Littérature scientifique sur le sujet « Nodi torici »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nodi torici ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Nodi torici"
Dwivedi, Siddharth, et P. Ramadevi. « Partial Resolution of Complex Cones over Fanoℬ ». Advances in High Energy Physics 2013 (2013) : 1–10. http://dx.doi.org/10.1155/2013/295842.
Texte intégralZadorozhnuyk, Anna O. « Monotonicity of random walks’ states on finite grids ». Journal of the Belarusian State University. Mathematics and Informatics, no 1 (1 avril 2022) : 38–45. http://dx.doi.org/10.33581/2520-6508-2022-1-38-45.
Texte intégralThèses sur le sujet "Nodi torici"
OBERTI, CHIARA. « Induction effects of torus knots and unknots ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/87792.
Texte intégralThe induction effects due to a steady source field in the shape of a torus knot or unknot filament are analysed in detail. Similar studies for rectilinear, circular or helical geometries have been done in the past, but very little is known for more complex geometries and topologies. Torus knots provide a rare example of closed, space curves of non-trivial topology, that admit a mathematically simple description; for this reason they represent an interesting case study to consider. Moreover, since torus knots are also a good mathematical model for studying braided field line structures, the present work provides useful information for a wide range of possible applications, from physical sciences (solar physics and astrophysics, vortex dynamics, fusion physics) to technology (telecommunication, new materials design, data analysis). The work is organized in 4 chapters. In chapter 1 we present a comprehensive study of geometric and topological properties of torus knots and unknots. By using a standard parametrization, we demonstrate the existence, and determine the location, of inection points for a given critical configuration, and prescribe the condition for removing the singularity associated with torsion at the inflection point. We show that, to first approximation, total length grows linearly with the number of coils, and it is proportional to the minimum crossing number of the knot type. By taking the winding number, given by the ratio between meridian and longitudinal wraps, as measure of topological complexity of the knot, we analyse its influence on several global quantities, such as total length, curvature, torsion and writhe. In chapter 2 we analyse the influence of the winding number and other geometric properties on induction, energy and helicity. This is done by assuming the physical filament of infinitesimally small cross-section and by using the Biot-Savart law adapted for the particular parametrization chosen. Field line patterns of the induced field are obtained for a large family of knots/unknots on several cross-sectional planes. The intensity of the induced field is shown to depend linearly on the number of toroidal coils. We provide bounds on energy, and an estimate of helicity in terms of writhe. In chapter 3 we compare local and global induction contributions in relation to the winding number, by providing asymptotic expansions of the integrand function. We show that in general local leading order terms are not sufficient to provide accurate global information; nevertheless, for some values of the winding number local and global behaviours are found to be in good agreement. In chapter 4 we investigate the influence of the winding number on the binormal component of the self-induction a point asymptotically near to the source field. Since in the limit the Biot-Savart integral becomes singular, we apply the analytical prescription of Moore and Saffman (1972) to regularize it. While to leading order the self-induction is proportional to local curvature, we derive an integral formula for next terms, including higher order local terms together with non-local terms, and we study its dependence on the winding number by showing that the dominant contribution is generally given by non-local terms.
Livres sur le sujet "Nodi torici"
De Nigris, Maria Teresa, Gloria Ludovisi et Matteo Paoletti, dir. La Società Teatrale Internazionale 1908-1931. Archivio e storia di una grande impresa teatrale. Viella editrice, 2016. http://dx.doi.org/10.52056/9788867288236.
Texte intégralActes de conférences sur le sujet "Nodi torici"
Choi, Yunsung, et Dongwoo Kim. « Performance analysis with and without torch node in secure communications ». Dans 2015 International Conference on Advanced Technologies for Communications (ATC). IEEE, 2015. http://dx.doi.org/10.1109/atc.2015.7388423.
Texte intégralKoganti, Ramakrishna, Armando Joaquin et Chris Karas. « Dimensional Variation Analysis of T-Node Joints Using Aluminum 6063-T52 Extrusion Material in Gas Metal Arc Welding (GMAW) Joining Process ». Dans ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASMEDC, 2008. http://dx.doi.org/10.1115/msec_icmp2008-72071.
Texte intégral