Littérature scientifique sur le sujet « Nuclear astrophysic »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nuclear astrophysic ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Nuclear astrophysic"

1

Gyürky, György. « Challenges and Requirements in High-Precision Nuclear Astrophysics Experiments ». Universe 8, no 4 (28 mars 2022) : 216. http://dx.doi.org/10.3390/universe8040216.

Texte intégral
Résumé :
In the 21th century astronomical observations, as well as astrophysical models, have become impressively precise. For a better understanding of the processes in stellar interiors, the nuclear physics of astrophysical relevance—known as nuclear astrophysics—must aim for similar precision, as such precision is not reached yet in many cases. This concerns both nuclear theory and experiment. In this paper, nuclear astrophysics experiments are put in focus. Through the example of various parameters playing a role in nuclear reaction studies, the difficulties of reaching high precision and the possible solutions are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Depalo, Rosanna. « Nuclear Astrophysics Deep Underground ». International Journal of Modern Physics : Conference Series 46 (janvier 2018) : 1860003. http://dx.doi.org/10.1142/s2010194518600030.

Texte intégral
Résumé :
Cross sections of nuclear reactions relevant for astrophysics are crucial ingredients to understand the energy generation inside stars and the synthesis of the elements. At astrophysical energies, nuclear cross sections are often too small to be measured in laboratories on the Earth surface, where the signal would be overwhelmed by the cosmic-ray induced background. LUNA is a unique Nuclear Astrophysics experiment located at Gran Sasso National Laboratories. The extremely low background achieved at LUNA allows to measure nuclear cross sections directly at the energies of astrophysical interest. Over the years, many crucial reactions involved in stellar hydrogen burning as well as Big Bang nucleosynthesis have been measured at LUNA. The present contribution provides an overview on underground Nuclear Astrophysics as well as the latest results and future perspectives of the LUNA experiment.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Adsley, Philip. « Transfer Reactions in Nuclear Astrophysics ». EPJ Web of Conferences 275 (2023) : 01001. http://dx.doi.org/10.1051/epjconf/202327501001.

Texte intégral
Résumé :
Transfer reactions are important tool in nuclear astrophysics. These reactions allow us to identify states in nuclei and to find the corresponding energies, to determine if these states can contribute to astrophysical nuclear reactions and ultimately to determine the strength of that contribution. In this paper,the basic details of how transfer reactions may be used in nuclear astrophysics are set out along with some common pitfalls to avoid.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Descouvemont, P. « Astrophysica for Windows : a PC software for nuclear astrophysics ». Nuclear Physics A 688, no 1-2 (mai 2001) : 557–59. http://dx.doi.org/10.1016/s0375-9474(01)00786-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lépine-Szily, Alinka, et Pierre Descouvemont. « Nuclear astrophysics : nucleosynthesis in the Universe ». International Journal of Astrobiology 11, no 4 (9 mai 2012) : 243–50. http://dx.doi.org/10.1017/s1473550412000158.

Texte intégral
Résumé :
AbstractNuclear astrophysics is a relatively young science; it is about half a century old. It is a multidisciplinary subject, since it combines nuclear physics with astrophysics and observations in astronomy. It also addresses fundamental issues in astrobiology through the formation of elements, in particular those required for a carbon-based life. In this paper, a rapid overview of nucleosynthesis is given, mainly from the point of view of nuclear physics. A short historical introduction is followed by the definition of the relevant nuclear parameters, such as nuclear reaction cross sections, astrophysical S-factors, the energy range defined by the Gamow peak and reaction rates. The different astrophysical scenarios that are the sites of nucleosynthesis, and different processes, cycles and chains that are responsible for the building of complex nuclei from the elementary hydrogen nuclei are then briefly described.
Styles APA, Harvard, Vancouver, ISO, etc.
6

RAUSCHER, THOMAS. « THE PATH TO IMPROVED REACTION RATES FOR ASTROPHYSICS ». International Journal of Modern Physics E 20, no 05 (mai 2011) : 1071–169. http://dx.doi.org/10.1142/s021830131101840x.

Texte intégral
Résumé :
This review focuses on nuclear reactions in astrophysics and, more specifically, on reactions with light ions (nucleons and α particles) proceeding via the strong interaction. It is intended to present the basic definitions essential for studies in nuclear astrophysics, to point out the differences between nuclear reactions taking place in stars and in a terrestrial laboratory, and to illustrate some of the challenges to be faced in theoretical and experimental studies of those reactions. The discussion revolves around the relevant quantities for astrophysics, which are the astrophysical reaction rates. The sensitivity of the reaction rates to the uncertainties in the prediction of various nuclear properties is explored and some guidelines for experimentalists are also provided.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Broggini, Carlo. « Origin and status of LUNA at Gran Sasso ». Modern Physics Letters A 29, no 34 (6 novembre 2014) : 1430038. http://dx.doi.org/10.1142/s0217732314300389.

Texte intégral
Résumé :
The ultimate goal of nuclear astrophysics, the union of nuclear physics and astronomy, is to provide a comprehensive picture of the nuclear reactions which power the stars and, in doing so, synthesize the chemical elements. Deep underground in the Gran Sasso Laboratory the key reactions of the proton–proton chain and of the carbon–nitrogen–oxygen cycle have been studied down to the energies of astrophysical interest. The main results obtained in the past 20 years are reviewed and their influence on our understanding of the properties of the neutrino, the Sun, and the Universe itself is discussed. Finally, future developments of underground nuclear astrophysics beyond the study of hydrogen burning are outlined.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shen, Yang-Ping, Bing Guo et Wei-Ping Liu. « An indirect technique in nuclear astrophysics : alpha-cluster transfer reaction ». EPJ Web of Conferences 260 (2022) : 01001. http://dx.doi.org/10.1051/epjconf/202226001001.

Texte intégral
Résumé :
Helium(4He, or α)is the second most abundant element in the observable Universe. The α-particle induced reactions such as(α, γ), (α, n) and (α, p) play a crucial role in nuclear astrophysics, especially for understanding stellar heliumburning. Because of the strong Coulomb repulsion, it is greatly hindered to directly measure the cross sections for these α-capture reactions at stellar energies. Alpha-cluster transfer reaction is a powerful tool for investigation of astrophysical(α, γ), (α, n)and(α, p)reactions since it can preferentially populate the natural-parity states with an α-cluster structure which dominantly contribute to these astrophysical α-capture reactions during stellar heliumburning. In this paper, we reviewthe theoretical scheme, theexperimental technique, astrophysical applications and the future perspectives of such approach based on α-cluster transfer reactions.
Styles APA, Harvard, Vancouver, ISO, etc.
9

CHAMPAGNE, A. E., et C. ILIADIS. « FIRST RESULTS FROM LENA ». Modern Physics Letters A 22, no 04 (10 février 2007) : 243–57. http://dx.doi.org/10.1142/s0217732307022724.

Texte intégral
Résumé :
We review the first results from the Laboratory for Experimental Nuclear Astrophysics (LENA), which is a dedicated accelerator facility for measuring reactions of astrophysical interest. We also briefly describe the facility itself and the detector system. The reactions that have been measured have relevance for both stellar evolution and for classical nova explosions.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Prati, Paolo. « Underground Nuclear Astrophysics : pushing direct measurements toward the Gamow window ». EPJ Web of Conferences 227 (2020) : 01015. http://dx.doi.org/10.1051/epjconf/202022701015.

Texte intégral
Résumé :
The aim of experimental nuclear astrophysics is to provide information on the nuclear processes involved in astrophysical scenarios at the relevant energy range. However, the measurement of the cross section of nuclear reactions at low energies present formidable difficulties due to the very low reaction rates often overwhelmed by the background. Several approaches have been proposed and exploited to overcome such severe obstacles: in such frame, the idea to install a low energy - high intensity ion accelerator deep underground, to gain high luminosity while reducing the cosmic ray background, brought more than 25 years ago, to the pilot LUNA experiment. LUNA stands for Laboratory for Underground Nuclear Astrophysics: in the cave under the Gran Sasso mountain (in Italy) first a 50 kV and then a 400 kV single-ended accelerator for protons and alphas were deployed and produced plenty of data mainly on reactions of the H-burning phase in stars. Recently, similar facilities have been installed and/or proposed in other underground laboratories in US and China. LUNA as well is going to make a big step forward, with a new machine in the MV range which will be able to provide intense beams of protons, alphas and carbon ions. The rationale of underground nuclear astrophysics will be presented together with the last updates on the ongoing research programs.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Nuclear astrophysic"

1

MASHA, ELIANA. « ASTROPHYSICAL NUCLEAR REACTIONS ON NEON ISOTOPES AT LUNA ». Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/899089.

Texte intégral
Résumé :
This thesis reports the direct measurements of the 22Ne(α,γ)26Mg and 20Ne(p,γ)21Na reactions at astrophysical energies of interest. The 22Ne(α,γ)26Mg reaction competes with the 22Ne(α,n)25Mg reaction which is the main source of neutrons for the s-process in low-mass Asymptotic Giant Branch and massive stars. At temperatures T < 300 MK where the (α,γ) channel becomes dominant, the rate of the 22Ne(α,γ)26Mg reaction is influenced by several resonances studied only indirectly. The first part of this thesis concerns the direct measurement of one of these resonances, Er = 334 keV, which so far was studied only indirectly leading to six orders of magnitude range of possible values for its resonance strength. The experiment has been performed at LUNA (Laboratory for Underground Nuclear Astrophysics) using the intense alpha beam of the LUNA 400 kV accelerator and a windowless gas target combined with a high-efficiency BGO detector. In the present study, an upper limit of 4.0·10−11 eV has been determined for the resonance strength. Taking into account these results, an up-dated 22Ne(α,γ)26Mg thermonuclear reaction rate was obtained and its role on the predicted 25Mg/26Mg ratio of a 5M⊙ AGBs was investigated. The data show a decrease by a factor of 15 of the intershell 25Mg/26Mg ratio. The 20Ne(p,γ)21Na is the slowest reaction of the NeNa cycle. It determines the velocity of the cycle and defines the final abundances of the isotopes synthesized in this cycle. The uncertainties on the NeNa cycle are affected by the 20Ne(p,γ)21Na reaction rate. The main goal of the second part of this thesis was the direct measurement of the Ecm = 366 keV resonance which dominates the total rate in the temperature range between 0.2 GK and 1 GK. The measurement has been performed at LUNA using the windowless gas target and two high-purity germanium detectors placed at different positions. This measurement allowed to reduce the uncertainty on the strengths of the 366 keV resonance from 18% to 7%. These results were used to update the 20Ne(p,γ)21Na reaction rate.
Styles APA, Harvard, Vancouver, ISO, etc.
2

GNECH, ALEX. « Theoretical calculation of nuclear reactions of interest for Big Bang Nucleosynthesis ». Doctoral thesis, Gran Sasso Science Institute, 2020. http://hdl.handle.net/20.500.12571/14971.

Texte intégral
Résumé :
Standard Big Bang Nucleosynthesis (BBN) predicts the abundances of the light elements in the early universe. Even if the overall agreement with the experimental data is good, still some discrepancies exist on the relic abundances of ${}^7$Li and ${}^6$Li. In order to exclude or confirm these scenarios, the BBN model needs precise input parameters, in particular the cross-sections of the BBN nuclear reaction network. However, the suppression of the cross-sections due to the Coulomb barrier makes the measurement very difficult and so affected by large systematic errors. Therefore, reliable theoretical calculations result fundamental in order to reduce the uncertainties. In this work we present a theoretical study of two nuclear reactions connected to ${}^6$Li abundance and recently the $alpha$+d$ ightarrow$ ${}^6$Li + $gamma$ and the p+${}^6$Li$ ightarrow$${}^7$Be+$gamma$ radiative captures. For the first reaction we use a so-called ab-initio approach in which we solve the full six-body problem by using realistic nuclear potentials to describe the nucleon interactions. In particular we concentrate on the calculation and characterization of the final state of the reaction, the ${}^6$Li ground state, focusing on the electromagnetic static structure and the quantities relevant from the astrophysical point of view such as the asymptotic normalization coefficient. For doing this we use the Hyperspherical Harmonic approach developed by the Pisa group providing for the first time the possibility of using this approach beyond A = 4 nuclear systems. The second reaction is instead studied by using a two-body cluster approach where the proton and ${}^6$Li are considered as structureless particles. The angular distribution of the emitted photon obtained in this work were used by the LUNA Collaboration to determine the efficiency of the detector used in the measurement of the reaction.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Marta, Michele. « The 14N(p,γ)O15 reaction studied at low and high beam energy ». Forschungszentrum Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-93642.

Texte intégral
Résumé :
The Bethe-Weizsäcker cycle consists of a set of nuclear reactions that convert hydrogen into helium and release energy in the stars. It determines the luminosity of low-metal stars at their turn-off from the main-sequence in the Hertzsprung-Russel diagram, so its rate enters the calculation of the globular clusters’ age, an independent lower limit on the age of the universe. The cycle contributes less than 1% to our Sun’s luminosity, but it produces neutrinos that can in principle be measured on Earth in underground experiments and bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision. The 14N(p,γ)15O reaction is the slowest reaction of the Bethe-Weizs¨acker cycle and establishes its rate. Its cross section is the sum of the contributions by capture to different excited levels and to the ground state in 15O. Recent experiments studied the region of the resonance at Ep = 278 keV. Only one modern data set from an experiment performed in 1987 is available for the high-energy domain. Both energy ranges are needed to constrain the fit of the excitation function in the R-matrix framework and to obtain a reliable extrapolated S-factor at the very low astrophysical energies. The present research work studied the 14N(p,γ)15O reaction in the LUNA (Laboratory for Underground Nuclear Astrophysics) underground facility at three proton energies 0.36, 0.38, 0.40MeV, and in Dresden in the energy range Ep = 0.6 - 2MeV. In both cases, an intense proton beam was sent on solid titanium nitride sputtered targets, and the prompt photons emitted from the reaction were detected with germanium detectors. At LUNA, a composite germanium detector was used. This enabled a measurement with dramatically reduced summing corrections with respect to previous studies. The cross sections for capture to the ground state and to the excited states at 5181, 6172, and 6792 keV in 15O have been determined. An R-matrix fit was performed for capture to the ground state, that resolved the literature discrepancy of a factor two on the extrapolated S-factor. New precise branching ratios for the decay of the Ep = 278 keV resonance were measured. In Dresden, the strength of the Ep = 1058 keV resonance was measured relative to the well-known resonance at Ep = 278 keV, after checking the angular distribution. Its uncertainty is now half of the error quoted in literature. The branching ratios were also measured, showing that their recommended values should be updated. Preliminary data for the two most intense transitions off resonance are provided. The presence in the targets of the other stable nitrogen isotope 15N with its well- known isotopic abundance, allowed to measure the strength of two resonances at Ep = 430 and 897 keV of the 15N(p,αγ)12 C reaction, improving the precision for hydrogen depth profiling.
Styles APA, Harvard, Vancouver, ISO, etc.
4

MARCELLI, LAURA. « PAMELA mission : in flight perfomances and preliminary measurements of nuclear abundances ». Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/639.

Texte intégral
Résumé :
L'esperimento PAMELA (acronimo per “Payload for Antimatter-Matter Exploration and Light nuclei Astrophysics”) ha come obiettivo principale la ricerca e lo studio dei raggi cosmici con particolare attenzione alla ricerca della componente di antimateria presente in essi sotto forma di particelle e nuclei (antiprotoni, 80 MeV - 190 GeV, e positroni, 50 MeV - 270 GeV) al fine di mettere in evidenza il contributo, se esistente, proveniente da una possibile sorgente di materia oscura. PAMELA inoltre ricercherà antinuclei primordiali (in particolare anti-elio) e servirà da verifica per i modelli di propagazione dei raggi cosmici attraverso una precisa ricostruzione dello spettro energetico delle antiparticelle e lo studio dei nuclei leggeri e dei loro isotopi. Inoltre investigherà i fenomeni connessi alla fisica solare e terrestre. PAMELA è allogiata, come carico pagante, in un container pressurizzato a bordo di un satellite russo per il telerivelamento Resurs-DK1. Tale satellite è stato lanciato nello spazio con un’orbita ellittica (350 - 600 km di altezza) e con un'inclinazione di 70.0 gradi dal vettore Soyuz-U il 15 Giugno 2006 dal cosmodromo russo di Baikonur in Kazakhstan. Lo strumento PAMELA è costituito da uno spettrometro magnetico, un sistema di tempo di volo (TOF, “Time Of Flight”), un calorimetro elettromagnetico ad immagine, un sistema di anticoincidenza, un rivelatore a scintillazione addizionale ed un rivelatore di neutroni. La combinazione di questi rivelatori permette una buona discriminazione delle antiparticelle su un fondo molto abbondante. La durata della missione è prevista essere di almeno tre anni, durante i quali verrà collezionata una statistica senza precedenti. Il limite inferiore nel rapporto anti-He/He è fissato essere inferiore a 10^(-7). Prima del lancio e durante i primi mesi da presa dati è stato sviluppato il software di Quick Look (per il monitoraggio in tempo reale) e per l'analisi dei dati. Inoltre sono state stimate le lunghezze di attenuazione e l'efficienza di trigger per il sistema di scintillatori del TOF nella configurazione di volo. I risultati preliminari del rapporto nucleare Boro/Carbonio nell'intervallo energetico da 200 MeV/n fino a 25 GeV/n sono stati ottenuti combinando i dati provenienti dal Calorimetro, dallo spettrometro magnetico e dal sistema di tempo di volo. Questa misura è molto importante per mettere vincoli ai parametri dei modelli cosmologici e, di conseguenza, per rendere più facilmente visibile una possibile piccola contaminazione da sorgenti primarie negli spettri degli antiprotoni e positroni. Una migliore conoscenza dei modelli di propagazione è fondamentale per la ricerca della materia esotica, come la materia oscura o antimateria prodotta in processi esotici, poichè una segnatura di tali processi può essere riconosciuta solamente conoscendo con ottima precisione i flussi di tali particelle prodotti dai canali convenzionali e i meccanismi di accelerazione e trasporto.
PAMELA (a “Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics”) experiment is a satellite-borne apparatus designed for precision studies of the charged particles in the cosmic radiation. The primary scientific goal is the study of the antimatter component of the cosmic radiation (antiprotons, 80 MeV - 190 GeV; and positrons, 50 MeV - 270 GeV) in order to search for evidence of dark matter particle annihilations. PAMELA will also search for primordial antinuclei (in particular, anti-helium), and test cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and studies of light nuclei and their isotopes. In addition, it will measure the light nuclear component of cosmic rays and investigate phenomena connected with Solar and Earth physics. PAMELA is installed inside a pressurized container attached to a Russian Resurs DK1 earth-observation satellite that was launched into space in an elliptical (350 - 600 km of altitude) orbit with an inclination of 70.0 degrees by a Soyuz-U rocket on June 15th 2006 from the Baikonur cosmodrome in Kazakhstan. The PAMELA apparatus comprises a magnetic spectrometer, a Time of Flight system, a silicon-tungsten electromagnetic calorimeter, an anticoincidence system, a shower tail catcher scintillator and a neutron detector. The combination of these devices allows antiparticles to be reliably identified from a large background of other charged particles. The semipolar orbit (70.0°) allows PAMELA to investigate a wide range of energies for antiprotons (80 MeV - 190 GeV) and positrons (50 MeV - 270 GeV). Three years of data taking will provide unprecedented statistics in this energy range and will set the upper limit for the ratio anti-He/He below 10^(-7). Before launch and during the first months of data taking, Quick Look Software (for mission monitoring in real time) and Data Analysis Software were developed. Furthermore measurements of the the light attenuation lengths and trigger efficiencies of the TOF scintillator system in the "flight" configuration were performed. Preliminary results of Boron to Carbon nuclear ratio in cosmic rays in the energy range from 200 MeV/n up to 25 GeV/n have been derived using combined data from Calorimeter, Tracker and TOF systems. This measurement is very important to put constraints to propagation parameters of cosmological models and, as a consequence, to make more easily visibile a possible small contamination from primary sources in antiprotons and positrons spectra. A better determination of the cosmic ray propagation is fundamental for the search of exotic matter, like dark matter candidates or antimatter produced in exotic processes, since the signature of such processes can be recognized only by knowing with great precision the fluxes due to the conventional production, acceleration and transport mechanisms.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Szabo, Anthony Paul. « High energy emissions for astrophysical objects ». Title page, contents and abstract only, 1992. http://web4.library.adelaide.edu.au/theses/09PH/09phs996.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Doherty, Daniel Thomas. « Experimental studies for explosive nuclear astrophysics ». Thesis, University of Edinburgh, 2014. http://hdl.handle.net/1842/18022.

Texte intégral
Résumé :
In the ejecta from ONe novae outbursts nuclei up to A~40 are observed. The 30P(p,γ)31S reaction is thought to be the bottleneck for the production of all elements heavier than sulphur. However, due to uncertainties in the properties of key proton-unbound resonances the reaction rate is not well determined. In this thesis work, excited states in 31S were populated via the 28Si(4He,n) light-ion fusion-evaporation reaction and the prompt electromagnetic radiation was then detected with the GAMMASPHERE detector array. This γ-ray spectroscopy study, and comparisons with the stable mirror nucleus 31P, allowed the determination of the 31S level structure below the proton-emission threshold and also of the key proton-unbound states for the 30P(p,γ)31S reaction. In particular, transitions from key, low-spin states were observed for the first time. This new information was then used for the re-evaluation of the 30P(p,γ)31S reaction in the temperature range relevant for ONe novae. The newly calculated rate is higher than previous estimates implying a greater flux of material processed to high-Z elements in novae. Astrophysical X-ray bursts are thought to be a result of thermonuclear explosions on the atmosphere of an accreting neutron star. Between these bursts, energy is thought to be generated by the hot CNO cycles. The 15O(α,γ)19Ne reaction is one reaction that allows breakout from these CNO cycle and into the rp-process to fuel outbursts. The reaction is expected to be dominated by a single 3/2+ resonance at 4.033 MeV in 19Ne, however, limited information is available on this key state. This thesis work reports on a pioneering study of the 20Ne(p,d)19Ne reaction in inverse kinematics performed at the Experimental Storage Ring (ESR) as a means of accessing the 4.033-MeV state in 19Ne. The unique background free, high luminosity conditions of the ESR were utilised for this, the first transfer reaction performed at the ESR. The results of this pioneering test experiment are presented along with suggestions for future measurements at storage ring facilities.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mumby-Croft, Paul David. « Tactic : A New Detector for Nuclear Astrophysics ». Thesis, University of York, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507686.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

TABASSAM, UZMA. « A Pair Spectrometer for Nuclear Astrophysics Applications ». Doctoral thesis, Università degli Studi di Camerino, 2012. http://hdl.handle.net/11581/401785.

Texte intégral
Résumé :
A spectrometer using two fully depleted silicon detectors (in a configuration) has been realized with the goal of directly measuring the production rate of the e+e− pairs emitted in E0 transition of the 12C 16O reaction. This is a key reaction in nuclear astrophysics, which takes place during the He burning stage of red giant stars and thus regulates the carbon/oxygen abundance in the Universe. In particular, we are interested to determine the e+e− pair cross section at energies below 2 MeV, where theoretical estimate is possible by using the R- matrix extrapolation. Experimental e+e− pair emission data at this energy thus provides a valuable tool to validate such analytical approximate scheme. Resolution and efficiency measurements have been carried out using 241Am +239 Pu source, the α source, 32P,207 Bi β sources and the 19F(p, α)16O fusion evaporation reaction below 1 MeV on beam reaction at CIRCE tandem accelerator (Caserta, Italy). The results obtained approve to be in good agreement with our GEANT4 simulation.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ruiz, C. « Aspects of nuclear phenomena under explosive astrophysical conditions ». Thesis, University of Edinburgh, 2003. http://hdl.handle.net/1842/11338.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Luis, Hélio Fernandes. « Study of nuclear reactions relevant for astrophysics by Micro-AMS ». Doctoral thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11274.

Texte intégral
Résumé :
Dissertação para obtenção do Grau de Doutor em Física
This work of this thesis was dedicated to the application of the Micro-AMS(Accelerator Mass spectrometry with micro-beam) to the study of nuclear reactions relevant to Astrophysics, namely reactions involving the radioisotope 36Cl. Before this could be done, the system had to be installed, tested and optimized. During the installation and testing phase, several isotopes were measured, principally lead and platinum isotopes, which served to show the potential of this technique for applications to Material science and archeology. After this initial stage, the work with 36Cl began. 36Cl is one of several short to medium lived isotopes (as compared to the earth age) whose abundances in the earlier solar system may help to clarify its formation process. There are two generally accepted possible models for the production of this radionuclide: it originated from the ejecta of a nearby supernova (where 36Cl was most probably produced via the s-process by neutron irradiation of 35Cl) and/or it was produced by in-situ irradiation of nebular dust by energetic particles(mostly, p, a, 3He -X-wind irradiation model). The objective of the present work was to measure the cross section of the 35Cl(n,γ)36Cl nuclear reaction which opened the possibility to the future study of the 37Cl(p,d)36Cl and 35Cl(d,p)36Cl nuclear reactions, by measuring the 36Cl content of AgCl samples with Micro-AMS, taking advantage of the very low detection limits of this technique for chlorine measurements. For that, the micro-AMS system of the CTN-IST laboratory had to be optimized for chlorine measurements, as to our knowledge this type of measurements had never been performed in such a system (AMS with micro-beam). This thesis presents the results of these developments, namely the tests in terms of precision and reproducibility that were done by comparing AgCl blanks irradiated at the Portuguese National Reactor with standards produced by the dilution of the NIST SRM 4943 standard material. With these results the cross section of the 37Cl(n,γ)36Cl was calculated.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Nuclear astrophysic"

1

Hillebrandt, Wolfgang, Rudolf Kuhfuß, Ewald Müller et James W. Truran, dir. Nuclear Astrophysics. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0016562.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

E, Vangioni-Flam, et Institut d'astrophysique (Paris France), dir. Advances in nuclear astrophysics. Gif-sur-Yvette, France : Editions Frontières, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Particle astrophysics. 2e éd. Oxford : Oxford University Press, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Particle astrophysics. Oxford : Oxford University Press, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Perkins, Donald H. Particle astrophysics. 2e éd. Oxford : Oxford University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

S, Beskin V., North Atlantic Treaty Organization. Scientific Affairs Division. et Nato Advanced Study Institute (2002 : Les Houches, Haute-Savoie, France)., dir. Accretion discs, jets, and high energy phenomena in astrophysics = : Disques d'accrétion, jets et phénomènes de haute énergie en astrophysique : Ecole d'été de physique des Houches, Session LXXVIII, 29 July-23 August 2002 : Nato Advanced Study Institute, Euro Summer School, Ecole thématique du CNRS. Les Ulis : EDP Sciences, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Relativistic jets from active galactic nuclei. Weinheim, Germany : Wiley-VCH, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

High energy astrophysics. 3e éd. Cambridge : Cambridge University Press, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Particle astrophysics. Bristol, UK : Institute of Physics Pub., 2000.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Klapdor-Kleingrothaus, H. V. Particle astrophysics. Bristol, UK : Institute of Physics Publ., 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Nuclear astrophysic"

1

Paetz gen. Schieck, Hans. « Nuclear Astrophysics ». Dans Nuclear Reactions, 231–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-53986-2_14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Langanke, K. « Nuclear Astrophysics : Selected Topics ». Dans The Hispalensis Lectures on Nuclear Physics Vol. 2, 173–216. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-44504-3_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

von Ballmoos, P. « Instruments for Nuclear Astrophysics ». Dans High-Energy Spectroscopic Astrophysics, 82–197. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27013-2_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Benhar, Omar, et Stefano Fantoni. « Constraints from Astrophysical Data ». Dans Nuclear Matter Theory, 121–34. Boca Raton : CRC Press, 2020. : CRC Press, 2020. http://dx.doi.org/10.1201/9781351175340-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rebel, H. « Coulomb dissociation as a source of information on radiative capture processes of astrophysical interest ». Dans Nuclear Astrophysics, 38–53. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0016566.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tornambè, A., F. Matteucci, I. Iben et K. Nomoto. « Binary systems as supernova progenitors (some frequency estimates) ». Dans Nuclear Astrophysics, 283–92. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0016589.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Hashimoto, M., M. Kamimura et K. Arai. « Crucial Nuclear Reactions of Light Nuclei in Astrophysics ». Dans Few-Body Problems in Physics ’99, 92–97. Vienna : Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-6287-3_15.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kubono, Shigeru. « Nuclear clustering aspects in astrophysics ». Dans Atomic and Nuclear Clusters, 73–76. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79696-8_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Descouvemont, P. « Cluster Models in Nuclear Astrophysics ». Dans Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms, 27–45. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22930-5_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wong, S. S. M. « Nuclear Astrophysics with Radioactive Beams ». Dans Stellar Astrophysics, 51–60. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-0878-5_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Nuclear astrophysic"

1

Litvinov, Yuri A., et Klaus Blaum. « Weighing exotic nuclei for nuclear astrophysics ». Dans ORIGIN OF MATTER AND EVOLUTION OF GALAXIES 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4763375.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Rehm, K. E., Lídia S. Ferreira et Paramasivan Arumugan. « Proton-Rich Nuclei in Nuclear Astrophysics ». Dans Proton Emitting Nuclei and Related Topics. AIP, 2007. http://dx.doi.org/10.1063/1.2827261.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

de Oliveira Santos, François, Paraskevi Demetriou, Rauno Julin et Sotirios Harissopulos. « Nuclear astrophysics with light nuclei at GANIL ». Dans FRONTIERS IN NUCLEAR STRUCTURE, ASTROPHYSICS, AND REACTIONS : FINUSTAR 3. AIP, 2011. http://dx.doi.org/10.1063/1.3628360.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

SCHATZ, H. « NUCLEAR ASTROPHYSICS AND NUCLEI FAR FROM STABILITY ». Dans Proceedings of the Eighteenth Lake Louise Winter Institute. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702777_0004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Spitaleri, C., S. Cherubini, V. Crucillá, M. Gulino, M. La Cognata, L. Lamia, R. G. Pizzone et al. « RECENT ASTROPHYSICAL APPLICATIONS OF THE TROJAN HORSE METHOD TO NUCLEAR ASTROPHYSICS ». Dans ORIGIN OF MATTER AND EVOLUTION OF GALAXIES : The 10th International Symposium on Origin of Matter and Evolution of Galaxies : From the Dawn of Universe to the Formation of Solar System. AIP, 2008. http://dx.doi.org/10.1063/1.2943570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

BOMBACI, IGNAZIO. « NUCLEAR ASTROPHYSICS ». Dans Proceedings of the 9th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705143_0003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Meyer, Mikko, et Kai Zuber. « Nuclear Astrophysics ». Dans 5th International Solar Neutrino Conference. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811204296_others04.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

VIGEZZI, E. « NUCLEAR ASTROPHYSICS ». Dans Proceedings of the 11th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708793_0015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Haxton, W. C. « Nuclear Astrophysics ». Dans INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS : 9th Conference CIPAN2006. AIP, 2006. http://dx.doi.org/10.1063/1.2402595.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

DRAGO, ALESSANDRO. « NUCLEAR ASTROPHYSICS ». Dans Proceedings of the 10th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701985_0009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Nuclear astrophysic"

1

Miller, Jonah. Nuclear Astrophysics and Astrophysical Transients. Office of Scientific and Technical Information (OSTI), novembre 2022. http://dx.doi.org/10.2172/1900461.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Arcones, Almudena, Jutta E. Escher et M. Others. White Paper on Nuclear Astrophysics and Low Energy Nuclear Physics - Part 1. Nuclear Astrophysics. Office of Scientific and Technical Information (OSTI), avril 2016. http://dx.doi.org/10.2172/1248270.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cooperstein, J. Nuclear astrophysics of supernovae. Office of Scientific and Technical Information (OSTI), janvier 1988. http://dx.doi.org/10.2172/6034283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Penionzhkevich, Yu E. Nuclear reactions in astrophysics. Physico-Technical Society of Kazakhstan, décembre 2017. http://dx.doi.org/10.29317/ejpfm.2017010202.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schramm, D. N., et A. V. Olinto. Nuclear physics and astrophysics. Office of Scientific and Technical Information (OSTI), septembre 1992. http://dx.doi.org/10.2172/7073919.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jones, Katherine Louise. Direct Reactions for Nuclear Structure and Nuclear Astrophysics. Office of Scientific and Technical Information (OSTI), décembre 2014. http://dx.doi.org/10.2172/1166766.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Palumbo, A. EMPIRE : A code for nuclear astrophysics. Office of Scientific and Technical Information (OSTI), décembre 2013. http://dx.doi.org/10.2172/1121215.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Moeller, P., J. R. Nix et K. L. Kratz. Nuclear properties for astrophysical applications. Office of Scientific and Technical Information (OSTI), septembre 1994. http://dx.doi.org/10.2172/147731.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wu, J. Theoretical nuclear physics and astrophysics. Final report. Office of Scientific and Technical Information (OSTI), mars 1998. http://dx.doi.org/10.2172/631234.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Misch, Gordon, Matthew Mumpower, Yang Sun, Surja Ghorui et Projjwal Banerjee. Astromers : Nuclear Isomers with Astrophysical Consequences. Office of Scientific and Technical Information (OSTI), août 2020. http://dx.doi.org/10.2172/1648047.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie