Littérature scientifique sur le sujet « Non-stationary continuous time Bayesian networks »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Non-stationary continuous time Bayesian networks ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Non-stationary continuous time Bayesian networks"
Villa, Simone, et Fabio Stella. « Learning Continuous Time Bayesian Networks in Non-stationary Domains ». Journal of Artificial Intelligence Research 57 (20 septembre 2016) : 1–37. http://dx.doi.org/10.1613/jair.5126.
Texte intégralBobrowski, Omer, Ron Meir et Yonina C. Eldar. « Bayesian Filtering in Spiking Neural Networks : Noise, Adaptation, and Multisensory Integration ». Neural Computation 21, no 5 (mai 2009) : 1277–320. http://dx.doi.org/10.1162/neco.2008.01-08-692.
Texte intégralda Silva, Rafael Luiz, Boxuan Zhong, Yuhan Chen et Edgar Lobaton. « Improving Performance and Quantifying Uncertainty of Body-Rocking Detection Using Bayesian Neural Networks ». Information 13, no 7 (12 juillet 2022) : 338. http://dx.doi.org/10.3390/info13070338.
Texte intégralLiu, Yunchuan, Amir Ghasemkhani et Lei Yang. « Drifting Streaming Peaks-over-Threshold-Enhanced Self-Evolving Neural Networks for Short-Term Wind Farm Generation Forecast ». Future Internet 15, no 1 (28 décembre 2022) : 17. http://dx.doi.org/10.3390/fi15010017.
Texte intégralUgulava, Gocha. « REVIEW OF THEORETICAL APPROACHES TO USING OF ARTIFICIAL INTELLIGENCE FOR PLANNING PROBLEMS IN ECONOMICS ». Economic Profile 16, no 2(22) (15 janvier 2022) : 107–22. http://dx.doi.org/10.52244/ep.2021.22.11.
Texte intégralMertens, Daniel, Christine Wolf, Carsten Maus, Michael Persicke, Katharina Filarsky, Hartmut Döhner, Peter Lichter, Thomas Höfer et Stephan Stilgenbauer. « Modelling Single Cell B-Cell Receptor Signaling Reveals Enhanced Activity in Primary CLL Cells Compared to Non-Malignant Cells While Fundamental Network Circuit Topology Remains Stable Even with Novel Therapeutic Inhibitors ». Blood 134, Supplement_1 (13 novembre 2019) : 4275. http://dx.doi.org/10.1182/blood-2019-127837.
Texte intégralYamagata, Taku, Raúl Santos-Rodríguez et Peter Flach. « Continuous Adaptation with Online Meta-Learning for Non-Stationary Target Regression Tasks ». Signals 3, no 1 (3 février 2022) : 66–85. http://dx.doi.org/10.3390/signals3010006.
Texte intégralCappelletti, Daniele, et Badal Joshi. « Transition graph decomposition for complex balanced reaction networks with non-mass-action kinetics ». Mathematical Biosciences and Engineering 19, no 8 (2022) : 7649–68. http://dx.doi.org/10.3934/mbe.2022359.
Texte intégralKalinina, Irina A., et Aleksandr P. Gozhyj. « Modeling and forecasting of nonlinear nonstationary processes based on the Bayesian structural time series ». Applied Aspects of Information Technology 5, no 3 (25 octobre 2022) : 240–55. http://dx.doi.org/10.15276/aait.05.2022.17.
Texte intégralMiyazawa, Masakiyo, et Peter G. Taylor. « A Geometric Product-Form Distribution for a Queueing Network by Non-Standard Batch Arrivals and Batch Transfers ». Advances in Applied Probability 29, no 2 (juin 1997) : 523–44. http://dx.doi.org/10.2307/1428015.
Texte intégralThèses sur le sujet "Non-stationary continuous time Bayesian networks"
VILLA, SIMONE. « Continuous Time Bayesian Networks for Reasoning and Decision Making in Finance ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/69953.
Texte intégralThe analysis of the huge amount of financial data, made available by electronic markets, calls for new models and techniques to effectively extract knowledge to be exploited in an informed decision-making process. The aim of this thesis is to introduce probabilistic graphical models that can be used to reason and to perform actions in such a context. In the first part of this thesis, we present a framework which exploits Bayesian networks to perform portfolio analysis and optimization in a holistic way. It leverages on the compact and efficient representation of high dimensional probability distributions offered by Bayesian networks and their ability to perform evidential reasoning in order to optimize the portfolio according to different economic scenarios. In many cases, we would like to reason about the market change, i.e. we would like to express queries as probability distributions over time. Continuous time Bayesian networks can be used to address this issue. In the second part of the thesis, we show how it is possible to use this model to tackle real financial problems and we describe two notable extensions. The first one concerns classification, where we introduce an algorithm for learning these classifiers from Big Data, and we describe their straightforward application to the foreign exchange prediction problem in the high frequency domain. The second one is related to non-stationary domains, where we explicitly model the presence of statistical dependencies in multivariate time-series while allowing them to change over time. In the third part of the thesis, we describe the use of continuous time Bayesian networks within the Markov decision process framework, which provides a model for sequential decision-making under uncertainty. We introduce a method to control continuous time dynamic systems, based on this framework, that relies on additive and context-specific features to scale up to large state spaces. Finally, we show the performances of our method in a simplified, but meaningful trading domain.
Chapitres de livres sur le sujet "Non-stationary continuous time Bayesian networks"
Hourbracq, Matthieu, Pierre-Henri Wuillemin, Christophe Gonzales et Philippe Baumard. « Real Time Learning of Non-stationary Processes with Dynamic Bayesian Networks ». Dans Information Processing and Management of Uncertainty in Knowledge-Based Systems, 338–50. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40596-4_29.
Texte intégralWong, Andrew K. C., Yang Wang et Gary C. L. Li. « Pattern Discovery as Event Association ». Dans Machine Learning, 1924–32. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-60960-818-7.ch804.
Texte intégralActes de conférences sur le sujet "Non-stationary continuous time Bayesian networks"
Villa, Simone, et Fabio Stella. « Learning Continuous Time Bayesian Networks in Non-stationary Domains ». Dans Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California : International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/804.
Texte intégralHu, Weifei, Yihan He, Zhenyu Liu, Jianrong Tan, Ming Yang et Jiancheng Chen. « A Hybrid Wind Speed Prediction Approach Based on Ensemble Empirical Mode Decomposition and BO-LSTM Neural Networks for Digital Twin ». Dans ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16500.
Texte intégral