Littérature scientifique sur le sujet « Nonlocal operators »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nonlocal operators ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Nonlocal operators"

1

DU, QIANG, MAX GUNZBURGER, R. B. LEHOUCQ et KUN ZHOU. « A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS ». Mathematical Models and Methods in Applied Sciences 23, no 03 (14 janvier 2013) : 493–540. http://dx.doi.org/10.1142/s0218202512500546.

Texte intégral
Résumé :
A vector calculus for nonlocal operators is developed, including the definition of nonlocal divergence, gradient, and curl operators and the derivation of the corresponding adjoint operators. Nonlocal analogs of several theorems and identities of the vector calculus for differential operators are also presented. Relationships between the nonlocal operators and their differential counterparts are established, first in a distributional sense and then in a weak sense by considering weighted integrals of the nonlocal adjoint operators. The operators of the nonlocal calculus are used to define volume-constrained problems that are analogous to elliptic boundary-value problems for differential operators; this is demonstrated via some examples. Another application discussed is the posing of abstract nonlocal balance laws and deriving the corresponding nonlocal field equations; this is demonstrated for heat conduction and the peridynamics model for continuum mechanics.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Yufu, et Hongqing Zhang. « NONLOCAL SYMMETRIES AND NONLOCAL RECURSION OPERATORS ». Acta Mathematica Scientia 21, no 1 (janvier 2001) : 103–8. http://dx.doi.org/10.1016/s0252-9602(17)30582-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lee, Hwi, et Qiang Du. « Nonlocal gradient operators with a nonspherical interaction neighborhood and their applications ». ESAIM : Mathematical Modelling and Numerical Analysis 54, no 1 (janvier 2020) : 105–28. http://dx.doi.org/10.1051/m2an/2019053.

Texte intégral
Résumé :
Nonlocal gradient operators are prototypical nonlocal differential operators that are very important in the studies of nonlocal models. One of the simplest variational settings for such studies is the nonlocal Dirichlet energies wherein the energy densities are quadratic in the nonlocal gradients. There have been earlier studies to illuminate the link between the coercivity of the Dirichlet energies and the interaction strengths of radially symmetric kernels that constitute nonlocal gradient operators in the form of integral operators. In this work we adopt a different perspective and focus on nonlocal gradient operators with a non-spherical interaction neighborhood. We show that the truncation of the spherical interaction neighborhood to a half sphere helps making nonlocal gradient operators well-defined and the associated nonlocal Dirichlet energies coercive. These become possible, unlike the case with full spherical neighborhoods, without any extra assumption on the strengths of the kernels near the origin. We then present some applications of the nonlocal gradient operators with non-spherical interaction neighborhoods. These include nonlocal linear models in mechanics such as nonlocal isotropic linear elasticity and nonlocal Stokes equations, and a nonlocal extension of the Helmholtz decomposition.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lee, Duckhwan, et Herschel Rabitz. « Scaling of nonlocal operators ». Physical Review A 32, no 2 (1 août 1985) : 877–82. http://dx.doi.org/10.1103/physreva.32.877.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lizama, Carlos, Marina Murillo-Arcila et Alfred Peris. « Nonlocal operators are chaotic ». Chaos : An Interdisciplinary Journal of Nonlinear Science 30, no 10 (octobre 2020) : 103126. http://dx.doi.org/10.1063/5.0018408.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lou, Yifei, Xiaoqun Zhang, Stanley Osher et Andrea Bertozzi. « Image Recovery via Nonlocal Operators ». Journal of Scientific Computing 42, no 2 (27 août 2009) : 185–97. http://dx.doi.org/10.1007/s10915-009-9320-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

DI CECIO, G., et G. PAFFUTI. « SOME PROPERTIES OF RENORMALONS IN GAUGE THEORIES ». International Journal of Modern Physics A 10, no 10 (20 avril 1995) : 1449–63. http://dx.doi.org/10.1142/s0217751x95000693.

Texte intégral
Résumé :
We find the explicit operatorial form of renormalon type singularities in Abelian gauge theory. Local operators of dimension six take care of the first UV renormalon; nonlocal operators are needed for IR singularities. In the effective Lagrangian constructed with these operators nonlocal imaginary parts appearing in the usual perturbative expansion at large orders are canceled.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Xu, Xin-Jian, et Chuan-Fu Yang. « Inverse nodal problem for nonlocal differential operators ». Tamkang Journal of Mathematics 50, no 3 (2 septembre 2019) : 337–47. http://dx.doi.org/10.5556/j.tkjm.50.2019.3361.

Texte intégral
Résumé :
Inverse nodal problem consists in constructing operators from the given zeros of their eigenfunctions. The problem of differential operators with nonlocal boundary condition appears, e.g., in scattering theory, diffusion processes and the other applicable fields. In this paper, we consider a class of differential operators with nonlocal boundary condition, and show that the potential function can be determined by nodal data.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ishikawa, Tomomi. « Perturbative matching of continuum and lattice quasi-distributions ». EPJ Web of Conferences 175 (2018) : 06028. http://dx.doi.org/10.1051/epjconf/201817506028.

Texte intégral
Résumé :
Matching of the quasi parton distribution functions between continuum and lattice is addressed using lattice perturbation theory specifically withWilson-type fermions. The matching is done for nonlocal quark bilinear operators with a straightWilson line in a spatial direction. We also investigate operator mixing in the renormalization and possible O(a) operators for the nonlocal operators based on a symmetry argument on lattice.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Shakhmurov, Veli B. « Degenerate Differential Operators with Parameters ». Abstract and Applied Analysis 2007 (2007) : 1–27. http://dx.doi.org/10.1155/2007/51410.

Texte intégral
Résumé :
The nonlocal boundary value problems for regular degenerate differential-operator equations with the parameter are studied. The principal parts of the appropriate generated differential operators are non-self-adjoint. Several conditions for the maximal regularity uniformly with respect to the parameter and the Fredholmness in Banach-valuedLp−spaces of these problems are given. In applications, the nonlocal boundary value problems for degenerate elliptic partial differential equations and for systems of elliptic equations with parameters on cylindrical domain are studied.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Nonlocal operators"

1

Dzhugan, Aleksandr <1994&gt. « Advanced properties of some nonlocal operators ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/10002/3/PhD%20Thesis%20Dzhugan.pdf.

Texte intégral
Résumé :
In this thesis, we deal with problems, related to nonlocal operators. In particular, we introduce a suitable notion of integral operators acting on functions with minimal requirements at infinity. We also present results of stability under the appropriate notion of convergence and compatibility results between polynomials of different orders. The theory is developed not only in the pointwise sense, but also in viscosity setting. Moreover, we discover the main properties of extremal type operators, with some applications. Then using the notion of viscosity solutions and Ishii-Lions technique, we give a different proof of the regularity of the solutions to equations involving fully nonlinear nonlocal operators. In the last part of the thesis we deal with domain variation solutions and with notions of a viscosity solution to two phase free boundary problem. We are looking at minima of energy functionals, the latter involving p(x)-Laplace operator or a non-negative matrix. Apart from the Riemannian case, we also consider the related Bernoulli functional in noncommutative framework. Finally, we formulate the suitable definition of a viscosity solution in Carnot groups.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schulze, Tim [Verfasser]. « Nonlocal operators with symmetric kernels / Tim Schulze ». Bielefeld : Universitätsbibliothek Bielefeld, 2020. http://d-nb.info/1206592125/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bucur, C. D. « SOME NONLOCAL OPERATORS AND EFFECTS DUE TO NONLOCALITY ». Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/488032.

Texte intégral
Résumé :
In this thesis, we deal with problems related to nonlocal operators, in particular to the fractional Laplacian and some other types of fractional derivatives. We make an extensive introduction to the fractional Laplacian and to some related contemporary research themes. We add to this some original material: the potential theory of this operator and a proof of Schauder estimates with the potential theory approach, the study of a fractional elliptic problem in $mathbb{R}^n$ with convex nonlinearities and critical growth, and a stickiness property of $s$-minimal surfaces as $s$ gets small. Also, focusing our attention on some particular traits of the fractional Laplacian, we prove that other fractional operators have a similar behavior: Caputo stationary functions satisfy a particular density property in the space of smooth functions; an extension operator can be build for Marchaud-stationary functions.
Styles APA, Harvard, Vancouver, ISO, etc.
4

BUCUR, CLAUDIA DALIA. « Some nonlocal operators and effects due to nonlocality ». Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/10281/277792.

Texte intégral
Résumé :
In this thesis, we deal with problems related to nonlocal operators, in particular to the fractional Laplacian and to some other types of fractional derivatives (the Caputo and the Marchaud derivatives). We make an extensive introduction to the fractional Laplacian, we present some related contemporary research results and we add some original material. Indeed, we study the potential theory of this operator, introduce a new proof of Schauder estimates using the potential theory approach, we study a fractional elliptic problem in Rn with convex nonlinearities and critical growth and we present a stickiness property of nonlocal minimal surfaces for small values of the fractional parameter. Also, we point out that the (nonlocal) character of the fractional Laplacian gives rise to some surprising nonlocal effects. We prove that other fractional operators have a similar behavior: in particular, Caputo-stationary functions are dense in the space of smooth functions; moreover, we introduce an extension operator for Marchaud-stationary functions.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Voigt, Paul [Verfasser], et Moritz [Akademischer Betreuer] KaßMann. « Nonlocal operators on domains / Paul Voigt ; Betreuer : Moritz Kaßmann ». Bielefeld : Universitätsbibliothek Bielefeld, 2017. http://d-nb.info/1139117726/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Felsinger, Matthieu [Verfasser]. « Parabolic equations associated with symmetric nonlocal operators / Matthieu Felsinger ». Bielefeld : Universitätsbibliothek Bielefeld, 2013. http://d-nb.info/1042557322/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

FRASSU, SILVIA. « Dirichlet problems for several nonlocal operators via variational and topological methods ». Doctoral thesis, Università degli Studi di Cagliari, 2021. http://hdl.handle.net/11584/309589.

Texte intégral
Résumé :
The main topic of the thesis is the study of elliptic differential equations with fractional order driven by nonlocal operators, as the fractional p-Laplacian, the fractional Laplacian for p=2, the general nonlocal operator and its anisotropic version. Recently, great attention has been focused on the study of fractional and nonlocal operators of elliptic type, both for pure mathematical research and in view of concrete real-world applications. This type of operators arises in a quite natural way in many different contexts, such as, among others, game theory, image processing, optimization, phase transition, anomalous diffusion, crystal dislocation, water waves, population dynamics and geophysical fluid dynamics. The main reason is that nonlocal operators are the infinitesimal generators of Lévy-type stochastic processes. Such processes extend the concept of Brownian motion, where the infinitesimal generator is the Laplace operator, and may contain jump discontinuities. Our aim is to show existence and multiplicity results for nonlinear elliptic Dirichlet problems, driven by a nonlocal operator, by applying variational and topological methods. Such methods usually exploit the special form of the nonlinearities entering the problem, for instance its symmetries, and offer complementary information. They are powerful tools to show the existence of multiple solutions and establish qualitative results on these solutions, for instance information regarding their location. The topological and variational approach provides not just existence of a solution, usually several solutions, but allow to achieve relevant knowledge about the behavior and properties of the solutions, which is extremely useful because generally the problems cannot be effectively solved, so the precise expression of the solutions is unknown. As a specific example of property of a solution that we look for is the sign of the solution, for example to be able to determine whether it is positive, or negative, or nodal (i.e., sign changing).
Styles APA, Harvard, Vancouver, ISO, etc.
8

Abatangelo, N. « Large Solutions for Fractional Laplacian Operators ». Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/320258.

Texte intégral
Résumé :
The thesis studies linear and semilinear Dirichlet problems driven by different fractional Laplacians. The boundary data can be smooth functions or also Radon measures. The goal is to classify the solutions which have a singularity on the boundary of the prescribed domain. We first remark the existence of a large class of harmonic functions with a boundary blow-up and we characterize them in terms of a new notion of degenerate boundary trace. Via some integration by parts formula, we then provide a weak theory of Stampacchia's sort to extend the linear theory to a setting including these functions: we study the classical questions of existence, uniqueness, continuous dependence on the data, regularity and asymptotic behaviour at the boundary. Afterwards we develop the theory of semilinear problems, by adapting and generalizing some sub- and supersolution methods. This allows us to build the fractional counterpart of large solutions in the elliptic PDE theory of nonlinear equations, giving sufficient conditions for the existence. The thesis is concluded with the definition and the study of a notion of nonlocal directional curvatures.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Foghem, Gounoue Guy Fabrice [Verfasser]. « $L^2$-Theory for nonlocal operators on domains / Guy Fabrice Foghem Gounoue ». Bielefeld : Universitätsbibliothek Bielefeld, 2020. http://d-nb.info/1219215139/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chaker, Jamil [Verfasser], et Moritz [Akademischer Betreuer] KaßMann. « Analysis of anisotropic nonlocal operators and jump processes / Jamil Chaker ; Betreuer : Moritz Kaßmann ». Bielefeld : Universitätsbibliothek Bielefeld, 2017. http://d-nb.info/1150181672/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Nonlocal operators"

1

Beghin, Luisa, Francesco Mainardi et Roberto Garrappa, dir. Nonlocal and Fractional Operators. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69236-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Andreu-Vaillo, Fuensanta. Nonlocal diffusion problems. Providence, R.I : American Mathematical Society, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nonlocal diffusion problems. Providence, R.I : American Mathematical Society, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Yu, Savin Anton, et Sternin B. I︠U︡, dir. Elliptic theory and noncommutative geometry : Nonlocal elliptic operators. Basel : Birkhäuser, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Danielli, Donatella, Arshak Petrosyan et Camelia Pop, dir. New Developments in the Analysis of Nonlocal Operators. Providence, Rhode Island : American Mathematical Society, 2019. http://dx.doi.org/10.1090/conm/723.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rabczuk, Timon, Huilong Ren et Xiaoying Zhuang. Computational Methods Based on Peridynamics and Nonlocal Operators. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20906-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mainardi, Francesco, Luisa Beghin et Roberto Garrappa. Nonlocal and Fractional Operators. Springer International Publishing AG, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Mainardi, Francesco, Luisa Beghin et Roberto Garrappa. Nonlocal and Fractional Operators. Springer International Publishing AG, 2021.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ren, Huilong, Timon Rabczuk et Xiaoying Zhuang. 'Computational Methods Based on Peridynamics and Nonlocal Operators : Theory and Applications. Springer International Publishing AG, 2023.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Nazaykinskiy, Vladimir E., A. Yu Savin et B. Yu Sternin. Elliptic Theory and Noncommutative Geometry : Nonlocal Elliptic Operators (Operator Theory : Advances and Applications Book 183). Birkhäuser, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Nonlocal operators"

1

Mazón, José M., Julio Daniel Rossi et J. Julián Toledo. « Nonlocal Operators ». Dans Nonlocal Perimeter, Curvature and Minimal Surfaces for Measurable Sets, 45–52. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06243-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Krasil’ shchik, I. S., et P. H. M. Kersten. « Nonlocal theory ». Dans Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations, 99–153. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-017-3196-6_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Nyeo, Su-Long. « Evolution Equations for Nonlocal Hadron Operators ». Dans Contemporary Topics in Medium Energy Physics, 37–50. Boston, MA : Springer US, 1994. http://dx.doi.org/10.1007/978-1-4757-9835-7_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rossi, Julio D. « The First Eigenvalue for Nonlocal Operators ». Dans Trends in Mathematics, 741–72. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-02104-6_22.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rabczuk, Timon, Huilong Ren et Xiaoying Zhuang. « First-Order Nonlocal Operator Method ». Dans Computational Methods Based on Peridynamics and Nonlocal Operators, 67–97. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20906-2_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Rabczuk, Timon, Huilong Ren et Xiaoying Zhuang. « Higher Order Nonlocal Operator Method ». Dans Computational Methods Based on Peridynamics and Nonlocal Operators, 123–56. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20906-2_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Caffarelli, Luis A., et Yannick Sire. « On Some Pointwise Inequalities Involving Nonlocal Operators ». Dans Harmonic Analysis, Partial Differential Equations and Applications, 1–18. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52742-0_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Aksoylu, Burak, et Fatih Celiker. « Comparison of Nonlocal Operators Utilizing Perturbation Analysis ». Dans Lecture Notes in Computational Science and Engineering, 589–606. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39929-4_57.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Karlovich, Yuri I. « C*-Algebras of Nonlocal Quaternionic Convolution Type Operators ». Dans Clifford Algebras and their Applications in Mathematical Physics, 109–18. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2006-7_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Aksoylu, Burak, Fatih Celiker et Orsan Kilicer. « Nonlocal Operators with Local Boundary Conditions : An Overview ». Dans Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1–38. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-22977-5_34-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Nonlocal operators"

1

Korchemsky, Gregory P., Gianluca Oderda et George Sterman. « Power corrections and nonlocal operators ». Dans The 5th international workshop on deep inelastic scattering and QCD. American Institute of Physics, 1997. http://dx.doi.org/10.1063/1.53732.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Salembier, Philippe. « Study on nonlocal morphological operators ». Dans 2009 16th IEEE International Conference on Image Processing ICIP 2009. IEEE, 2009. http://dx.doi.org/10.1109/icip.2009.5414374.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Arriola, E. Ruiz. « Anomalies for nonlocal dirac operators ». Dans The international workshop on hadron physics of low energy QCD. AIP, 2000. http://dx.doi.org/10.1063/1.1303042.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Glusa, Christian, et Marta D'Elia. « Nonlocal operators with variable coefficients. » Dans Proposed for presentation at the One Nonlocal World, Opening Event held January 22-23, 2021 in Virtual, Virtual, Virtual. US DOE, 2021. http://dx.doi.org/10.2172/1854680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhu, Wenqiao, Changyu Diao, Min Li, Dongming Lu et Yu Liu. « Variational Image Matting with Local and Nonlocal Operators ». Dans 2014 International Conference on Virtual Reality and Visualization (ICVRV). IEEE, 2014. http://dx.doi.org/10.1109/icvrv.2014.31.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Shuo Yang, Jianxun Li et Zhangyuan Gu. « Nonlocal mathematical morphology and spatially-variant connected operators ». Dans 2015 International Conference on Image and Vision Computing New Zealand (IVCNZ). IEEE, 2015. http://dx.doi.org/10.1109/ivcnz.2015.7761525.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lu, Wenqi, et Iain Styles. « Nonlocal Differential Operators Improve Image Reconstruction in Diffuse Optical Tomography ». Dans Clinical and Translational Biophotonics. Washington, D.C. : OSA, 2018. http://dx.doi.org/10.1364/translational.2018.jtu3a.32.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lesev, Vadim N., Anna O. Zheldasheva, Oksana I. Bzheumikhova et Cantemir M. Gukezhev. « On a Nonlocal Model with Operators of Fractional Integro-Differentiation ». Dans 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT&QM&IS). IEEE, 2018. http://dx.doi.org/10.1109/itmqis.2018.8525069.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ashyralyev, Allaberen, Sema Kaplan, Yasar Sozen, Theodore E. Simos, George Psihoyios, Ch Tsitouras et Zacharias Anastassi. « Positivity of Two-Dimensional Elliptic Differential Operators with Nonlocal Conditions ». Dans NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011 : International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636803.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pan, Huizhu, Wanquan Liu, Baoxiang Huang, Shixiu Zheng, Guojia Hou et Ruixue Zhao. « A multichannel total variational Retinex model based on nonlocal differential operators ». Dans Ninth International Conference on Graphic and Image Processing, sous la direction de Hui Yu et Junyu Dong. SPIE, 2018. http://dx.doi.org/10.1117/12.2303547.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Nonlocal operators"

1

D'Elia, Marta, Mamikon Gulian, Tadele Mengesha et James Scott. Connections between nonlocal operators : from vector calculus identities to a fractional Helmholtz decomposition. Office of Scientific and Technical Information (OSTI), décembre 2021. http://dx.doi.org/10.2172/1855046.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Fan, Yiming. Nonlocal Operator Learning with Uncertainty Quantification. Office of Scientific and Technical Information (OSTI), août 2021. http://dx.doi.org/10.2172/1813660.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

D'Elia, Marta, Michael L. Parks, Guofei Pang et George Karniadakis. nPINNs : nonlocal Physics-Informed Neural Networks for a parametrized nonlocal universal Laplacian operator. Algorithms and Applications. Office of Scientific and Technical Information (OSTI), avril 2020. http://dx.doi.org/10.2172/1614899.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie