Articles de revues sur le sujet « Nonlinear Raman »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Nonlinear Raman.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Nonlinear Raman ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

TAKAYANAGI, Masao, et Hiromi OKAMOTO. « Nonlinear Raman Spectroscopy. » Journal of the Spectroscopical Society of Japan 46, no 3 (1997) : 131–45. http://dx.doi.org/10.5111/bunkou.46.131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Katsuragawa, M., M. Suzuki, R. S. D. Sihombing, J. Z. Li et K. Hakuta. « Nonlinear optics in solid hydrogen ». Laser and Particle Beams 16, no 4 (décembre 1998) : 641–48. http://dx.doi.org/10.1017/s0263034600011459.

Texte intégral
Résumé :
We show through experiments of stimulated Raman scattering how solid hydrogen (parahydrogen) can open new perspectives on nonlinear optics. Two phenomena are described: One is the self-induced phase matching in parametric anti-Stokes stimulated Raman scattering (SRS) in which the phase matching is self-organized automatically without the stringent restriction of refractive-index dispersion of the medium, and the other is the extremely slow coherence decay behavior for the Raman transition that may result in the Raman width of 80 kHz full width at half maximum (FWHM).
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ujj, L., I. Sánta, G. Almási, L. Kozma et A. F. Bunkin. « Nonlinear raman spectroscopy of liquids ». Acta Physica Hungarica 68, no 1-2 (septembre 1990) : 71–79. http://dx.doi.org/10.1007/bf03054196.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nibler, J. W., et J. J. Yang. « Nonlinear Raman Spectroscopy of Gases ». Annual Review of Physical Chemistry 38, no 1 (octobre 1987) : 349–81. http://dx.doi.org/10.1146/annurev.pc.38.100187.002025.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Stegeman, G. I., R. Stegeman, C. Rivero, K. Richardson, T. Cardinal et M. Couzi. « Glasses for Raman nonlinear optics ». Laser Physics 16, no 6 (juin 2006) : 902–10. http://dx.doi.org/10.1134/s1054660x06060028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lu, Weiping, et Robert G. Harrison. « Nonlinear dynamics of Raman lasers ». Physical Review A 43, no 11 (1 juin 1991) : 6358–67. http://dx.doi.org/10.1103/physreva.43.6358.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Suchchinskii, M. M. « Nonlinear spectroscopy of raman scattering ». Journal of Russian Laser Research 18, no 4 (juillet 1997) : 343–97. http://dx.doi.org/10.1007/bf02559706.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sirleto, Luigi. « Fiber Raman Amplifiers and Fiber Raman Lasers ». Micromachines 11, no 12 (27 novembre 2020) : 1044. http://dx.doi.org/10.3390/mi11121044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

LEE, G. J., K. HARA, M. KATSURAGAWA et K. HAKUTA. « NONLINEAR FREQUENCY CONVERSION BY RAMAN COHERENCE PREPARED IN SOLID HYDROGEN FILM ». Journal of Nonlinear Optical Physics & ; Materials 13, no 03n04 (décembre 2004) : 433–37. http://dx.doi.org/10.1142/s0218863504002092.

Texte intégral
Résumé :
We investigated the Raman coherence characteristics in the solid hydrogen film deposited on a sapphire substrate. By using Raman coherence prepared with two single-frequency pulsed lasers, we generated the multiorder coherent Raman sidebands in solid hydrogen film. High-order Raman sidebands were obtained under strong pumping conditions (≥230 MW/cm2). The generated anti-Stokes(AS)–Raman sidebands extended from ultraviolet (292 nm for AS5 band) to visible (565 nm for AS1 band) region. The multiorder Raman sideband generation is thought to be due to the parametric coupling of pump and coupling lasers. The frequency conversion efficiency shows the maximum (14%) at the pumping intensity of 360 MW/cm2. From the experiment that makes the multimode probe beam beat with the prepared Raman coherence, we found that the prepared Raman coherence replicates the probe beam to its Raman sidebands.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Agarwal, G. S. « Subharmonic Raman effect in nonlinear mixing ». Optics Letters 13, no 6 (1 juin 1988) : 482. http://dx.doi.org/10.1364/ol.13.000482.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Voronin, Aleksandr A., Ilya V. Fedotov, Lyubov V. Doronina-Amitonova, Olga I. Ivashkina, Marina A. Zots, Andrei B. Fedotov, Konstantin V. Anokhin et Aleksei M. Zheltikov. « Ionization penalty in nonlinear Raman neuroimaging ». Optics Letters 36, no 4 (8 février 2011) : 508. http://dx.doi.org/10.1364/ol.36.000508.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Stankov, K. A., et V. P. Tzolov. « Nonlinear mirror based on raman interactions ». Applied Physics B Photophysics and Laser Chemistry 52, no 2 (février 1991) : 96–101. http://dx.doi.org/10.1007/bf00357662.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Eckbreth, Alan C. « Nonlinear Raman spectroscopy for combustion diagnostics ». Journal of Quantitative Spectroscopy and Radiative Transfer 40, no 3 (septembre 1988) : 369–83. http://dx.doi.org/10.1016/0022-4073(88)90127-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kircheva, P. P. « Raman nonlinear susceptibilities of polar molecules ». Journal of Molecular Structure 266 (mars 1992) : 429–34. http://dx.doi.org/10.1016/0022-2860(92)80102-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Marrocco, Michele. « Vectorial descriptions of nonlinear Raman microscopy ». Journal of Raman Spectroscopy 41, no 8 (août 2010) : 882–89. http://dx.doi.org/10.1002/jrs.2672.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

SASAKI, F., T. KATO et S. KOBAYASHI. « COHERENT TRANSIENTS OF PSEUDOISOCYANINE J AGGREGATES : VIRTUAL EXCITONS IN THE INTERMEDIATE EXCITON-PHONON INTERACTION SYSTEM ». International Journal of Modern Physics B 15, no 28n30 (10 décembre 2001) : 3944–47. http://dx.doi.org/10.1142/s0217979201009062.

Texte intégral
Résumé :
Results of picosecond and nanosecond pump-probe experiments are reported in pseudoisocyanine J aggregates near the inverse Raman resonance. Reflecting the width of the pump-light spectrum, the inverse Raman term dominates the nonlinear absorption spectra in the nanosecond experiments. We find at least four Raman lines around 170 meV, that are not resolved in the picosecond experiments. The observed spectra agree well with the calculated spectra based on the third order nonlinear susceptibility with four Raman lines.
Styles APA, Harvard, Vancouver, ISO, etc.
17

FERRARA, M. A., et L. SIRLETO. « EXPERIMENTAL INVESTIGATION OF STIMULATED RAMAN SCATTERING GAIN IN SILICON NANOCOMPOSITE AND IN AMORPHOUS SILICON NANOPARTICLES ». Journal of Nonlinear Optical Physics & ; Materials 21, no 03 (septembre 2012) : 1250039. http://dx.doi.org/10.1142/s0218863512500397.

Texte intégral
Résumé :
Nonlinear optics at nanoscale is a recent fascinating research field. Among the numerous nonlinear optics phenomena, stimulated Raman scattering is one of the most interestingphenomena, due to its significant implications from both fundamental and applicative point of view. In this paper, the observations of stimulated Raman scattering, at the wavelengths of interest for telecommunications, in silicon nanocomposite and in amorphous silicon nanoparticles are reported. A significant Raman gain enhancement and a significant threshold power reduction with respect to silicon are demonstrated. Our findings indicate that nanostructured materials show great promise for Si-based Raman lasers.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Иванов, С. К., et А. М. Камчатнов. « Эволюция интенсивных световых импульсов в нелинейной среде с учетом эффекта Рамана ». Журнал технической физики 127, no 7 (2019) : 101. http://dx.doi.org/10.21883/os.2019.07.47936.87-19.

Texte intégral
Résumé :
AbstractThe evolution of high-intensity light pulses in nonlinear single-mode optical waveguides, the dynamics of light in which is described by the nonlinear Schrödinger equation with a Raman term taking into account stimulated Raman self-scattering of light, is investigated. It is demonstrated that dispersive shock waves the behavior of which is much more diverse than in the case of ordinary nonlinear Schrödinger equation with a Kerr nonlinearity are formed in the process of evolution of pulses of substantially high intensity. The Whitham equations describing slow evolution of the dispersive shock waves are derived under the assumption of the Raman term being small. It is demonstrated that the dispersive shock waves can asymptotically assume a stationary profile when the Raman effect is taken into account. Analytical theory is corroborated by numerical calculations.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Gruenke, Natalie L., M. Fernanda Cardinal, Michael O. McAnally, Renee R. Frontiera, George C. Schatz et Richard P. Van Duyne. « Ultrafast and nonlinear surface-enhanced Raman spectroscopy ». Chemical Society Reviews 45, no 8 (2016) : 2263–90. http://dx.doi.org/10.1039/c5cs00763a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Kim, Hyun-Tak. « Fallacies on pairing symmetry and intrinsic electronic Raman spectrum in high-Tc cuprate superconductors ». Modern Physics Letters B 34, no 19n20 (10 janvier 2020) : 2040001. http://dx.doi.org/10.1142/s0217984920400011.

Texte intégral
Résumé :
Certain significant fallacies are involved in discussions of the high-[Formula: see text] mechanism unsolved for over 30 years in cuprate superconductors. These fallacies are explored with the aim of unraveling this mechanism. Moreover, using polarized electronic Raman scattering in inhomogeneous underdoped cuprate superconductors, the intrinsic nonlinear Raman spectrum is obtained by subtracting the pseudogap characteristic of a nonlinear from the linear Raman spectrum measured in the [Formula: see text] mode of the node area below the critical temperature. The intrinsic nonlinear behavior implies the existence of the nodal superconducting gap denying [Formula: see text]-wave pairing symmetry. An origin of the nodal superconducting gap is discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Wang, Zhen, Jilin Gu et Siyu Qin. « Influence of optical loss on nonlinear effect in stimulated Raman scattering system ». Journal of Nonlinear Optical Physics & ; Materials 29, no 01n02 (mars 2020) : 2050003. http://dx.doi.org/10.1142/s0218863520500034.

Texte intégral
Résumé :
In this paper, based on the ideal stimulated Raman coupling equation, the dynamic output state is investigated. Considering the gain and loss of stimulated Raman scattering in the actual situation, the ideal stimulated Raman coupling equation is modified. Furthermore, the influence of optical loss on the nonlinear effect in the stimulated Raman scattering system has been analyzed. The results show that, considering the gain and loss of the system, the dynamic output of the stimulated Raman coupling equation presents stable periodic oscillation and random oscillation.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Henstridge, M., M. Först, E. Rowe, M. Fechner et A. Cavalleri. « Nonlocal nonlinear phononics ». Nature Physics 18, no 4 (7 mars 2022) : 457–61. http://dx.doi.org/10.1038/s41567-022-01512-3.

Texte intégral
Résumé :
AbstractNonlinear phononics relies on the resonant optical excitation of infrared-active lattice vibrations to induce targeted structural deformations in solids. This form of dynamical crystal structure design has been applied to control the functional properties of many complex solids, including magnetic materials, superconductors and ferroelectrics. However, phononics has so far been restricted to protocols in which structural deformations occur within the optically excited volume, sometimes resulting in unwanted heating. Here, we extend nonlinear phononics to propagating polaritons, spatially separating the functional response from the optical drive. We use mid-infrared optical pulses to resonantly drive a phonon at the surface of ferroelectric LiNbO3. Time-resolved stimulated Raman scattering reveals that the ferroelectric polarization is reduced over the entire 50 µm depth of the sample, far beyond the micrometre depth of the evanescent phonon field. We attribute this effect to the anharmonic coupling between the driven mode and a polariton that propagates into the material. For high excitation amplitudes, we reach a regime in which the ferroelectric polarization is reversed, as revealed by a sign change in the Raman tensor coefficients of all the polar modes.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Kivshar, Yuri S., et Boris A. Malomed. « Raman-induced optical shocks in nonlinear fibers ». Optics Letters 18, no 7 (1 avril 1993) : 485. http://dx.doi.org/10.1364/ol.18.000485.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Rozmus, W. « Nonlinear Langmuir waves in stimulated Raman scattering ». Physica Scripta T30 (1 janvier 1990) : 64–68. http://dx.doi.org/10.1088/0031-8949/1990/t30/010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Guo, L. N., Z. L. Tang et D. Xing. « Imaging theory of nonlinear Raman confocal microscopy ». Journal of Modern Optics 55, no 3 (10 février 2008) : 375–86. http://dx.doi.org/10.1080/09500340701445237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

McDonald, G. S., G. H. C. New, Yuk-Ming Chan, L. L. Losev et A. P. Lutsenko. « Nonlinear competing processes in multifrequency Raman generation ». Journal of Modern Optics 45, no 6 (juin 1998) : 1099–110. http://dx.doi.org/10.1080/09500349808230901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Kharintsev, Sergey S., Anton V. Kharitonov, Almaz R. Gazizov et Sergei G. Kazarian. « Disordered Nonlinear Metalens for Raman Spectral Nanoimaging ». ACS Applied Materials & ; Interfaces 12, no 3 (8 janvier 2020) : 3862–72. http://dx.doi.org/10.1021/acsami.9b19555.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Petrushevich, Yu V., et Andrei N. Starostin. « Stimulated Raman scattering subject to nonlinear effects ». Soviet Journal of Quantum Electronics 21, no 2 (28 février 1991) : 232–35. http://dx.doi.org/10.1070/qe1991v021n02abeh003764.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Li, Ning, Da Peng Wang, Ai Mei Yan, Ying Xin Xie et Feng Yu Wang. « Effect of Raman Slow Light on Distributed Raman Fiber Sensors ». Applied Mechanics and Materials 303-306 (février 2013) : 74–77. http://dx.doi.org/10.4028/www.scientific.net/amm.303-306.74.

Texte intégral
Résumé :
The effects of Raman slow-light on room-temperature single-mode optical fiber sensors are examined by extracting the Raman pulse-delay terms from extended nonlinear Schrodinger equation (NLSE). Numerical study shows that pulse parameters such as pulse position, frequency chirp, and envelope distortion may be greatly affected by slow light. We demonstrate a method based on pump power adjustment for compensating the slow light induced impairment.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Serebrennikova, Kseniya V., Anna N. Berlina, Dmitriy V. Sotnikov, Anatoly V. Zherdev et Boris B. Dzantiev. « Raman Scattering-Based Biosensing : New Prospects and Opportunities ». Biosensors 11, no 12 (13 décembre 2021) : 512. http://dx.doi.org/10.3390/bios11120512.

Texte intégral
Résumé :
The growing interest in the development of new platforms for the application of Raman spectroscopy techniques in biosensor technologies is driven by the potential of these techniques in identifying chemical compounds, as well as structural and functional features of biomolecules. The effect of Raman scattering is a result of inelastic light scattering processes, which lead to the emission of scattered light with a different frequency associated with molecular vibrations of the identified molecule. Spontaneous Raman scattering is usually weak, resulting in complexities with the separation of weak inelastically scattered light and intense Rayleigh scattering. These limitations have led to the development of various techniques for enhancing Raman scattering, including resonance Raman spectroscopy (RRS) and nonlinear Raman spectroscopy (coherent anti-Stokes Raman spectroscopy and stimulated Raman spectroscopy). Furthermore, the discovery of the phenomenon of enhanced Raman scattering near metallic nanostructures gave impetus to the development of the surface-enhanced Raman spectroscopy (SERS) as well as its combination with resonance Raman spectroscopy and nonlinear Raman spectroscopic techniques. The combination of nonlinear and resonant optical effects with metal substrates or nanoparticles can be used to increase speed, spatial resolution, and signal amplification in Raman spectroscopy, making these techniques promising for the analysis and characterization of biological samples. This review provides the main provisions of the listed Raman techniques and the advantages and limitations present when applied to life sciences research. The recent advances in SERS and SERS-combined techniques are summarized, such as SERRS, SE-CARS, and SE-SRS for bioimaging and the biosensing of molecules, which form the basis for potential future applications of these techniques in biosensor technology. In addition, an overview is given of the main tools for success in the development of biosensors based on Raman spectroscopy techniques, which can be achieved by choosing one or a combination of the following approaches: (i) fabrication of a reproducible SERS substrate, (ii) synthesis of the SERS nanotag, and (iii) implementation of new platforms for on-site testing.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Finneran, Ian A., Ralph Welsch, Marco A. Allodi, Thomas F. Miller et Geoffrey A. Blake. « Coherent two-dimensional terahertz-terahertz-Raman spectroscopy ». Proceedings of the National Academy of Sciences 113, no 25 (6 juin 2016) : 6857–61. http://dx.doi.org/10.1073/pnas.1605631113.

Texte intégral
Résumé :
We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Sheng, Yan, Wenjie Wang, Roy Shiloh, Vito Roppo, Ady Arie et Wieslaw Krolikowski. « Third-harmonic generation via nonlinear Raman–Nath diffraction in nonlinear photonic crystal ». Optics Letters 36, no 16 (15 août 2011) : 3266. http://dx.doi.org/10.1364/ol.36.003266.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Wang, Yuan, et Liping Huang. « A Simplified Method of Microscopic Polarizability Tensor Differential of Hyper-Raman Spectroscopy Based on the Bond Additivity Model ». International Journal of Optics 2022 (10 mars 2022) : 1–6. http://dx.doi.org/10.1155/2022/2710506.

Texte intégral
Résumé :
Coherent anti-Stokes Raman spectroscopy (CARS) and Ccherent anti-Stokes hyper-Raman spectroscopy (CAHRS), as other high-order nonlinear spectroscopy techniques, are widely exploited in many research fields, such as dynamic processes, gene expression spectrum screening, high-resolution spectroscopy, and nonlinear high-resolution imaging. However, it is difficult to make a quantitative analysis of the spectral signals that involve a large number of high-order micropolarizability tensors. It is reported that the CARS and CAHRS microscopic hyperpolarizability tensor elements can be decomposed into the product of the differentiation of Raman microscopic polarizability tensor α′i′j′ and hyper-Raman microscopic polarizability tensor β′i′j′k′ so that the high-order spectra can be simplified to the analysis of low-order spectra. In this paper, we use the bond additivity model (BAM) combined with experimental corrections to address the carbon dioxide (CO2) molecule and present the simplified scheme for differentiation of hyper-Raman microscopic polarizability tensor elements β′i′j′k′. Taking advantage of this approach, combined with the experimental correction, the differentiation of Hyper-Raman microscopic polarizability tensor elements β′i′j′k′ of the CO2 is obtained and the expressions of β′i′j′k′ for antisymmetric vibrations of CO2 are deduced. Finally, substituting the differentiation of Raman microscopic polarizability tensor elements α′i′j′ reported in the literature into the ratio above can obtain the proportional relationship between the microscopic polarizability tensor elements of CARS and CAHRS of the CO2. This method can provide the basis for the quantitative analysis of high-order nonlinear spectral profiles.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhang, Yang, Jiangming Xu, Sicheng Li, Junrui Liang, Jun Ye, Xiaoya Ma, Tianfu Yao et Pu Zhou. « Phosphosilicate Fiber-Based Low Quantum Defect Raman Fiber Laser with Ultrahigh Spectral Purity ». Nanomaterials 12, no 9 (27 avril 2022) : 1490. http://dx.doi.org/10.3390/nano12091490.

Texte intégral
Résumé :
The phosphosilicate fiber-based Raman fiber laser (RFL) has great potential in achieving low-quantum defect (QD) high-power laser output. However, the laser’s performance could be seriously degraded by the Raman-assisted four-wave mixing (FWM) effect and spontaneous Raman generation at 14.7 THz. To find possible ways to suppress the Raman-assisted FWM effect and spontaneous Raman generation, here, we propose a revised power-balanced model to simulate the nonlinear process in the low-QD RFL. The power evolution characteristics in this low-QD RFL with different pump directions are calculated. The simulation results show that, compared to the forward-pumped low-QD RFL, the threshold powers of spontaneous Raman generation in the backward-pumped RFL are increased by 40% and the Raman-assisted FWM effect is well suppressed. Based on the simulation work, we change the pump direction of a forward-pumped low-QD RFL into backward pumping. As a result, the maximum signal power is increased by 20% and the corresponding spectral purity is increased to 99.8%. This work offers a way for nonlinear effects controlling in low-QD RFL, which is essential in its further performance scaling.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Mi, Xiaohu, Yuyang Wang, Rui Li, Mengtao Sun, Zhenglong Zhang et Hairong Zheng. « Multiple surface plasmon resonances enhanced nonlinear optical microscopy ». Nanophotonics 8, no 3 (7 février 2019) : 487–93. http://dx.doi.org/10.1515/nanoph-2018-0231.

Texte intégral
Résumé :
AbstractThe nonlinear optical microscopies of coherent two-photon excited fluorescence and anti-Stokes Raman scattering are strongly enhanced by multiple surface plasmon resonances (MSPRs). The Au@Ag nanorods presented strong MSPRs peaks at 800 and 400 nm, and can enhance nonlinear optical microscopy at fundamental and double frequencies, respectively. A two-dimensional (2D) material of g-C3N4 is employed to study the plasmon-enhanced nonlinear optical microscopy by the femtosecond laser. The electric analysis reveals that the MSPRs of the Au@Ag nanorod can significantly enhance the signals of two-photon excited fluorescence and anti-Stokes Raman scattering by up to the orders of 104 and 1016, respectively. The results demonstrate the great advantages of plasmon-enhanced nonlinear optical microscopy for the optical analysis on 2D materials, thus providing a new adventure for increasing the optical resolutions of nonlinear optical microscopy.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ghamsari, Behnood G., Anthony Olivieri, Fabio Variola et Pierre Berini. « Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission ». Nanophotonics 3, no 6 (1 décembre 2014) : 363–71. http://dx.doi.org/10.1515/nanoph-2014-0014.

Texte intégral
Résumé :
AbstractExploiting surface plasmon polaritons to enhance interactions between graphene and light has recently attracted much interest. In particular, nonlinear optical processes in graphene can be dramatically enhanced and controlled by plasmonic nanostructures. This work demonstrates Raman scattering enhancement in graphene based on plasmonic resonant enhancement of the Stokes emission, and compares this mechanism with the conventional Raman enhancement by resonant pump absorption. Arrays of optical nanoantennas with different resonant frequency are utilized to independently identify the effects of each mechanism on Raman scattering in graphene via the measured enhancement factor and its spectral linewidth. We demonstrate that, while both mechanisms offer large enhancement factors (scattering cross-section gains of 160 and 20 for individual nanoantennas, respectively), they affect the graphene Raman spectrum quite differently. Our results provide a benchmark to assess and quantify the role and merit of each mechanism in surface-plasmon-mediated Raman scattering in graphene, and may be employed for design and realization of a variety of graphene optoelectronic devices involving nonlinear optical processes.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Rohringer, Nina. « X-ray Raman scattering : a building block for nonlinear spectroscopy ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2145 (avril 2019) : 20170471. http://dx.doi.org/10.1098/rsta.2017.0471.

Texte intégral
Résumé :
Ultraintense X-ray free-electron laser pulses of attosecond duration can enable new nonlinear X-ray spectroscopic techniques to observe coherent electronic motion. The simplest nonlinear X-ray spectroscopic concept is based on stimulated electronic X-ray Raman scattering. We present a snapshot of recent experimental achievements, paving the way towards the goal of realizing nonlinear X-ray spectroscopy. In particular, we review the first proof-of-principle experiments, demonstrating stimulated X-ray emission and scattering in atomic gases in the soft X-ray regime and first results of stimulated hard X-ray emission spectroscopy on transition metal complexes. We critically asses the challenges that have to be overcome for future successful implementation of nonlinear coherent X-ray Raman spectroscopy. This article is part of the theme issue ‘Measurement of ultrafast electronic and structural dynamics with X-rays’.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Guo, Li Na, Zhi Lie Tang et Da Xing. « Microscopic Three-Dimensional Imaging Theory Based on RIKES ». Key Engineering Materials 364-366 (décembre 2007) : 1089–94. http://dx.doi.org/10.4028/www.scientific.net/kem.364-366.1089.

Texte intégral
Résumé :
A novel nonlinear confocal microscopic imaging system based on Raman induced Kerr effect spectroscopy (RIKES) is presented in this paper. The three-dimensional (3-D) microscopic imaging theory is derived with the Fourier imaging theory and nonlinear optical principle. The impact of RIKES on the spatial resolution and imaging properties of confocal microscopic imaging system has been analyzed in detail by the imaging theory. It’s proved that the RIKES nonlinear microscopic imaging system can effectively improve the imaging contrast and provide more characteristic information on Raman spectrum and optical nonlinear Kerr effect, thus greatly improving the imaging quality of confocal microscopic imaging system. It’s shown that the spatial resolution of RIKES confocal microscopic imaging system is higher than that of two-photon confocal microscopic imaging system.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Lasagni, Chiara, Paolo Serena et Alberto Bononi. « Modeling Nonlinear Interference With Sparse Raman-Tilt Equalization ». Journal of Lightwave Technology 39, no 15 (août 2021) : 4980–89. http://dx.doi.org/10.1109/jlt.2021.3082287.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Zeng, Heping, Yuzhu Wang et Yusaburo Segawa. « Nonlinear Raman vibrational excitation of a trapped ion ». Physical Review A 59, no 3 (1 mars 1999) : 2174–85. http://dx.doi.org/10.1103/physreva.59.2174.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

REINTJES, J., M. BASHKANSKY, M. D. DUNCAN, R. MAHON, L. L. TANKERSLEY, J. A. MOON, C. L. ADLER et J. M. S. PREWITT. « TIME-GATED IMAGING WITH NONLINEAR OPTICAL RAMAN INTERACTIONS ». Optics and Photonics News 4, no 10 (1 octobre 1993) : 28. http://dx.doi.org/10.1364/opn.4.10.000028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Go, Chun-Soo, Yong-Sik Lim, Hee-Jong Moon, Jai-Hyung Lee et Joon-Sung Chang. « Nonlinear dispersion effects in a broadband Raman amplifier ». Optics Letters 20, no 23 (1 décembre 1995) : 2366. http://dx.doi.org/10.1364/ol.20.002366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Zhang, Hanwei, Hu Xiao, Pu Zhou, Xiaolin Wang et Xiaojun Xu. « High power Yb-Raman combined nonlinear fiber amplifier ». Optics Express 22, no 9 (21 avril 2014) : 10248. http://dx.doi.org/10.1364/oe.22.010248.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kalashnikov, N. P. « Nonlinear Raman Scattering of Photons by Channeled Particles ». Physics Procedia 72 (2015) : 523–27. http://dx.doi.org/10.1016/j.phpro.2015.09.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Estabrook, Kent, W. L. Kruer et M. G. Haines. « Nonlinear features of stimulated Brillouin and Raman scattering ». Physics of Fluids B : Plasma Physics 1, no 6 (juin 1989) : 1282–86. http://dx.doi.org/10.1063/1.858952.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Byrne, H. J., L. Akselrod, C. Thomsen, A. Mittelbach et S. Roth. « Raman studies of nonlinear phenomena in fullerene crystallites ». Applied Physics A Solids and Surfaces 57, no 4 (octobre 1993) : 299–302. http://dx.doi.org/10.1007/bf00332280.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Vyunishev, A. M., V. V. Slabko, I. S. Baturin, A. R. Akhmatkhanov et V. Ya Shur. « Nonlinear Raman–Nath diffraction of femtosecond laser pulses ». Optics Letters 39, no 14 (14 juillet 2014) : 4231. http://dx.doi.org/10.1364/ol.39.004231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Starodumov, A. N., Yu O. Barmenkov, A. Martinez et I. Torres. « Nonlinear Optical Switch Based on Stimulated Raman Scattering ». Optical Fiber Technology 4, no 3 (juillet 1998) : 285–92. http://dx.doi.org/10.1006/ofte.1998.0262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Schrötter, H. W., H. Berger et B. Lavorel. « High-resolution nonlinear raman spectroscopy of small molecules ». Journal of Molecular Structure 141 (mars 1986) : 195–202. http://dx.doi.org/10.1016/0022-2860(86)80323-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Falconieri, Mauro, Serena Gagliardi, Flaminia Rondino, Michele Marrocco et Waruna D. Kulatilaka. « Study of Impulsive Stimulated Raman Scattering Effects Using the Femtosecond Pump–Probe Z-Scan Technique ». Applied Sciences 11, no 24 (9 décembre 2021) : 11667. http://dx.doi.org/10.3390/app112411667.

Texte intégral
Résumé :
Impulsive stimulated Raman scattering (ISRS) is a nonlinear pump–probe spectroscopy technique particularly suitable to study vibrational intermolecular and intramolecular modes in complex systems. For the latter, recent studies of ISRS microscopy with low-energy laser sources have attracted attention for investigation of photosensitive or biological samples. Following this stream of interest, in this paper, we report an investigation on the relationship between femtosecond ISRS data and pump–probe Z-scan measurements, showing that the latter technique is capable of capturing the Kerr nonlinearities induced by the molecular vibrational modes. To this aim, firstly, spectrally filtered and Raman-induced Kerr ISRS signals were simultaneously acquired to determine the sample nonlinear response and to establish the reference data for the Z-scan analysis. Then, by adopting a suitable experimental arrangement to avoid thermo-optical effects, we were able to unambiguously observe the Raman-induced effects in Z-scan measurements, thus obtaining a consistent picture between ISRS and Z-scan for the first time, to the best of our knowledge. Practical applications of the proposed method include calibrated measurements of the contribution of the internal (Raman) and external molecular modes to the nonlinear refractive index.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie