Littérature scientifique sur le sujet « NO gas »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « NO gas ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "NO gas"
Goto, Nobuharu, et Richard P. Pharis. « Role of gibberellins in the development of floral organs of the gibberellin-deficient mutant, ga1-1, of Arabidopsis thaliana ». Canadian Journal of Botany 77, no 7 (5 novembre 1999) : 944–54. http://dx.doi.org/10.1139/b99-090.
Texte intégralTu, Yicheng, Peter Hirst, Ronald Coolbaugh et Richard Pharis. « 532 Endogenous Gibberellins in Developing Apple Seeds in Relation to Biennial Bearing ». HortScience 35, no 3 (juin 2000) : 487B—487. http://dx.doi.org/10.21273/hortsci.35.3.487b.
Texte intégralKamboj, Nitin, et Mohrana Choudhary. « Impact of solid waste disposal on ground water quality near Gazipur dumping site, Delhi, India ». Journal of Applied and Natural Science 5, no 2 (1 décembre 2013) : 306–12. http://dx.doi.org/10.31018/jans.v5i2.322.
Texte intégralShiraiwa, Nobutaka, Kaori Kikuchi, Ichiro Honda, Masayoshi Shigyo, Hiroko Yamazaki, Daisuke Tanaka, Kenji Tanabe et Akihiro Itai. « Characterization of Endogenous Gibberellins and Molecular Cloning of a Putative Gibberellin 3-Oxidase Gene in Bunching Onion ». Journal of the American Society for Horticultural Science 136, no 6 (novembre 2011) : 382–88. http://dx.doi.org/10.21273/jashs.136.6.382.
Texte intégralRebers, Mariken, Evert Vermeer, Erik Knegt et Linus H. W. van der Plas. « Gibberellin Levels Are Not a Suitable Indicator for Properly Cold-treated Tulip Bulbs ». HortScience 31, no 5 (septembre 1996) : 837–38. http://dx.doi.org/10.21273/hortsci.31.5.837.
Texte intégralYang, Xiaohua, Susan K. Brown et Peter J. Davies. « The Content and In Vivo Metabolism of Gibberellin in Apple Vegetative Tissues ». Journal of the American Society for Horticultural Science 138, no 3 (mai 2013) : 173–83. http://dx.doi.org/10.21273/jashs.138.3.173.
Texte intégralKosakivska, I. V. « GIBBERELLINS IN REGULATION OF PLANT GROWTH AND DEVELOPMENT UNDER ABIOTIC STRESSES ». Biotechnologia Acta 14, no 2 (février 2021) : 5–18. http://dx.doi.org/10.15407/biotech14.02.005.
Texte intégralPang, Yongqi, Jintong Li, Bishu Qi, Mi Tian, Lirong Sun, Xuechen Wang et Fushun Hao. « Aquaporin AtTIP5;1 as an essential target of gibberellins promotes hypocotyl cell elongation in Arabidopsis thaliana under excess boron stress ». Functional Plant Biology 45, no 3 (2018) : 305. http://dx.doi.org/10.1071/fp16444.
Texte intégralMilovanov, Y. S. « Influence of gas adsorption on the impedance of porous GaAs ». Functional materials 23, no 4 (24 mars 2017) : 052–55. http://dx.doi.org/10.15407/fm24.01.052.
Texte intégralSamba, Mohammed Alsharif, Ibrahim Aldokali et Mahmoud Omran Elsharaf. « A New EOR Technology : Gas Alternating Gas Injection ». Journal of Earth Energy Engineering 8, no 1 (30 avril 2019) : 27–32. http://dx.doi.org/10.25299/jeee.2019.vol8(1).2354.
Texte intégralThèses sur le sujet "NO gas"
Shahnaz, Sabina. « Gas flux estimation from surface gas concentrations ». Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55073.
Texte intégralZanker, Matthew John. « Real gas effects in heated gas inflators ». Thesis, University of Iowa, 2010. https://ir.uiowa.edu/etd/768.
Texte intégralAbdalsadig, M. « Gas lift optimization utilising automation gas lift valve ». Thesis, University of Salford, 2017. http://usir.salford.ac.uk/44593/.
Texte intégralLabed, Ismail. « Gas-condensate flow modelling for shale gas reservoirs ». Thesis, Robert Gordon University, 2016. http://hdl.handle.net/10059/2144.
Texte intégralCAVANA, MARCO. « Gas network modelling for a multi-gas system ». Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2850606.
Texte intégralLobova, A., J. Sitnik, A. Spivak et V. Gavrilova. « Gas compressors ». Thesis, Вид-во СумДУ, 2009. http://essuir.sumdu.edu.ua/handle/123456789/17049.
Texte intégralMulyadi, Henny. « Determination of residual gas staturation and gas-water relative permeability in water-driven gas reserviors / ». Full text available, 2002. http://adt.curtin.edu.au/theses/available/adt-WCU20030702.131009.
Texte intégralMulyadi, Henny. « Determination of residual gas saturation and gas-water relative permeability in water-driven gas reservoirs ». Thesis, Curtin University, 2002. http://hdl.handle.net/20.500.11937/1294.
Texte intégralMulyadi, Henny. « Determination of residual gas saturation and gas-water relative permeability in water-driven gas reservoirs ». Curtin University of Technology, Department of Petroleum Engineering, 2002. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=12957.
Texte intégralwere compared.The evidence suggested that steady-state displacement and co-current imbibition tests are the most representative techniques for reservoir application. Steady-state displacement also yields the complete relative permeability (RP) data but it requires long stabilisation times and is costly.In the third stage, a new technique was successfully developed for determining both Sgr and gas-water RP data. The new method consists of an initial co-current imbibition experiment followed by the newly developed correlation (Mulyadi, Amin and Kennaird correlation). Co-current imbibition is used to measure the end-point data, for example, initial water saturation (Swi) and Sgr. The MAK correlation was developed to extend the co-current imbibition test by generating gas-water relative permeability data. Unlike previous correlations, MAK correlation is unique because it incorporates and exhibits the formation properties, reservoir conditions and fluid properties (for example, permeability, porosity, interfacial tension and gas density) to generate the RP curves. The accuracy and applicability of MAK correlations were investigated with several sets of gas-water RP data measured by steady-state displacement tests for various gas reservoirs in Australia, New Zealand, South-East Asia and U.S.A. The MAK correlation proved superior to previously developed correlations to demonstrate its robustness.The purpose of the final stage was to aggressively pursue the possibility of advancing the application of the new technique beyond special core analysis (SCAL). As MAK correlation is successful in describing gas water RP in a core plug scale, it is possible to extend its application to describe the overall reservoir flow behaviour. This investigation was achieved by implementing MAK correlation into a 3-D reservoir simulator (MoReS) and performing simulations on a producing ++
field.The simulation studies were divided into two categories: pre and post upscaled application.The case studies were performed on two X gas-condensate fields: X1 (post upscaled) and X2 (pre upscaled) fields. Since MAK correlation was developed for gas-water systems, several modifications were required to account for the effect of the additional phase (oil) on gas and water RP in gas-condensate systems. In this case, oil RP data was generated by Corey's equations. Five different case studies were performed to investigate the individual and combination effect of implementing MAK correlation, alternative Swi and Sgr correlations and refining porosity and permeability clustering. Moreover, MAK correlation has proven to be effective as an approximation technique for cell by cell simulation to advance reservoir simulation technology.
Ozturk, Bulent. « Simulation Of Depleted Gas Reservoir For Underground Gas Storage ». Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605723/index.pdf.
Texte intégraltake or pay&rdquo
approach creates problems since the demand for natural gas varies during the year and the excess amount of natural gas should be stored. In this study, an underground gas storage project is evaluated in a depleted gas Field M. After gathering all necessary reservoir, fluid, production and pressure data, the data were adapted to computer language, which was used in a commercial simulator software (IMEX) that is the CMG&rsquo
s (Computer Modelling Group) new generation adoptive simulator, to reach the history matching. The history matching which consists of the 4 year of production of the gas reservoir is the first step of this study. The simulation program was able to accomplish a good history match with the given parameters of the reservoir. Using the history match as a base, five different scenarios were created and forecast the injection and withdrawal performance of the reservoir. These scenarios includes 5 newly drilled horizontal wells which were used in combinations with the existing wells. With a predetermined injection rate of 13 MMcf/D was set for all the wells and among the 5 scenarios, 5 horizontal &ndash
6 vertical injectors &
5 horizontal - 6 vertical producers is the most successful in handling the gas inventory and the time it takes for a gas injection and production period. After the determination of the well configuration, the optimum injection rate for the entire field was obtained and found to be 130 MMcf/D by running different injection rates for all wells and then for only horizontal wells different injection rates were applied with a constant injection rate of 130 MMcf/d for vertical wells. Then it has been found that it is better to apply the 5th scenario which includes 5 horizontal &ndash
6 vertical injectors &
5 horizontal - 6 vertical producers having an injection rate of 130 MMcf/d for horizontal and vertical wells. Since within the 5th scenario, changing the injection rate to 1.3 Bcf/d and 13 Bcf/d, did not effect and change the average reservoir pressure significantly, it is best to carry out the project with the optimum injection rate which is 130 MMcf/d. The total gas produced untill 2012 is 394 BCF and the gas injected is 340 BCF where the maximum average reservoir pressure was recovered and set into a new value of 1881 psi by injection and cushion gas pressure as 1371 psi by withdrawal. If 5th scenario is compared with the others, there is an increase in injection and production performance about 90%.
Livres sur le sujet "NO gas"
Bartnik, Ryszard, et Tomasz Wojciech Kowalczyk. Hierarchical Gas-Gas Systems. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6.
Texte intégralFaul, Eckhard, dir. Gas/Gas. Zweiter Teil. Stuttgart, Germany : Reclam-Verlag, 2013.
Trouver le texte intégralFlórez, José Manuel Alvarez. Gas. Madrid : Anaya & M. Muchnik, 1993.
Trouver le texte intégralPipe, Jim. Gas. Mankato, Minn : Stargazer Books, 2011.
Trouver le texte intégralCranfield, John. Gas. London : BP Educational Service, 1986.
Trouver le texte intégralCommission, Monopolies and Mergers. Gas. London [England] : HMSO, 1993.
Trouver le texte intégralJackman, Wayne. Gas. New York : Thomson Learning, 1993.
Trouver le texte intégralSteven, Berkoff, dir. Gas. London] : Bloomsbury, 2013.
Trouver le texte intégralAssociates, Ron Hayward, dir. Gas. New York : Gloucester Press, 1985.
Trouver le texte intégralXiao, Dengming. Gas Discharge and Gas Insulation. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48041-0.
Texte intégralChapitres de livres sur le sujet "NO gas"
Madhusudana, C. V. « Gas Gap Conductance ». Dans Mechanical Engineering Series, 45–63. New York, NY : Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-3978-9_4.
Texte intégralBartnik, Ryszard, et Tomasz Wojciech Kowalczyk. « Replacing Natural Gas in a Gas–Gas Engine with Nuclear Fuel ». Dans Hierarchical Gas-Gas Systems, 143–46. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_7.
Texte intégralBartnik, Ryszard, et Tomasz Wojciech Kowalczyk. « Thermodynamic and Economic Analysis of a Gas Turbine Set Coupled with a Turboexpander in a Hierarchical Gas–Gas System ». Dans Hierarchical Gas-Gas Systems, 35–63. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_3.
Texte intégralBartnik, Ryszard, et Tomasz Wojciech Kowalczyk. « Introduction ». Dans Hierarchical Gas-Gas Systems, 1–7. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_1.
Texte intégralBartnik, Ryszard, et Tomasz Wojciech Kowalczyk. « Thermodynamic and Economic Analysis of Trigeneration System with a Hierarchical Gas-Gas Engine for Production of Electricity, Heat and Cold ». Dans Hierarchical Gas-Gas Systems, 65–97. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_4.
Texte intégralBartnik, Ryszard, et Tomasz Wojciech Kowalczyk. « Economic Analysis of Hydrogen Production in the Process of Water Electrolysis in a Gas–Gas Engine System ». Dans Hierarchical Gas-Gas Systems, 99–114. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_5.
Texte intégralBartnik, Ryszard, et Tomasz Wojciech Kowalczyk. « Thermodynamic and Economic Analysis of a Hierarchical Gas-Gas Engine Integrated with a Compressed Air Storage ». Dans Hierarchical Gas-Gas Systems, 115–42. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_6.
Texte intégralBartnik, Ryszard, et Tomasz Wojciech Kowalczyk. « Basic Thermodynamic Analyses of Hierarchical Systems ». Dans Hierarchical Gas-Gas Systems, 9–33. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69205-6_2.
Texte intégralZarach, Stephanie. « Gas ». Dans Debrett’s Bibliography of Business History, 117–18. London : Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1007/978-1-349-08984-0_26.
Texte intégralCrew, Michael A., et Paul R. Kleindorfer. « Gas ». Dans The Economics of Public Utility Regulation, 235–44. London : Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-07295-8_10.
Texte intégralActes de conférences sur le sujet "NO gas"
Badykov, Renat, Sergei Falaleev, Houston Wood et Alexander Vinogradov. « Gas film vibration inside dry gas seal gap ». Dans 2018 Global Fluid Power Society PhD Symposium (GFPS). IEEE, 2018. http://dx.doi.org/10.1109/gfps.2018.8472383.
Texte intégralMartins, D., I. Catarino, U. Schroder, J. Ricardo, R. Patricio, L. Duband, G. Bonfait et J. G. Weisend. « CUSTOMIZABLE GAS-GAP HEAT SWITCH ». Dans TRANSACTIONS OF THE CRYOGENIC ENGINEERING CONFERENCE—CEC : Advances in Cryogenic Engineering. AIP, 2010. http://dx.doi.org/10.1063/1.3422349.
Texte intégralHELMY, A. « GAP propellant for gas generator application ». Dans 23rd Joint Propulsion Conference. Reston, Virigina : American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1725.
Texte intégralSuomilammi, Ari. « Vent Gas Collection From Gas Compressor Dry Gas Seals ». Dans ASME Turbo Expo 2004 : Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53154.
Texte intégralSim, S. S. K., A. T. Turta, A. K. Singhal et B. F. Hawkins. « Enhanced Gas Recovery : Factors Affecting Gas-Gas Displacement Efficiency ». Dans Canadian International Petroleum Conference. Petroleum Society of Canada, 2008. http://dx.doi.org/10.2118/2008-145.
Texte intégralTurta, A. T., S. S. K. Sim, A. K. Singhal et B. F. Hawkins. « Basic Investigations on Enhanced Gas Recovery by Gas-Gas Displacement ». Dans Canadian International Petroleum Conference. Petroleum Society of Canada, 2007. http://dx.doi.org/10.2118/2007-124.
Texte intégralJanakiram, Dharanipragada, S. J. Balaji, Akshay Dhumal, Nishank Garg et Ganesh Kulkarni. « GAS ». Dans ICPP '18 Comp : 47th International Conference on Parallel Processing Companion. New York, NY, USA : ACM, 2018. http://dx.doi.org/10.1145/3229710.3229758.
Texte intégralZhou, Minxuan, Mohsen Imani, Saransh Gupta et Tajana Rosing. « GAS ». Dans ISLPED '18 : International Symposium on Low Power Electronics and Design. New York, NY, USA : ACM, 2018. http://dx.doi.org/10.1145/3218603.3218631.
Texte intégralSinghal, A. K., S. Sim et B. Hawkins. « Gas Return From Gas Injection Projects ». Dans Canadian International Petroleum Conference. Petroleum Society of Canada, 2008. http://dx.doi.org/10.2118/2008-172.
Texte intégralLiya, Zhang. « Feasibility Study of Tianwaitian Gas Field Gas Condensate Reinjection Gas Well ». Dans 2013 Fifth International Conference on Computational and Information Sciences (ICCIS). IEEE, 2013. http://dx.doi.org/10.1109/iccis.2013.329.
Texte intégralRapports d'organisations sur le sujet "NO gas"
Rudy Rogers et John Etheridge. Gas Hydrate Storage of Natural Gas. Office of Scientific and Technical Information (OSTI), mars 2006. http://dx.doi.org/10.2172/903468.
Texte intégralSwanson, M. L. Gas separation and hot-gas cleanup. Office of Scientific and Technical Information (OSTI), novembre 1996. http://dx.doi.org/10.2172/244395.
Texte intégralHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), octobre 2004. http://dx.doi.org/10.2172/834332.
Texte intégralHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), janvier 2005. http://dx.doi.org/10.2172/836819.
Texte intégralHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), janvier 2004. http://dx.doi.org/10.2172/822675.
Texte intégralHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), avril 2004. http://dx.doi.org/10.2172/823714.
Texte intégralHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), juillet 2004. http://dx.doi.org/10.2172/826361.
Texte intégralHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), janvier 2003. http://dx.doi.org/10.2172/815216.
Texte intégralHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), juin 2002. http://dx.doi.org/10.2172/815217.
Texte intégralHoward S. Meyer. GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING. Office of Scientific and Technical Information (OSTI), juin 2002. http://dx.doi.org/10.2172/815218.
Texte intégral