Littérature scientifique sur le sujet « Nonparametrica »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nonparametrica ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Nonparametrica"
Firpha, Rosse Millania Pichago, et Anneke Iswani Achmad. « Regresi Nonparametrik Spline Truncated untuk Pemodelan Persentase Penduduk Miskin di Jawa Barat Pada Tahun 2021 ». Bandung Conference Series : Statistics 2, no 2 (6 août 2022) : 454–58. http://dx.doi.org/10.29313/bcss.v2i2.4720.
Texte intégralHallam, Arne. « A Brief Overview of Nonparametric Methods in Economics ». Northeastern Journal of Agricultural and Resource Economics 21, no 2 (octobre 1992) : 98–112. http://dx.doi.org/10.1017/s0899367x00002610.
Texte intégralDani, Andrea Tri Rian, et Narita Yuri Adrianingsih. « Pemodelan Regresi Nonparametrik dengan Estimator Spline Truncated vs Deret Fourier ». Jambura Journal of Mathematics 1, no 1 (2 janvier 2021) : 26–36. http://dx.doi.org/10.34312/jjom.v1i1.7713.
Texte intégralDani, Andrea Tri Rian, et Narita Yuri Adrianingsih. « Pemodelan Regresi Nonparametrik dengan Estimator Spline Truncated vs Deret Fourier ». Jambura Journal of Mathematics 3, no 1 (2 janvier 2021) : 26–36. http://dx.doi.org/10.34312/jjom.v3i1.7713.
Texte intégralLestari, Budi. « Estimasi Fungsi Regresi Dalam Model Regresi Nonparametrik Birespon Menggunakan Estimator Smoothing Spline dan Estimator Kernel ». Jurnal Matematika Statistika dan Komputasi 15, no 2 (20 décembre 2018) : 20. http://dx.doi.org/10.20956/jmsk.v15i2.5710.
Texte intégralSafni Chusnaifah Junianingsih. « Regresi Nonparametrik Kernel dalam Pemodelan Jumlah Kelahiran Bayi di Jawa Barat Tahun 2017 ». Bandung Conference Series : Statistics 1, no 1 (7 décembre 2021) : 30–37. http://dx.doi.org/10.29313/bcss.v1i1.39.
Texte intégralDani, Andrea Tri Rian, Narita Yuri Adrianingsih, Alifta Ainurrochmah et Riry Sriningsih. « Flexibility of Nonparametric Regression Spline Truncated on Data without a Specific Pattern ». Jurnal Litbang Edusaintech 2, no 1 (31 mai 2021) : 37–43. http://dx.doi.org/10.51402/jle.v2i1.30.
Texte intégralSanusi, Wahidah, Rahmat Syam et Rabiatul Adawiyah. « Model Regresi Nonparametrik dengan Pendekatan Spline (Studi Kasus : Berat Badan Lahir Rendah di Rumah Sakit Ibu dan Anak Siti Fatimah Makassar) ». Journal of Mathematics, Computations, and Statistics 2, no 1 (12 mai 2020) : 70. http://dx.doi.org/10.35580/jmathcos.v2i1.12460.
Texte intégralIlmi, Hillidatul, Sifriyani et Surya Prangga. « Geographically Weighted Spline Nonparametric Regression dengan Fungsi Pembobot Bisquare dan Gaussian Pada Tingkat Pengangguran Terbuka Di Pulau Kalimantan ». J Statistika 14, no 2 (22 janvier 2022) : 84–92. http://dx.doi.org/10.36456/jstat.vol14.no2.a4470.
Texte intégralRahayu, Nisrina Fajriati, et Lisnur Wachidah. « Regresi Nonparametrik Spline untuk Memodelkan Faktor-faktor yang Memengaruhi Indeks Pembangunan Gender (IPG) di Jawa Barat Tahun 2020 ». Bandung Conference Series : Statistics 2, no 2 (29 juillet 2022) : 273–81. http://dx.doi.org/10.29313/bcss.v2i2.4037.
Texte intégralThèses sur le sujet "Nonparametrica"
CORRADIN, RICCARDO. « Contributions to modelling via Bayesian nonparametric mixtures ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241261.
Texte intégralBayesian nonparametric mixtures are flexible models for density estimation and clustering, nowadays a standard tool in the toolbox of applied statisticians. The first proposal of such models was the Dirichlet process (DP) (Ferguson, 1973) mixture of Gaussian kernels by Lo (1984), contribution which paved the way to the definition of a wide variety of nonparametric mixture models. In recent years, increasing interest has been dedicated to the definition of mixture models based on nonparametric mixing measures that go beyond the DP. Among these measures, the Pitman-Yor process (PY) (Perman et al., 1992; Pitman, 1995) and, more in general, the class of Gibbs-type priors (see e.g. De Blasi et al., 2015) stand out for conveniently combining mathematical tractability, interpretability and modelling flexibility. In this thesis we investigate three aspects of nonparametric mixture models, which, in turn, concern their modelling, computational and distributional properties. The thesis is organized as follows. The first chapter proposes a coincise review of the area of Bayesian nonparametric statistics, with focus on tools and models that will be considered in the following chapters. We first introduce the notions of exchangeability, exchangeable partitions and discrete random probability measures. We then focus on the DP and the PY case, main ingredients of second and third chapter, respectively. Finally, we briefly discuss the rationale behind the definition of more general classes of discrete nonparametric priors. In the second chapter we propose a thorough study on the effect of invertible affine transformations of the data on the posterior distribution of DP mixture models, with particular attention to DP mixtures of Gaussian kernels (DPM-G). First, we provide an explicit result relating model parameters and transformations of the data. Second, we formalize the notion of asymptotic robustness of a model under affine transformations of the data and prove an asymptotic result which, by relying on the asymptotic consistency of DPM-G models, show that, under mild assumptions on the data-generating distribution, DPM-G are asymptotically robust. The third chapter presents the ICS, a novel conditional sampling scheme for PY mixture models, based on a useful representation of the posterior distribution of a PY (Pitman, 1996) and on an importance sampling idea, similar in spirit to the augmentation step of the celebrated Algorithm 8 of Neal (2000). The proposed method conveniently combines the best features of state-of-the-art conditional and marginal methods for PY mixture models. Importantly, and unlike its most popular conditional competitors, the numerical efficiency of the ICS is robust to the specification of the parameters of the PY. The steps for implementing the ICS are described in detail and its performance is compared with that one of popular competing algorithms. Finally, the ICS is used as a building block for devising a new efficient algorithm for the class of GM-dependent DP mixture models (Lijoi et al., 2014a; Lijoi et al., 2014b), for partially exchangeable data. In the fourth chapter we study some distributional properties Gibbs-type priors. The main result focuses on an exchangeable sample from a Gibbs-type prior and provides a conveniently simple description of the distribution of the size of the cluster the ( m + 1 ) th observation is assigned to, given an unobserved sample of size m. The study of such distribution provides the tools for a simple, yet useful, strategy for prior elicitation of the parameters of a Gibbs-type prior, in the context of Gibbs-type mixture models. The results in the last three chapters are supported by exhaustive simulation studies and illustrated by analysing astronomical datasets.
Campbell, Trevor D. J. (Trevor David Jan). « Truncated Bayesian nonparametrics ». Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107047.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 167-175).
Many datasets can be thought of as expressing a collection of underlying traits with unknown cardinality. Moreover, these datasets are often persistently growing, and we expect the number of expressed traits to likewise increase over time. Priors from Bayesian nonparametrics are well-suited to this modeling challenge: they generate a countably infinite number of underlying traits, which allows the number of expressed traits to both be random and to grow with the dataset size. We also require corresponding streaming, distributed inference algorithms that handle persistently growing datasets without slowing down over time. However, a key ingredient in streaming, distributed inference-an explicit representation of the latent variables used to statistically decouple the data-is not available for nonparametric priors, as we cannot simulate or store infinitely many random variables in practice. One approach is to approximate the nonparametric prior by developing a sequential representation-such that the traits are generated by a sequence of finite-dimensional distributions-and subsequently truncating it at some finite level, thus allowing explicit representation. However, truncated sequential representations have been developed only for a small number of priors in Bayesian nonparametrics, and the order they impose on the traits creates identifiability issues in the streaming, distributed setting. This thesis provides a comprehensive theoretical treatment of sequential representations and truncation in Bayesian nonparametrics. It details three sequential representations of a large class of nonparametric priors, and analyzes their truncation error and computational complexity. The results generalize and improve upon those existing in the literature. Next, the truncated explicit representations are used to develop the first streaming, distributed, asynchronous inference procedures for models from Bayesian nonparametrics. The combinatorial issues associated with trait identifiability in such models are resolved via a novel matching optimization. The resulting algorithms are fast, learning rate-free, and truncation-free. Taken together, these contributions provide the practitioner with the means to (1) develop multiple finite approximations for a given nonparametric prior; (2) determine which is the best for their application; and (3) use that approximation in the development of efficient streaming, distributed, asynchronous inference algorithms.
by Trevor David Jan Campbell.
Ph. D.
Li, Jiexiang. « Nonparametric spatial estimation ». [Bloomington, Ind.] : Indiana University, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3223036.
Texte intégral"Title from dissertation home page (viewed June 28, 2007)." Source: Dissertation Abstracts International, Volume: 67-06, Section: B, page: 3167. Adviser: Lanh Tat Tran.
Straub, Julian Ph D. Massachusetts Institute of Technology. « Nonparametric directional perception ». Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/112029.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 239-257).
Artificial perception systems, like autonomous cars and augmented reality headsets, rely on dense 3D sensing technology such as RGB-D cameras and LiDAR. scanners. Due to the structural simplicity of man-made environments, understanding and leveraging not only the 3D data but also the local orientations of the constituent surfaces, has huge potential. From an indoor scene to large-scale urban environments, a large fraction of the surfaces can be described by just a few planes with even fewer different normal directions. This sparsity is evident in the surface normal distributions, which exhibit a small number of concentrated clusters. In this work, I draw a rigorous connection between surface normal distributions and 3D structure, and explore this connection in light of different environmental assumptions to further 3D perception. Specifically, I propose the concepts of the Manhattan Frame and the unconstrained directional segmentation. These capture, in the space of surface normals, scenes composed of multiple Manhattan Worlds and more general Stata Center Worlds, in which the orthogonality assumption of the Manhattan World is not applicable. This exploration is theoretically founded in Bayesian nonparametric models, which capture two key properties of the 3D sensing process of an artificial perception system: (1) the inherent sequential nature of data acquisition and (2) that the required model complexity grows with the amount of observed data. Herein, I derive inference algorithms for directional clustering and segmentation which inherently exploit and respect these properties. The fundamental insights gleaned from the connection between surface normal distributions and 3D structure lead to practical advances in scene segmentation, drift-free rotation estimation, global point cloud registration and real-time direction-aware 3D reconstruction to aid artificial perception systems.
by Julian Straub.
Ph. D.
Xu, Tianbing. « Nonparametric evolutionary clustering ». Diss., Online access via UMI:, 2009.
Trouver le texte intégralRangel, Ruiz Ricardo. « Nonparametric and semi-nonparametric approaches to the demand for liquid assets ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ64924.pdf.
Texte intégralYuan, Lin. « Bayesian nonparametric survival analysis ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22253.pdf.
Texte intégralBush, Helen Meyers. « Nonparametric multivariate quality control ». Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/25571.
Texte intégralPedroso, Estevam de Souza Camila. « Switching nonparametric regression models ». Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45130.
Texte intégralGosling, John Paul. « Elicitation : a nonparametric view ». Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425613.
Texte intégralLivres sur le sujet "Nonparametrica"
Hjort, Nils Lid, Chris Holmes, Peter Muller et Stephen G. Walker, dir. Bayesian Nonparametrics. Cambridge : Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511802478.
Texte intégralBayesian nonparametrics. Cambridge, UK : Cambridge University Press, 2010.
Trouver le texte intégralLid, Hjort Nils, dir. Bayesian nonparametrics. New York : Cambridge University Press, 2009.
Trouver le texte intégralGibbons, Jean. Nonparametric Statistics. 2455 Teller Road, Thousand Oaks California 91320 United States of America : SAGE Publications, Inc., 1993. http://dx.doi.org/10.4135/9781412985314.
Texte intégralBertail, Patrice, Delphine Blanke, Pierre-André Cornillon et Eric Matzner-Løber, dir. Nonparametric Statistics. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96941-1.
Texte intégralCao, Ricardo, Wenceslao González Manteiga et Juan Romo, dir. Nonparametric Statistics. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41582-6.
Texte intégralLa Rocca, Michele, Brunero Liseo et Luigi Salmaso, dir. Nonparametric Statistics. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57306-5.
Texte intégralKlemelä, Jussi. Nonparametric Finance. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119409137.
Texte intégralAman, Ullah, dir. Nonparametric econometrics. Cambridge : Cambridge University Press, 1999.
Trouver le texte intégralPagan, A. R. Nonparametric Econometrics. Cambridge, U.K. : Cambridge University Press, 1999.
Trouver le texte intégralChapitres de livres sur le sujet "Nonparametrica"
Heiberger, Richard M., et Burt Holland. « Nonparametrics ». Dans Statistical Analysis and Data Display, 577–92. New York, NY : Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2122-5_16.
Texte intégralHeiberger, Richard M., et Burt Holland. « Nonparametrics ». Dans Statistical Analysis and Data Display, 511–26. New York, NY : Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4284-8_16.
Texte intégralChow, Shein-Chung, Jun Shao, Hansheng Wang et Yuliya Lokhnygina. « Nonparametrics ». Dans Sample Size Calculations in Clinical Research : Third Edition, 321–36. Third edition. | Boca Raton : Taylor & Francis, 2017. | Series : Chapman & Hall/CRC biostatistics series | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.” : Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/9781315183084-14.
Texte intégralLee, Myoung-jae. « Semi-Nonparametrics ». Dans Methods of Moments and Semiparametric Econometrics for Limited Dependent Variable Models, 199–234. New York, NY : Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2550-6_10.
Texte intégralWalker, Stephen Graham. « Bayesian Nonparametrics ». Dans The New Palgrave Dictionary of Economics, 1–5. London : Palgrave Macmillan UK, 2008. http://dx.doi.org/10.1057/978-1-349-95121-5_2596-1.
Texte intégralClarke, Bertrand, Ernest Fokoué et Hao Helen Zhang. « Alternative Nonparametrics ». Dans Principles and Theory for Data Mining and Machine Learning, 307–63. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-98135-2_6.
Texte intégralSun, Jianguo, et Xingqiu Zhao. « Nonparametric Estimation ». Dans Statistics for Biology and Health, 47–70. New York, NY : Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8715-9_3.
Texte intégralFahrmeir, Ludwig, Thomas Kneib, Stefan Lang et Brian Marx. « Nonparametric Regression ». Dans Regression, 413–533. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34333-9_8.
Texte intégralKutoyants, Yu A. « Nonparametric Estimation ». Dans Statistical Inference for Spatial Poisson Processes, 225–50. New York, NY : Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1706-0_7.
Texte intégralKoh, Eunsook T., et Willis L. Owen. « Nonparametric Statistics ». Dans Introduction to Nutrition and Health Research, 155–68. Boston, MA : Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-1401-5_9.
Texte intégralActes de conférences sur le sujet "Nonparametrica"
Tsang, Coates et Nowak. « Nonparametric Internet tomography ». Dans IEEE International Conference on Acoustics Speech and Signal Processing ICASSP-02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.1006175.
Texte intégralTsang, Yolanda, Mark Coates et Robert Nowak. « Nonparametric internet tomography ». Dans Proceedings of ICASSP '02. IEEE, 2002. http://dx.doi.org/10.1109/icassp.2002.5745035.
Texte intégralMattar, Marwan A., Michael G. Ross et Erik G. Learned-Miller. « Nonparametric curve alignment ». Dans ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4960369.
Texte intégralPARK, BYEONG U. « NONPARAMETRIC ADDITIVE REGRESSION ». Dans International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0169.
Texte intégralDuan, Ling-Yu, Min Xu, Qi Tian et Chang-Sheng Xu. « Nonparametric motion model ». Dans the 12th annual ACM international conference. New York, New York, USA : ACM Press, 2004. http://dx.doi.org/10.1145/1027527.1027700.
Texte intégralYazhou Liu, Hongxun Yao, Wen Gao, Xilin Chen et Debin Zhao. « Nonparametric Background Generation ». Dans 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.868.
Texte intégralEnright, M. P., R. C. McClung, S. J. Hudak et H. R. Millwater. « Application of Nonparametric Methods to Rainflow Stress Density Estimation of Gas Turbine Engine Usage ». Dans ASME Turbo Expo 2006 : Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90780.
Texte intégralHague, Stephen, et Simaan AbouRizk. « Nonparametric frequency polygon estimation for modeling input data ». Dans The 19th International Conference on Modelling and Applied Simulation. CAL-TEK srl, 2019. http://dx.doi.org/10.46354/i3m.2019.mas.020.
Texte intégralCapiez-Lernout, Evange´line, et Christian Soize. « Specifying Manufacturing Tolerances for a Given Amplification Factor : A Nonparametric Probabilistic Methodology ». Dans ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38050.
Texte intégralHines, J. Wesley, et Dustin R. Garvey. « Nonparametric model-based prognostics ». Dans 2008 Annual Reliability and Maintainability Symposium. IEEE, 2008. http://dx.doi.org/10.1109/rams.2008.4925841.
Texte intégralRapports d'organisations sur le sujet "Nonparametrica"
Owen, Arthur B. Nonparametric Conditional Estimation. Office of Scientific and Technical Information (OSTI), juin 2018. http://dx.doi.org/10.2172/1454025.
Texte intégralOwen, Arthur B. Nonparametric Conditional Estimation. Fort Belvoir, VA : Defense Technical Information Center, février 1987. http://dx.doi.org/10.21236/ada590998.
Texte intégralHorowitz, Joel L. Nonparametric additive models. Institute for Fiscal Studies, août 2012. http://dx.doi.org/10.1920/wp.cem.2012.2012.
Texte intégralKim, Dongwoo, Denis Chetverikov et Daniel Wilhelm. Nonparametric instrumental variable estimation. The IFS, octobre 2017. http://dx.doi.org/10.1920/wp.cem.2017.4717.
Texte intégralOwen, Art. Nonparametric Likelihood Ratio Intervals. Fort Belvoir, VA : Defense Technical Information Center, novembre 1985. http://dx.doi.org/10.21236/ada162978.
Texte intégralDew-Becker, Ian, et Charles Nathanson. Directed Attention and Nonparametric Learning. Cambridge, MA : National Bureau of Economic Research, octobre 2017. http://dx.doi.org/10.3386/w23917.
Texte intégralChamberlain, Gary, et Guido Imbens. Nonparametric Applications of Bayesian Inference. Cambridge, MA : National Bureau of Economic Research, août 1996. http://dx.doi.org/10.3386/t0200.
Texte intégralAndersen, Torben, Tim Bollerslev et Francis Diebold. Parametric and Nonparametric Volatility Measurement. Cambridge, MA : National Bureau of Economic Research, août 2002. http://dx.doi.org/10.3386/t0279.
Texte intégralBlock, Henry W., et Thomas H. Savits. Multivariate Nonparametric Classes in Reliability. Fort Belvoir, VA : Defense Technical Information Center, janvier 1985. http://dx.doi.org/10.21236/ada185645.
Texte intégralWu, Jin Chu, et Charles L. Wilson. Nonparametric analysis of fingerprint data. Gaithersburg, MD : National Institute of Standards and Technology, 2005. http://dx.doi.org/10.6028/nist.ir.7226.
Texte intégral