Littérature scientifique sur le sujet « Non-lymphoid organs »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Non-lymphoid organs ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Non-lymphoid organs"
Jandrić-Kočić, Marijana. « Recirculation of naive T lymphocytes ». Medicinski glasnik Specijalne bolnice za bolesti štitaste žlezde i bolesti metabolizma 27, no 86 (2022) : 25–48. http://dx.doi.org/10.5937/mgiszm2286025j.
Texte intégralParker, George A., et Catherine A. Picut. « Immune Functioning in Non lymphoid Organs : The Liver ». Toxicologic Pathology 40, no 2 (16 novembre 2011) : 237–47. http://dx.doi.org/10.1177/0192623311428475.
Texte intégralFeizi, Neda, Neda Feizi, Gang Zhang, Latha Halesha, Khodor Abou Daya et Martin H. Oberbarnscheidt. « Tertiary Lymphoid Organs promote allograft rejection ». Journal of Immunology 212, no 1_Supplement (1 mai 2024) : 0321_5062. http://dx.doi.org/10.4049/jimmunol.212.supp.0321.5062.
Texte intégralWeninger, Wolfgang, Maté Biro et Rohit Jain. « Leukocyte migration in the interstitial space of non-lymphoid organs ». Nature Reviews Immunology 14, no 4 (7 mars 2014) : 232–46. http://dx.doi.org/10.1038/nri3641.
Texte intégralPreziuso, S., GE Magi, S. Mari et G. Renzoni. « Detection of Visna Maedi virus in mesenteric lymph nodes and in other lymphoid tissues of sheep three years after respiratory infection ». Veterinární Medicína 58, No. 7 (20 août 2013) : 359–63. http://dx.doi.org/10.17221/6916-vetmed.
Texte intégralTkachev, Victor, Scott Nicholas Furlan, E. Lake Potter, Betty H. Zheng, Daniel J. Hunt, Lucrezia Colonna, Agne Taraseviciute et al. « Delineating tissue-specific alloimmunity during acute GVHD ». Journal of Immunology 200, no 1_Supplement (1 mai 2018) : 55.1. http://dx.doi.org/10.4049/jimmunol.200.supp.55.1.
Texte intégralHotchkiss, R., M. Hiramatsu, P. Cobb, T. Buchman et I. Karl. « CECAL LIGATION AND PUNCTURE (CLP) IN MICE TRIGGERS APOPTOSIS IN LYMPHOID AND NON-LYMPHOID ORGANS. » Shock 5 (juin 1996) : 71. http://dx.doi.org/10.1097/00024382-199606002-00226.
Texte intégralJia, Cunxin, Yujie Zhou, Xiaohuan Huang, Xi Peng, Linyan Liu, Linyan Zhou, Li Jin, Hongjuan Shi, Jing Wei et Deshou Wang. « The cellular protein expression of Foxp3 in lymphoid and non-lymphoid organs of Nile tilapia ». Fish & ; Shellfish Immunology 45, no 2 (août 2015) : 300–306. http://dx.doi.org/10.1016/j.fsi.2015.03.021.
Texte intégralFinke, Daniela, et Hans Acha-Orbea. « Differential migration ofin vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs ». European Journal of Immunology 31, no 9 (septembre 2001) : 2603–11. http://dx.doi.org/10.1002/1521-4141(200109)31:9<2603 ::aid-immu2603>3.0.co;2-8.
Texte intégralSainova, Iskra, Vera Kolyovska, Desislava Drenska, Dimitar Maslarov, Andrey Petrov, Dimitrina Dimitrova-Dikanarova et Tzvetanka Markova. « Production of anti-GM3, anti-GM1, and anti-GD1A antibodies by non-lymphoid cells, tissues, and organs ». Pharmacia 71 (1 novembre 2024) : 1–8. http://dx.doi.org/10.3897/pharmacia.71.e138022.
Texte intégralThèses sur le sujet "Non-lymphoid organs"
Roubanis, Aristeidis. « Investigating the metabolism of regulatory T cells in non-lymphoid tissues using a genetic approach and an in vivo adaptation of SCENITH ». Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS321.pdf.
Texte intégralRegulation of cellular metabolism is a central element governing the fate and function of T cells. Among T cells, CD4+ Foxp3+ regulatory T cells (Tregs) are critical for the maintenance of self-tolerance and immune homeostasis. Tregs are present in lymphoid tissues where they control immune responses and in various non-lymphoid tissues where they maintain tissue homeostasis. Precursors of Tregs colonising non- lymphoid tissues are present in the spleen and lymph nodes and undergo developmental differentiation steps. However, the mechanisms by which Tregs colonise non-lymphoid tissues and how tissue Tregs metabolically adapt to varying microenvironments across tissues remain poorly understood partly because of experimental difficulties in assessing the metabolic profiles of rare cells in physiological conditions. To investigate the metabolism of Tregs, mice conditionally knocked out for the metabolic checkpoint Liver kinase B1 (LKB1) (cKO) were generated. These mice have a significantly reduced lifespan due to a systemic hyperinflammatory disorder, despite having relatively normal numbers of Tregs in the spleen and lymph nodes. LKB1, primarily known for activating AMPK and modulating mitochondrial metabolism, appears crucial for the colonisation of NLT by Tregs. Further analysis revealed the absence of the mature tissue Treg precursors in the spleen of cKO mice, suggesting a block of tissue Treg differentiation in the absence of LKB1.Recent advances, such as the SCENITH technique, allow the study of the metabolism of rare cells by measuring protein translation as an indicator of energy consumption by flow cytometry. However, this technique traditionally requires cells to be cultured ex vivo or in vitro, which can alter their metabolism. To address this issue, an innovative method derived from SCENITH was implemented to investigate the cellular metabolism of T cells in the spleen and lungs at steady state. Compared to classical SCENITH, this new technique also helps improve cell viability, in particular for Tregs. Results obtained with the in vivo SCENITH revealed that conventional T cells and Tregs share similar metabolic profiles in the spleen and lungs. Notably, lung T cell metabolism relies mainly on oxidative phosphorylation at steady state, while spleen T cells also utilise glycolysis. Additionally, maintaining Foxp3 expression in Tregs is influenced by metabolic inhibitors affecting protein translation and energy availability. Our findings highlight the role of LKB1 in the differentiation and colonisation of tissue Tregs and underscore the importance of metabolic adaptation in tissue Treg differentiation. The new in vivo SCENITH technique may provide valuable insights to assess the metabolic status of rare T cells in their natural environments
Roake, Justin Alan. « Studies on the properties and migration of non-lymphoid dendritic cells ». Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317810.
Texte intégralLivres sur le sujet "Non-lymphoid organs"
Smedby, Karin Ekström, Mads Melbye et Hans-Olov Adami. Non-Hodgkin Lymphoma. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190676827.003.0027.
Texte intégralBlaser, Annika Reintam, et Adam M. Deane. Normal physiology of the gastrointestinal system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0172.
Texte intégralAlbert, Tyler J., et Erik R. Swenson. The blood cells and blood count. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0265.
Texte intégralChapitres de livres sur le sujet "Non-lymphoid organs"
Rao, Abdul S., Justin A. Roake, Christian P. Larsen, Deborah F. Hankins, Peter J. Morris et Jonathan M. Austyn. « Isolation of Dendritic Leukocytes from Non-Lymphoid Organs ». Dans Advances in Experimental Medicine and Biology, 507–12. Boston, MA : Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2930-9_85.
Texte intégralWalker, Brian R. « Modulation of glucocorticoid activity by metabolism of steroids in non-lymphoid organs ». Dans Steroid Hormones and the T-Cell Cytokine Profile, 71–99. London : Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0931-0_4.
Texte intégralKirsch, Brian James, Shu-Jyuan Chang, Michael James Betenbaugh et Anne Le. « Non-Hodgkin Lymphoma Metabolism ». Dans The Heterogeneity of Cancer Metabolism, 103–16. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_7.
Texte intégralAndrabi, Syedah Asma, Nawab Nashiruddullah, Shafiqur Rahman, Dawoud Aamir et afrin Ara Ahmed. « IMPORTANT NON-ONCOGENIC IMMUNO SUPPRESSIVE VIRAL DISEASES OF CHICKENS ». Dans Futuristic Trends in Agriculture Engineering & ; Food Sciences Volume 3 Book 3, 88–108. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bcag3p1ch8.
Texte intégralWoodhouse, Andrew. « Case 38 ». Dans Oxford Case Histories in Infectious Diseases and Microbiology, sous la direction de Andrew Woodhouse, 261–66. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198846482.003.0038.
Texte intégralSepulveda, Antonia R. « Mucosa-Associated Lymphoid Tissue Lymphomas ». Dans Gastrointestinal Oncology, 803–11. Oxford University PressNew York, NY, 2003. http://dx.doi.org/10.1093/oso/9780195133721.003.0066.
Texte intégralNaresh, Kikkeri N. « Gastrointestinal lymphomas ». Dans Oxford Textbook of Medicine, sous la direction de Jack Satsangi, 2892–902. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0301.
Texte intégralActes de conférences sur le sujet "Non-lymphoid organs"
Rosenbluth, Michael J., Wilbur A. Lam et Daniel A. Fletcher. « Contribution of Cell Mechanics to Acute Leukemia ». Dans ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59881.
Texte intégral