-dimethylformamide and deuterated chloroform with ultrasonic frequencies at 1.115, 6, 6.42 and 10 MHz show that as the frequency is increased the NMR signal to noise ratio decreases to zero at the Larmor frequency of 6.42 MHz and then again rises. This reveals the surprising indication that an effect corresponding to nuclear acoustic saturation in the liquid may be observable. Ultrasonic irradiation of acidified ammonium chloride solution at and around 6.42 MHz appears to cause distinctive changes in the proton-nitrogen J coupling resonance at 89.56 MHz. Ultrasonic irradiation of N, N-dimethylacetamide at 2 KHz using the lowest stable power revealed the onset of coalescence in the proton spectrum. The corresponding effect achieved by direct heating required a temperature rise of approximately 30oC. The effects of low frequency (20 KHz) on relaxation times appear to be nil. Detection of radical formation proved difficult but is still regarded as the principle route for monomer and polymer degradation. The initial hypothesis is considered proven with the results showing significant changes in the mega-hertz region and none at 20 KHz.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Norwood, Timothy John. « Nuclear magnetic resonance in inhomogeneous magnetic fields ». Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24875.

Texte intégral
Résumé :
The work described in this thesis was initiated in an attempt to overcome the limitations imposed upon NMR spectroscopy by magnetic field inhomogeneity in two specific areas: high resolution spectroscopy in isotropic liquids, and chemical shift resolved NMR imaging in isotropic liquids. In both cases magnetic field inhomogeneity may degrade the resolution of spectra to such an extent that no useful information can be obtained from them. In high resolution NMR spectroscopy it is necessary to be able to extract accurately the parameters present within the spectrum such as chemical shifts, coupling constants and peak areas. In chemical shift resolved imaging experiments the requirements are less stringent; and it is only necessary that the resonances of different chemical species be resolved. However, even the less stringent requirements of NMR imaging are often difficult to meet as the sample volumes required are often several orders of magnitude larger than those required in conventional high resolution NMR spectroscopy. The use of zero-quantum coherence has been investigated as a potential solution to the magnetic field inhomogeneity problem in both of these areas. Zero-quantum coherences are independent of magnetic field inhomogeneity and contain the parameters desired in both cases, though they are displayed in a way which differs from conventional NMR spectra. In this thesis, existing zero-quantum coherence experiments have been evaluated for use with inhomogeneous magnetic fields, and, where necessary, adapted for this purpose. Several completely new experiments have been developed for producing broad-band decoupled zero-quantum coherence spectra and also for presenting coupling constants and chemical shifts in a manner which is as close to conventional NMR spectra as possible, hence facilitating ease of use. Zero-quantum coherence has been evaluated as a tool for identifying unknown compounds and also for identifying the components of complex mixtures by "signature" recognition. Both decoupled and non-decoupled zero-quantum coherence experiments are adapted to provide imaging experiments which allow the separation of the images of different chemical species in inhomogeneous magnetic fields. The two-dimensional J-resolved experiment is also adapted for this purpose.
Science, Faculty of
Chemistry, Department of
Graduate
Styles APA, Harvard, Vancouver, ISO, etc.
3

Wu, Xi-Li. « New techniques in nuclear magnetic resonance spectroscopy ». Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385872.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Claridge, Timothy David William. « Protein studies by nuclear magnetic resonance spectroscopy ». Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303628.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Wormald, Philip. « Nuclear magnetic resonance spectroscopy of vinylidenefluoride polymers ». Thesis, Durham University, 2005. http://etheses.dur.ac.uk/2615/.

Texte intégral
Résumé :
High-resolution solid- and solution state NMR techniques have been applied in the study of a Semi crystalline fluoropolymer Poly(vinylidienfluoride) (PVDF) and a vinylidienfluoride telomer. The application of standard solution-state experiments with high power decoupling and two-dimensional techniques has provided a greater understanding of the structure of these two fluoropolymers. Specifically, Cosy and Tocsy experiments gave information on signals normally related to end groups and to previously unidentified structures, which suggest the presence of at least a second major structure. 19F solid-state Magic Angle spinning Nuclear Magnetic Resonance (MAs- NMR) using relaxation filters in pulse sequences, has revealed fundamental differences relating to morphology and structure. The location of reverse units in the amorphous and crystalline domains is investigated by fluorine Tip filtered Radio Frequency Driven Recoupling (RFDR) and spin-diffusion experiments. These experiments proved that the reverse units are dominant in the amorphous phase, yet could have association with rigid species. Furthermore, signals generally associated with crystalline domains are not homogenie in character. The presence of a highly mobile species was detected and investigated using the delayed acquisition technique and T2 measurements. This showed the possibility of end-group signal in the spectral region normally associated with reverse groups. Furthermore, proton Tip measurements of nascent and annealed PVDF, recorded at variable temperature are related to molecular motion and debated with respect to the effect of spin diffusion on populations. The relationship between thermal events and thermal history of PVDF and its effect on molecular motion is debated.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jones, David Nigel Mark. « Nuclear magnetic resonance spectroscopy of bacterial polysaccharides ». Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316713.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Xu, Ping. « New methods in nuclear magnetic resonance spectroscopy ». Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239177.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cavanagh, John. « New techniques in nuclear magnetic resonance spectroscopy ». Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293707.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Barker, P. B. « New techniques in nuclear magnetic resonance ». Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Duce, Suzanne Louise. « Nuclear magnetic resonance imaging and spectroscopy of food ». Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240194.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Nuclear magnetic resonace spectroscopy"

1

Bovey, F. A. Nuclear magnetic resonance spectroscopy. 2e éd. London : Academic Press, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bovey, Frank A. Nuclear magnetic resonance spectroscopy. 2e éd. San Diego : Academic Press, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Williams, David A. R. Nuclear magnetic resonance spectroscopy. Sous la direction de Mowthorpe David J et ACOL (Project). Chichester [West Sussex] : Published on behalf of ACOL, London, by J. Wiley, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bovey, Frank Alden. Nuclear magnetic resonance spectroscopy. 2e éd. San Diego : Academic Press, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dutta, Mala. Nuclear magnetic resonance spectroscopy. Delhi : Ivy Publishig House, 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hore, P. J. Nuclear magnetic resonance. Oxford : Oxford University Press, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cady, Ernest B. Clinical magnetic resonance spectroscopy. New York : Plenum Press, 1990.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Levy, George C. Carbon-13 nuclear magnetic resonance spectroscopy. 2e éd. Malabar, Fla : Krieger, 1993.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Patel, Sunil Unka. Nuclear magnetic resonance spectroscopy and ultrasound. Birmingham : Aston University. Department of ChemicalEngineering and Applied Chemistry, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Levy, George C. Carbon-13 nuclear magnetic resonance spectroscopy. Malabar, Fla : Krieger Pub. Co., 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Nuclear magnetic resonace spectroscopy"

1

Aliev, Abil E. « Solid state NMR spectroscopy ». Dans Nuclear Magnetic Resonance, 139–87. Cambridge : Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788010665-00139.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Aliev, A. E., et R. V. Law. « Solid state NMR spectroscopy ». Dans Nuclear Magnetic Resonance, 294–347. Cambridge : Royal Society of Chemistry, 2015. http://dx.doi.org/10.1039/9781782622758-00294.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Atta-ur-Rahman. « Experimental Procedures in NMR Spectroscopy ». Dans Nuclear Magnetic Resonance, 87–139. New York, NY : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kemp, William. « Nuclear Magnetic Resonance Spectroscopy ». Dans Organic Spectroscopy, 101–241. London : Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-15203-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Atta-ur-Rahman. « Chemical Shift in 1H-NMR Spectroscopy ». Dans Nuclear Magnetic Resonance, 1–33. New York, NY : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Atta-ur-Rahman. « Spin—Spin Coupling in 1-NMR Spectroscopy ». Dans Nuclear Magnetic Resonance, 34–86. New York, NY : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ashbrook, Sharon E., et Daniel M. Dawson. « NMR spectroscopy of minerals and allied materials ». Dans Nuclear Magnetic Resonance, 1–52. Cambridge : Royal Society of Chemistry, 2016. http://dx.doi.org/10.1039/9781782624103-00001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Robien, Wolfgang. « Nuclear Magnetic Resonance Spectroscopy ». Dans Handbook of Spectroscopy, 469–87. Weinheim, FRG : Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602305.ch23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Robien, Wolfgang. « Nuclear Magnetic Resonance Spectroscopy ». Dans Handbook of Spectroscopy, 1749–68. Weinheim, Germany : Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527654703.ch54.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Atta-ur-Rahman. « Special Pulse Sequences and Two-Dimensional NMR Spectroscopy ». Dans Nuclear Magnetic Resonance, 202–313. New York, NY : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4612-4894-1_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Nuclear magnetic resonace spectroscopy"

1

Ernst, R. R. « Nuclear magnetic resonance Fourier transform spectroscopy ». Dans Optical 3D Measurement Techniques II : Applications in Inspection, Quality Control, and Robotics, sous la direction de Armin Gruen et Heribert Kahmen. SPIE, 1994. http://dx.doi.org/10.1117/12.169824.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Verkhoglazova, E. V., D. A. Kupriyanov, Carlos Granja, Claude Leroy et Ivan Stekl. « Spectroscopy in Magnetic Resonance Tomography ». Dans Nuclear Physics Medthods and Accelerators in Biology and Medicine. AIP, 2007. http://dx.doi.org/10.1063/1.2825818.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

« Structural Analysis of Nuclear Magnetic Resonance Spectroscopy Data ». Dans International Conference on Bioinformatics Models, Methods and Algorithms. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004321902120222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pinilla, Samuel, Kareth León, Daniel Molina, Ariolfo Camacho et Henry Arguello. « Subsampling Schemes for the 2D Nuclear Magnetic Resonance Spectroscopy ». Dans Computational Optical Sensing and Imaging. Washington, D.C. : OSA, 2018. http://dx.doi.org/10.1364/cosi.2018.ctu5d.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bilgic, A. M., J. W. Kunze, V. Stegemann, M. Zoeteweij et J. Hogendoorn. « B6.2 - Multiphase flow metering with nuclear magnetic resonance spectroscopy ». Dans AMA Conferences 2015. AMA Service GmbH, Von-Münchhausen-Str. 49, 31515 Wunstorf, Germany, 2015. http://dx.doi.org/10.5162/sensor2015/b6.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Meireles, L. T. P., C. Ravnås, M. J. Welch et I. L. Fabricius. « Failure characterization in geomechanical testing using nuclear magnetic resonance spectroscopy ». Dans Chalk 2018 Engineering in Chalk. ICE Publishing, 2018. http://dx.doi.org/10.1680/eiccf.64072.541.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Xiaonan, Guoqiang Liu, Shiqiang Li, Hui Xia et Yong Wang. « Planar-coil-based Micro-detection in Nuclear Magnetic Resonance Spectroscopy ». Dans 2018 5th International Conference on Systems and Informatics (ICSAI). IEEE, 2018. http://dx.doi.org/10.1109/icsai.2018.8599468.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Scott, Katherine N., David C. Wilson, Angela P. Bruner, Teresa A. Lyles, Brandon Underhill, Edward A. Geiser, J. Ray Ballinger, James D. Scott et Christine B. Stopka. « Automatic analysis of nuclear-magnetic-resonance-spectroscopy clinical research data ». Dans 26th AIPR Workshop : Exploiting New Image Sources and Sensors, sous la direction de J. Michael Selander. SPIE, 1998. http://dx.doi.org/10.1117/12.300074.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gottstein, Eva, Dirk Lachenmeier et Thomas Kuballa. « Applications of Nuclear Magnetic Resonance Spectroscopy for Food Authenticity Control ». Dans Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.444.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fricke, Florian, Safdar Mahmood, Javier Hoffmann, Marcelo Brandalero, Sascha Liehr, Simon Kern, Klas Meyer et al. « Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy ». Dans 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2021. http://dx.doi.org/10.23919/date51398.2021.9473958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Nuclear magnetic resonace spectroscopy"

1

Axelson, D. E. Carbon-13 solid state nuclear magnetic resonance spectroscopy of pitch. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304931.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Colvin, M., et V. V. Krishnan. New Approaches to Quantum Computing using Nuclear Magnetic Resonance Spectroscopy. Office of Scientific and Technical Information (OSTI), février 2003. http://dx.doi.org/10.2172/15007477.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

TonThat, Dinh M. DC SQUID Spectrometers for Nuclear Quadrupole and Low-Field Nuclear Magnetic Resonance Spectroscopy. Office of Scientific and Technical Information (OSTI), avril 1998. http://dx.doi.org/10.2172/760336.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pease, J. Structures of peptide families by nuclear magnetic resonance spectroscopy and distance geometry. Office of Scientific and Technical Information (OSTI), décembre 1989. http://dx.doi.org/10.2172/7003404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Barrufet, M. A., F. W. Flumerfelt, M. P. Walsh et A. T. Watson. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report. Office of Scientific and Technical Information (OSTI), avril 1994. http://dx.doi.org/10.2172/10141643.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bradbury, E. M., P. Catasti, X. Chen, G. Gupta, B. Imai, R. Moyzis, R. Ratliff et S. Velupillai. Neutron scattering and nuclear magnetic resonance spectroscopy structural studies of protein-DNA complexes. Office of Scientific and Technical Information (OSTI), mars 1996. http://dx.doi.org/10.2172/206538.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cho, Herman M. Preliminary Feasibility Study of Using Solid-State Nuclear Magnetic Resonance Spectroscopy to Characterize Hanford Tank Waste Solids. Office of Scientific and Technical Information (OSTI), octobre 2001. http://dx.doi.org/10.2172/789275.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cho, Herman M., et Gregg J. Lumetta. Preliminary Feasibility Study of Using Solid-State Nuclear Magnetic Resonance Spectroscopy to Characterize Hanford Tank Waste Solids. Office of Scientific and Technical Information (OSTI), octobre 2001. http://dx.doi.org/10.2172/15001299.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Young, Scott G., et Joseph H. Magill. A Study of the T(1) Transition of Poly(bis(trifluoroethoxy)phosphazene) (PBFP) Using Solid-State Nuclear Magnetic Resonance Spectroscopy. Fort Belvoir, VA : Defense Technical Information Center, mai 1989. http://dx.doi.org/10.21236/ada207719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Henderson, Terry J. Nuclear Magnetic Resonance Identification of Military Nerve Agents and Related Compounds by Two-Dimensional 31P-1H Heteronuclear Overhauser Effect Spectroscopy. Fort Belvoir, VA : Defense Technical Information Center, juin 2010. http://dx.doi.org/10.21236/ada524492.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie