Thèses sur le sujet « Nonlocal operators »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 30 meilleures thèses pour votre recherche sur le sujet « Nonlocal operators ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Dzhugan, Aleksandr <1994>. « Advanced properties of some nonlocal operators ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/10002/3/PhD%20Thesis%20Dzhugan.pdf.
Texte intégralSchulze, Tim [Verfasser]. « Nonlocal operators with symmetric kernels / Tim Schulze ». Bielefeld : Universitätsbibliothek Bielefeld, 2020. http://d-nb.info/1206592125/34.
Texte intégralBucur, C. D. « SOME NONLOCAL OPERATORS AND EFFECTS DUE TO NONLOCALITY ». Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/488032.
Texte intégralBUCUR, CLAUDIA DALIA. « Some nonlocal operators and effects due to nonlocality ». Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/10281/277792.
Texte intégralVoigt, Paul [Verfasser], et Moritz [Akademischer Betreuer] KaßMann. « Nonlocal operators on domains / Paul Voigt ; Betreuer : Moritz Kaßmann ». Bielefeld : Universitätsbibliothek Bielefeld, 2017. http://d-nb.info/1139117726/34.
Texte intégralFelsinger, Matthieu [Verfasser]. « Parabolic equations associated with symmetric nonlocal operators / Matthieu Felsinger ». Bielefeld : Universitätsbibliothek Bielefeld, 2013. http://d-nb.info/1042557322/34.
Texte intégralFRASSU, SILVIA. « Dirichlet problems for several nonlocal operators via variational and topological methods ». Doctoral thesis, Università degli Studi di Cagliari, 2021. http://hdl.handle.net/11584/309589.
Texte intégralAbatangelo, N. « Large Solutions for Fractional Laplacian Operators ». Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/320258.
Texte intégralFoghem, Gounoue Guy Fabrice [Verfasser]. « $L^2$-Theory for nonlocal operators on domains / Guy Fabrice Foghem Gounoue ». Bielefeld : Universitätsbibliothek Bielefeld, 2020. http://d-nb.info/1219215139/34.
Texte intégralChaker, Jamil [Verfasser], et Moritz [Akademischer Betreuer] KaßMann. « Analysis of anisotropic nonlocal operators and jump processes / Jamil Chaker ; Betreuer : Moritz Kaßmann ». Bielefeld : Universitätsbibliothek Bielefeld, 2017. http://d-nb.info/1150181672/34.
Texte intégralGhilli, Daria. « Some Results in Nonlinear PDEs : Large Deviations Problems, Nonlocal Operators, and Stability for Some Isoperimetric Problems ». Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424479.
Texte intégralQuesta tesi si occupa di vari problemi che sorgono nello studio di equazioni alle derivate parziali ellittiche e paraboliche. La tesi è divisa in tre parti. Nella prima parte studiamo il comportamento per tempi brevi di sistemi dinamici a volatilità stocastica che evolve in una scala temporale più veloce.Ci occupiamo di perturbazioni singolari di sistemi a scala temporale multipla. Il nostro primo obiettivo è lo studio del comportamento asintotico di un funzionale logaritmico del processo stocastico, attraverso i metodi della teoria dell' omogeneizzazione e delle perturbazioni singolari per equazioni alle derivate parziali completamente non lineari. Individuiamo tre regimi a seconda della velocità con cui la volatilità oscilla rispetto alla lunghezza dell'orizzonte temporale. Inoltre forniamo alcune applicazioni finanziarie, in particolare proviamo un principio di grandi deviazioni in ogni regime e lo applichiamo per derivare una stima asintotica dei prezzi di opzioni vicino alla maturità e una formula asintotica per la volatilità di Black-Scholes implicita. Nella seconda parte studiamo la buona definizione di problemi al contorno di tipo Neumann, in domini generali (sufficientemente regolari), per equazioni tipo Hamilton-Jacobi con termini non locali che derivano da processi discontinui a salti. Consideriamo un termine diffusivo non locale di tipo censored, di ordine strettamente minore di 1, e un' Hamiltoniana, sia in forma coerciva sia di tipo Bellman non necessariamente coerciva, la cui crescita nel gradiente la rende il termine principale nell'equazione. Dimostriamo un principio di confronto per sotto e sopra soluzioni limitate (in senso di viscosità) con condizioni al contorno generalizzate, e di conseguenza tramite il metodo di Perron otteniamo l'esistenza e l'unicità di soluzioni continue. Diamo alcune applicazioni nel caso evolutivo, dimostrando la convergenza per tempi grandi della soluzione del problema evolutivo alla soluzione del problema stazionario associato, supponendo opportune ipotesi sui dati. Nell'ultima parte presentiamo alcuni risultati di stabilità per una classe di diseguaglianze integrali, le disuguaglianze Borrell-Brascamp-Lieb e rafforziamo, in due modi diversi, queste disuguaglianze nella classe di funzioni a potenza concava. Come applicazione di questo risultato, presentiamo analoghi risultati quantitativi per alcuni tipi di disuguaglianze isoperimetriche soddisfatte da un'ampia classe di funzionali variazionali che possono essere scritti in termini della soluzione di un opportuno problema al contorno ellittico. Come modello giocattolo, consideriamo la rigidità torsionale e dimostriamo risultati quantitativi per la sua disuguaglianza Brunn-Minkowski e per la sua conseguente disuguaglianza isoperimetrica di tipo Urysohn.
Cao, Xinlin. « Geometric structures of eigenfunctions with applications to inverse scattering theory, and nonlocal inverse problems ». HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/754.
Texte intégralPagliardini, Dayana. « Fractional minimal surfaces and Allen-Cahn equations ». Doctoral thesis, Scuola Normale Superiore, 2018. http://hdl.handle.net/11384/85738.
Texte intégralAbatangelo, Nicola. « Large solutions for fractional Laplacian operators ». Thesis, Amiens, 2015. http://www.theses.fr/2015AMIE0019/document.
Texte intégralThe thesis studies linear and semilinear Dirichlet problems driven by different fractional Laplacians. The boundary data can be smooth functions or also Radon measures. The goal is to classify the solutions which have a singularity on the boundary of the prescribed domain. We first remark the existence of a large class of harmoni functions with a boundary blow-up and we characterize them in termsof a new notion of degenerate boundary trace. Via some integration by parts formula, we then provide a weak theory of Stampacchia's sort to extend the linear theory to a setting including these functions: we study the classical questions of existence, uniqueness, continuous dependence on the data, regularity and asymptotic behaviour at the boundary. Afterwards we develop the theory of semilinear problems, by adapting and generalizing some sub- and supersolution methods. This allows us to build the fractional counterpart of large solutions in the elliptic PDE theory of nonlinear equations, giving sufficient conditions for the existence. The thesis is concluded with the definition and the study of a notion of nonlocal directional curvatures
Almutairi, Fahad. « Nonlocal vector calculus ». Kansas State University, 2018. http://hdl.handle.net/2097/38781.
Texte intégralDepartment of Mathematics
Bacim Alali
Nonlocal vector calculus, introduced in generalizes differential operators' calculus to nonlocal calculus of integral operators. Nonlocal vector calculus has been applied to many fields including peridynamics, nonlocal diffusion, and image analysis. In this report, we present a vector calculus for nonlocal operators such as a nonlocal divergence, a nonlocal gradient, and a nonlocal Laplacian. In Chapter 1, we review the local (differential) divergence, gradient, and Laplacian operators. In addition, we discuss their adjoints, the divergence theorem, Green's identities, and integration by parts. In Chapter 2, we define nonlocal analogues of the divergence and gradient operators, and derive the corresponding adjoint operators. In Chapter 3, we present a nonlocal divergence theorem, nonlocal Green's identities, and integration by parts for nonlocal operators. In Chapter 4, we establish a connection between the local and nonlocal operators. In particular, we show that, for specific integral kernels, the nonlocal operators converge to their local counterparts in the limit of vanishing nonlocality.
Lopez, Rios Luis Fernando. « Two problems in nonlinear PDEs : existence in supercritical elliptic equations and symmetry for a hypo-elliptic operator ». Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4701/document.
Texte intégralThis work is devoted to nonlinear PDEs. The aim is to find regular solutions to some elliptic and hypo-elliptic PDEs and study their qualitative properties. The first part deals with the supercritical problem $$ -Delta u = lambda e^u,$$ $lambda > 0$, in an exterior domain under zero Dirichlet condition. A finite-dimensional reduction scheme provides the existence of infinitely many regular solutions whenever $lambda$ is sufficiently small.The second part is focused on the existence of bubbling solutions for the non-local equation $$ (-Delta)^s u =u^p, ,u>0,$$in a bounded, smooth domain under zero Dirichlet condition; where $0 0$ small). To this end, a finite-dimensional reduction scheme in suitable functional spaces is used, where the main part of the reduced function is given in terms of the Green's and Robin's functions of the domain. The existence of solutions depends on the existence of critical points of such a main term together with a non-degeneracy condition.In the third part, a non-local entire problem in the Heisenberg group $H$ is studied. The main interests are rigidity properties for stable solutions of $$(-Delta_H)^s v = f(v) in H,$$ $s in (0,1)$. A Poincaré-type inequality in connection with a degenerate elliptic equation in $R^4_+$ is provided. Through an extension (or ``lifting") procedure, this inequality will be then used to give a criterion under which the level sets of the above solutions are minimal surfaces in $H$, i.e. they have vanishing mean $H$-curvature
Veruete, Mario. « Étude d'équations de réplication-mutation non locales en dynamique évolutive ». Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS012/document.
Texte intégralWe analyze three non-local models describing the evolutionary dynamics of a continuous phenotypic trait undergoing the joint action of mutations and selection. We establish the existence and uniqueness of the solutions to the Cauchy problem, and give a description of the long-time behaviour of the solution. In the first work we study the replicator-mutator equation in the unbounded domain and generalize to cases of selective values confining the known results in the harmonic case. Namely, the existence of a unique global regular solution, converging towards a universal profile; for this, we use spectral decomposition techniques of Schrödinger operators. In the second work, we discuss a model whose fitness value is density-dependent. In order to show the well-posedness of the equation, we combine two approaches. The first is based on the study of the cumulant generating functions, satisfying a non-local transport equation and making it possible to implicitly obtain the average trait. The second uses a change of variable (Avron-Herbst formula), allowing the solution to be written in terms of the average trait and the solution of the heat equation with the same initial data. Finally, we study a model whose mutation rate is proportional to the average value of the trait. We establish a bijective link between this last model and the second, thus making it possible to describe the dynamics of the solution in detail. In particular, we show the exponential growth of the average trait
Drungilaitė, Jolanta. « Diferencialinio uždavinio su nelokaliosiomis sąlygomis kompleksinių tikrinių reikšmių tyrimas ». Master's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130617_181725-06707.
Texte intégralIn this master thesis there is investigated ordinary differential operator with one classical (first or second type) boundary condition in the left side of the interval and other nonlocal (integral, Samarski – Bitsadze or second type) boundary condition in the right side of the interval. The structure of the real spectrum of this problem is quite wide described in the scientific literature, but the complex spectrum is investigated not enough. There is described the real and complex spectrum structure of this problem. Also in the master thesis there are analyzed existence conditions of positive real parts of complex eigenvalues, and their dependence on nonlocal boundary condition parameters.
Dilley, Daniel Jacob. « An Insight on Nonlocal Correlations in Two-Qubit Systems ». OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/2069.
Texte intégralRapalytė, Svajūnė. « Diferencialinio uždavinio su kintamais koeficientais tyrimas ». Master's thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120620_114424-38644.
Texte intégralIn the Master's Thesis there is investigated a differential operator with variable coefficients, one classical and other nonlocal Samarskii-Bitsadze type boundary condition. There is written the canonical form of this problem. In the thesis there is analyzed the properties of variable coefficients, how they are changing when differential problem is written in the canonical form. Also the dependence of this problem spectrum on nonlocal boundary condition parameters is investigated.
Šiaulytė, Austėja. « Parabolinės lygties su nelokaliąja integraline Robino sąlyga išreikštinė skirtuminė schema ». Master's thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130617_182830-33054.
Texte intégralIn the master work, explicit difference scheme for parabolic equation with nonlocal integral Robin condition, is considered. Stability condition of difference scheme is used to examine spectrum structure of differential operator with nonlocal condition and software of Maple, which perform of sacred to the computer experiment. My the master work extends and suplements the results of other scientists in analysis for explicit difference scheme for parabolic equation with nonlocal conditions. The master work consists of the introduction, six chapters and the conclusions. In the introduction the topicality of the problem and object of work are defined, also methods of analysis is presented. In the second and third chapters, explicit difference scheme for parabolic equation with nonlocal integral Robin condition is formulated and also the sufficient stability condition of the difference sheme. In the fourth, fifth and the sixth chapters the stability explicit difference scheme is considered and analysis the results is presented. In the seventh chapter the numerical experiment is used. The conlusions are presented.
Ren, Huilong [Verfasser], Timon [Akademischer Betreuer] Rabczuk, Klaus [Gutachter] Guerlebeck et Klaus [Gutachter] Hackl. « Dual-horizon peridynamics and Nonlocal operator method / Huilong Ren ; Gutachter : Klaus Guerlebeck, Klaus Hackl ; Betreuer : Timon Rabczuk ». Weimar : Bauhaus-Universität Weimar, 2021. http://d-nb.info/1231715081/34.
Texte intégralSavin, Anton Yu, et Boris Yu Sternin. « Index defects in the theory of nonlocal boundary value problems and the η-invariant ». Universität Potsdam, 2001. http://opus.kobv.de/ubp/volltexte/2008/2614/.
Texte intégralCozzi, M. « QUALITATIVE PROPERTIES OF SOLUTIONS OF NONLINEAR ANISOTROPIC PDES IN LOCAL AND NONLOCAL SETTINGS ». Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/345873.
Texte intégralThe thesis is concerned with the study of several qualitative properties shared by the solutions of elliptic equations set in the Euclidean space. The main focus of the work is on entire solutions of anisotropic/heterogeneous equations that show some kind of symmetric properties and, in particular, that possess one-dimensional symmetry. The dissertation is divided into two parts. The first part deals with local partial differential equations, while the second one addresses a class of less familiar nonlocal equations driven by integral operators.
Debroux, Noémie. « Mathematical modelling of image processing problems : theoretical studies and applications to joint registration and segmentation ». Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR02/document.
Texte intégralIn this thesis, we study and jointly address several important image processing problems including registration that aims at aligning images through a deformation, image segmentation whose goal consists in finding the edges delineating the objects inside an image, and image decomposition closely related to image denoising, and attempting to partition an image into a smoother version of it named cartoon and its complementary oscillatory part called texture, with both local and nonlocal variational approaches. The first proposed model addresses the topology-preserving segmentation-guided registration problem in a variational framework. A second joint segmentation and registration model is introduced, theoretically and numerically studied, then tested on various numerical simulations. The last model presented in this work tries to answer a more specific need expressed by the CEREMA (Centre of analysis and expertise on risks, environment, mobility and planning), namely automatic crack recovery detection on bituminous surface images. Due to the image complexity, a joint fine structure decomposition and segmentation model is proposed to deal with this problem. It is then theoretically and numerically justified and validated on the provided images
MIRAGLIO, PIETRO. « ESTIMATES AND RIGIDITY FOR STABLE SOLUTIONS TO SOME NONLINEAR ELLIPTIC PROBLEMS ». Doctoral thesis, Università degli Studi di Milano, 2020. http://hdl.handle.net/2434/704717.
Texte intégralThis thesis deals with the study of elliptic PDEs. The first part of the thesis is focused on the regularity of stable solutions to a nonlinear equation involving the p-Laplacian, in a bounded domain of the Euclidean space. The technique is based on Hardy-Sobolev inequalities in hypersurfaces involving the mean curvature, which are also investigated in the thesis. The second part concerns, instead, a nonlocal problem of Dirichlet-to-Neumann type. We study the one-dimensional symmetry of some subclasses of stable solutions, obtaining new results in dimensions n=2, 3. In addition, we carry out the study of the asymptotic behaviour of the operator associated with this nonlocal problem, using Γ-convergence techniques.
CRUZ, Thamires Santos. « Uma teoria de regularidade para equações de volterra fracionárias com dados iniciais locais e não locais ». Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18454.
Texte intégralMade available in DSpace on 2017-03-29T19:13:09Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese-Thamires.pdf: 818214 bytes, checksum: 5697cce4e93e09e89c5150c064df333e (MD5) Previous issue date: 2016-02-26
CNPQ
Este trabalho trata da teoria de existência, unicidade, regularidade, continuação e alternativa de Blow-up de solução brandas para Equação de Volterra Fracionarias com condições iniciais locais cujo termo não linear satisfaz certas propriedades localmente Lipschitz. Analisamos também o caso de condições iniciais não locais e não linearidades verificando condições do tipo Caratheodory. Neste caso estudamos as propriedades topológicas do conjunto soluções de tais equações.
his work deals with existence, uniqueness, regularity, continuation and Blow up Alternative of mild solutions for Fractional Volterra Equations with local initial conditions, whose nonlinear terms satisfy some locally Lipschitz properties. Moreover we analyse thecase of nonlocal initial conditions and nonlinearities of Caratheodory type. In this case, we study topological properties of the solution set of such equations.
Tapdigoglu, Ramiz. « Inverse problems for fractional order differential equations ». Thesis, La Rochelle, 2019. http://www.theses.fr/2019LAROS004/document.
Texte intégralIn this thesis, we are interested in solving some inverse problems for fractional differential equations. An inverse problem is usually ill-posed. The concept of an ill-posed problem is not new. While there is no universal formal definition for inverse problems, Hadamard [1923] defined a problem as being ill-posed if it violates the criteria of a well-posed problem, that is, either existence, uniqueness or continuous dependence on data is no longer true, i.e., arbitrarily small changes in the measurement data lead to indefinitely large changes in the solution. Most difficulties in solving ill-posed problems are caused by solution instability. Inverse problems come into various types, for example, inverse initial problems where initial data are unknown and inverse source problems where the source term is unknown. These unknown terms are to be determined using extra boundary data. Fractional differential equations, on the other hand, become an important tool in modeling many real-life problems and hence there has been growing interest in studying inverse problems of time fractional differential equations. The Non-Integer Order Calculus, traditionally known as Fractional Calculus is the branch of mathematics that tries to interpolate the classical derivatives and integrals and generalizes them for any orders, not necessarily integer order. The advantages of fractional derivatives are that they have a greater degree of flexibility in the model and provide an excellent instrument for the description of the reality. This is because of the fact that the realistic modeling of a physical phenomenon does not depend only on the instant time, but also on the history of the previous time, i.e., calculating timefractional derivative at some time requires all the previous processes with memory and hereditary properties
Nguyen, Thi Tuyen. « Comportement en temps long des solutions de quelques équations de Hamilton-Jacobi du premier et second ordre, locales et non-locales, dans des cas non-périodiques ». Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S089/document.
Texte intégralThe main aim of this thesis is to study large time behavior of unbounded solutions of viscous Hamilton-Jacobi equations in RN in presence of an Ornstein-Uhlenbeck drift. We also consider the same issue for a first order Hamilton-Jacobi equation. In the first case, which is the core of the thesis, we generalize the results obtained by Fujita, Ishii and Loreti (2006) in several directions. The first one is to consider more general operators. We first replace the Laplacian by a general diffusion matrix and then consider a non-local integro-differential operator of fractional Laplacian type. The second kind of extension is to deal with more general Hamiltonians which are merely sublinear
(6368468), Daesung Kim. « Stability for functional and geometric inequalities and a stochastic representation of fractional integrals and nonlocal operators ». Thesis, 2019.
Trouver le texte intégral