Littérature scientifique sur le sujet « Nitrogen fixation and transfer »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nitrogen fixation and transfer ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Nitrogen fixation and transfer"

1

George, T. Adrian, et Bharat B. Kaul. « Electron transfer in inorganic nitrogen fixation ». Inorganic Chemistry 30, no 5 (mars 1991) : 882–83. http://dx.doi.org/10.1021/ic00005a004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Farnham, D. E., et J. R. George. « Dinitrogen fixation and nitrogen transfer among red clover cultivars ». Canadian Journal of Plant Science 73, no 4 (1 octobre 1993) : 1047–54. http://dx.doi.org/10.4141/cjps93-136.

Texte intégral
Résumé :
Red clover (Trifolium pratense L.) is an important perennial forage legume used for hay or as pasture in crop rotations. Despite its traditional usage as a source of nitrogen (N) for cropping systems, little information is available on the amounts of atmospheric dinitrogen (N2) that red clover fixes or transfers to an associated grass during long-term stands. Field research was undertaken in 1989 and 1990 to compare N2 fixation and N transfer potentials of one experimental and three common red clover cultivars seeded in binary mixtures with orchardgrass (Dactylis glomerata L.). Dinitrogen fixation and N transfer were estimated by 15N isotope dilution using orchardgrass pure stands as a reference. Over the 2-yr study, percentage legume N derived from N2 fixation ranged from 96.4 to 96.7% among the red clover cultivars. Total-season fixed-N yields in red clover herbage ranged from 72.6 to 159.2 kg ha−1. Dinitrogen fixation and fixed-N yields usually did not differ among red clover cultivars in either year. Percentage N in orchardgrass herbage derived from N2 fixation by red clover ranged from 43.7 to 70.5%. Total-season transferred-N yields in orchardgrass herbage was 16.9 kg ha−1 in 1989 and 57.8 kg ha−1 in 1990. Neither N-transfer nor transferred-N yield differed among cultivars in either year. It is concluded that, under the conditions of this study, the red clover cultivars tested generally did not differ in their abilities to fix atmospheric N2 or to transfer fixed-N to associated orchardgrass. Key words: Red clover, Trifolium pratense L., dinitrogen fixation, nitrogen transfer, isotope dilution
Styles APA, Harvard, Vancouver, ISO, etc.
3

Stern, W. R. « Nitrogen fixation and transfer in intercrop systems ». Field Crops Research 34, no 3-4 (septembre 1993) : 335–56. http://dx.doi.org/10.1016/0378-4290(93)90121-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Katz, Faith E. H., Cedric P. Owens et F. A. Tezcan. « Electron Transfer Reactions in Biological Nitrogen Fixation ». Israel Journal of Chemistry 56, no 9-10 (18 juillet 2016) : 682–92. http://dx.doi.org/10.1002/ijch.201600020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rees, Douglas C., F. Akif Tezcan, Chad A. Haynes, Mika Y. Walton, Susana Andrade, Oliver Einsle et James B. Howard. « Structural basis of biological nitrogen fixation ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 363, no 1829 (5 avril 2005) : 971–84. http://dx.doi.org/10.1098/rsta.2004.1539.

Texte intégral
Résumé :
Biological nitrogen fixation is mediated by the nitrogenase enzyme system that catalyses the ATP dependent reduction of atmospheric dinitrogen to ammonia. Nitrogenase consists of two component metalloproteins, the MoFe-protein with the FeMo-cofactor that provides the active site for substrate reduction, and the Fe-protein that couples ATP hydrolysis to electron transfer. An overview of the nitrogenase system is presented that emphasizes the structural organization of the proteins and associated metalloclusters that have the remarkable ability to catalyse nitrogen fixation under ambient conditions. Although the mechanism of ammonia formation by nitrogenase remains enigmatic, mechanistic inferences motivated by recent developments in the areas of nitrogenase biochemistry, spectroscopy, model chemistry and computational studies are discussed within this structural framework.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jiao, Jian, Li Juan Wu, Biliang Zhang, Yue Hu, Yan Li, Xing Xing Zhang, Hui Juan Guo et al. « MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules ». Molecular Plant-Microbe Interactions® 29, no 5 (mai 2016) : 352–61. http://dx.doi.org/10.1094/mpmi-01-16-0019-r.

Texte intégral
Résumé :
To achieve effective symbiosis with legume, rhizobia should fine-tune their background regulation network in addition to activating key genes involved in nodulation (nod) and nitrogen fixation (nif). Here, we report that an ancestral zinc finger regulator, MucR1, other than its paralog, MucR2, carrying a frameshift mutation, is essential for supporting nitrogen fixation of Sinorhizobium fredii CCBAU45436 within soybean nodules. In contrast to the chromosomal mucR1, mucR2 is located on symbiosis plasmid, indicating its horizontal transfer potential. A MucR2 homolog lacking the frameshift mutation, such as the one from S. fredii NGR234, can complement phenotypic defects of the mucR1 mutant of CCBAU45436. RNA-seq analysis revealed that the MucR1 regulon of CCBAU45436 within nodules exhibits significant difference compared with that of free-living cells. MucR1 is required for active expression of transporters for phosphate, zinc, and elements essential for nitrogenase activity (iron, molybdenum, and sulfur) in nodules but is dispensable for transcription of key genes (nif/fix) involved in nitrogen fixation. Further reverse genetics suggests that S. fredii uses high-affinity transporters to meet the demand for zinc and phosphate within nodules. These findings, together with the horizontal transfer potential of the mucR homolog, imply an intriguing evolutionary role of this ancestral regulator in supporting nitrogen fixation.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Inomura, Keisuke, Christopher L. Follett, Takako Masuda, Meri Eichner, Ondřej Prášil et Curtis Deutsch. « Carbon Transfer from the Host Diatom Enables Fast Growth and High Rate of N2 Fixation by Symbiotic Heterocystous Cyanobacteria ». Plants 9, no 2 (4 février 2020) : 192. http://dx.doi.org/10.3390/plants9020192.

Texte intégral
Résumé :
Diatom–diazotroph associations (DDAs) are symbioses where trichome-forming cyanobacteria support the host diatom with fixed nitrogen through dinitrogen (N2) fixation. It is inferred that the growth of the trichomes is also supported by the host, but the support mechanism has not been fully quantified. Here, we develop a coarse-grained, cellular model of the symbiosis between Hemiaulus and Richelia (one of the major DDAs), which shows that carbon (C) transfer from the diatom enables a faster growth and N2 fixation rate by the trichomes. The model predicts that the rate of N2 fixation is 5.5 times that of the hypothetical case without nitrogen (N) transfer to the host diatom. The model estimates that 25% of fixed C from the host diatom is transferred to the symbiotic trichomes to support the high rate of N2 fixation. In turn, 82% of N fixed by the trichomes ends up in the host. Modeled C fixation from the vegetative cells in the trichomes supports only one-third of their total C needs. Even if we ignore the C cost for N2 fixation and for N transfer to the host, the total C cost of the trichomes is higher than the C supply by their own photosynthesis. Having more trichomes in a single host diatom decreases the demand for N2 fixation per trichome and thus decreases their cost of C. However, even with five trichomes, which is about the highest observed for Hemiaulus and Richelia symbiosis, the model still predicts a significant C transfer from the diatom host. These results help quantitatively explain the observed high rates of growth and N2 fixation in symbiotic trichomes relative to other aquatic diazotrophs.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Foster, Rachel A., Marcel M. M. Kuypers, Tomas Vagner, Ryan W. Paerl, Niculina Musat et Jonathan P. Zehr. « Nitrogen fixation and transfer in open ocean diatom–cyanobacterial symbioses ». ISME Journal 5, no 9 (31 mars 2011) : 1484–93. http://dx.doi.org/10.1038/ismej.2011.26.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

McNeill, A. M., et M. Wood. « Fixation and transfer of nitrogen by white clover to ryegrass ». Soil Use and Management 6, no 2 (juin 1990) : 84–86. http://dx.doi.org/10.1111/j.1475-2743.1990.tb00810.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Farnham, Dale E., et J. Ronald George. « Dinitrogen Fixation and Nitrogen Transfer in Birdsfoot Trefoil–Orchardgrass Communities ». Agronomy Journal 86, no 4 (juillet 1994) : 690–94. http://dx.doi.org/10.2134/agronj1994.00021962008600040019x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Nitrogen fixation and transfer"

1

Burity, Helio Almeida. « Nitrogen fixation, transfer and competition in alfalfa-grass mixtures ». Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=73959.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jones, Clare. « Expression of FixAB : a putative member of the electron transfer flavoprotein superfamily ». Thesis, University of East Anglia, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jayasundara, H. P. S. « Productivity, dinitrogen fixation and nitrogen transfer in some legume based cropping systems ». Thesis, University of Reading, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386547.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wätjen, Florian. « Rhenium and Osmium PNP Pincer Complexes for Nitrogen Fixation and Nitride Transfer ». Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-12D8-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chibwana, P. A. D. « Nitrogen fixation in pigeonpeas (Cajanus cajan L. Millsp) and transfer of nitrogen to associated ryegrass (Lolium perrene L.) ». Thesis, University of Reading, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317631.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sarma, Ranjana. « Investigations of nucleotide-dependent electron transfer and substrate binding in nitrogen fixation and chlorophyll biosynthesis ». Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/sarma/SarmaR1209.pdf.

Texte intégral
Résumé :
The studies presented in this thesis include studies of nucleotide-dependent conformations of the electron donor protein in nitrogenase and dark-operative protochlorophyllide reductase (DPOR) characterized using small-angle x-ray scattering and x-ray diffraction methods. Nitrogen fixation and chlorophyll synthesis are involved in the reduction of high energy bonds under physiological conditions. Both make use of elegant reaction mechanisms made possible by complex enzyme systems which are evolutionarily related. Nitrogenase reduces nitrogen to ammonia and is a two-component metalloenzyme composed of Fe protein and MoFe protein. For nitrogen reduction, the Fe protein and MoFe protein associate and dissociate in a manner concomitant with hydrolysis of at least two MgATP molecules and enables the concomitant transfer of at least one electron from Fe protein to MoFe protein. During chlorophyll biosysnthesis, the rate limiting step is catalyzed by a two-component metalloenzyme called DPOR. The two components of DPOR are BchL and BchNB proteins and these share high level of sequence similarity with the Fe protein and the MoFe protein, respectively. Based on this sequence similarity and biochemical data available, it is proposed that the reaction mechanism is similar to nitrogenase mechanism in which the components of DPOR associate and dissociate in a nucleotide dependent manner, to enable intercomponent electron transfer. Fe protein and BchL present as unique examples of proteins that couple nucleotide dependent conformational change to enable electron transfer for high energy bond reduction. The present studies have been directed at studying the low resolution studies of MgATP-bound wild-type Fe protein and its comparison to the structure of the proposed mimic, i.e, L127 Delta Fe protein. The studies presented show evidence of the MgATP-bound wild-type Fe protein having a conformation very different from the L127 Delta Fe protein. The chapters also include detailed characterization of the structure of BchL in both MgADP bound and nucleotide-free states which offer detailed insights in the structure based mechanism of BchL, with primary focus on identifying key residues involved in componenet docking and in electron transfer. Together, the studies on the Fe protein and BchL have furthered our understanding of mechanism of electron transfer in these complex enzyme systems.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ledbetter, Rhesa N. « Electron Flow and Management in Living Systems : Advancing Understanding of Electron Transfer to Nitrogenase ». DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7197.

Texte intégral
Résumé :
Nitrogen is a critical nutrient for growth and reproduction in living organisms. Although the Earth’s atmosphere is composed of ~80% nitrogen gas (N2), it is inaccessible to most living organisms in that form. Biological nitrogen fixation, however, can be performed by microbes that harbor the enzyme nitrogenase. This enzyme converts N2 into bioavailable ammonia (NH3) and accounts for at least half of the “fixed”nitrogen on the planet. The other major contributor to ammonia production is the industrial Haber-Bosch process. While the Haber-Bosch process has made significant advances in sustaining the global food supply through the generation of fertilizer, it requires high temperature and pressure and fossil fuels. This makes nitrogenase an ideal system for study, as it is capable of performing this challenging chemistry under ambient conditions and without fossil fuels. Nitrogenase requires energy and electrons to convert N2into NH3. The work presented here examined how the enzyme receives electrons to perform the reaction. It was discovered that some microbes employ a novel mechanism that adjusts the energy state of the electrons so that nitrogenase can accept them. Further, the slowest step that takes place in nitrogenase once the electrons are taken up was identified. Finally, by capitalizing on fundamental knowledge, a biohybrid system was designed to grow nitrogen-fixing bacteria in association with electrodes for light-driven production of fixed nitrogen that has potential to be used as a fertilizer for plant growth. Gaining an in-depth understanding of nitrogenase provides insight into one of the most challenging biological reactions, and the newfound knowledge may be a catalyst in developing more efficient systems for sustainable ammonia production.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Angove, Hayley Clare. « Energy transduction by nitrogenase involving ATP hydrolysis coupled to proton and electron transfers ». Thesis, University of Sussex, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282081.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sampson, Helen G. (Helen Grace). « Biomass and protein yields, N2-fixation and N transfer in annual forage legume-barley (Hordeum vulgare L.) cropping systems ». Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68257.

Texte intégral
Résumé :
In this study, six annual legumes and the perennial, red clover (Trifolium pratense L.) were monocropped (MC) and intercropped (IC) with barley in a field study with three N levels, 0, 30 and 60 kg N ha$ sp{-1}$. At O kg N ha$ sp{-1}$, N$ sb2$-fixation and N transfer were estimated by the $ sp{15}$N isotope dilution (ID) method. At 60 kg N ha$ sp{-1}$, a direct $ sp{15}$N labelling method was employed to study N transfer. The hypotheses were that the annual species would be more productive within one growing season than red clover, that increased N levels would increase herbage dry matter (DM) and crude protein (CP), that the proportion of N derived from N$ sb2$-fixation in IC-legumes would be higher than that of MC-legumes and that within intercrops there would be evidence of N transfer. In neither year was the total DM yield of red clover, MC or IC, less than the rest of the legumes. In 1991, the total DM yield of intercrops responded to 30 kg N ha$ sp{-1}$; in neither year did the estimated total CP yield of MC-legumes or intercrops respond to N levels. Only in 1992 was there evidence of N$ sb2$-fixation and the proportion of N derived from fixation by IC-legumes was 145% higher than that of MC-legumes. Only the $ sp{15}$N direct labelling method gave evidence of N transfer, to associated legume and barley plants in 1991, and to associated legume plants in 1992.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wätjen, Florian [Verfasser], Sven [Akademischer Betreuer] Schneider, Sven [Gutachter] Schneider, Franc [Gutachter] Meyer et Marinella [Gutachter] Mazzanti. « Rhenium and Osmium PNP Pincer Complexes for Nitrogen Fixation and Nitride Transfer / Florian Wätjen ; Gutachter : Sven Schneider, Franc Meyer, Marinella Mazzanti ; Betreuer : Sven Schneider ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://d-nb.info/1201884640/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Nitrogen fixation and transfer"

1

Ribbe, Markus W., dir. Nitrogen Fixation. Totowa, NJ : Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-194-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Polsinelli, M., R. Materassi et M. Vincenzini, dir. Nitrogen Fixation. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3486-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gresshoff, Peter M., L. Evans Roth, Gary Stacey et William E. Newton, dir. Nitrogen Fixation. Boston, MA : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-6432-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nishibayashi, Yoshiaki, dir. Nitrogen Fixation. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57714-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zehr, Jonathan P., et Douglas G. Capone. Marine Nitrogen Fixation. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67746-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Graham, P. H., M. J. Sadowsky et C. P. Vance, dir. Symbiotic Nitrogen Fixation. Dordrecht : Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1088-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

de Bruijn, Frans J., dir. Biological Nitrogen Fixation. Hoboken, NJ, USA : John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119053095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gary, Stacey, Evans Harold et Burris Robert H, dir. Biological nitrogen fixation. New York : Chapman and Hall, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

S, Stacey G., Burris Robert H. 1914- et Evans H. J, dir. Biological nitrogen fixation. New York : Chapman & Hall, 1992.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Smith, Barry E., Raymond L. Richards et William E. Newton, dir. Catalysts for Nitrogen Fixation. Dordrecht : Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-3611-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Nitrogen fixation and transfer"

1

Syrtsova, L. A., S. Yu Drujinin, A. M. Usenskaya et G. I. Likhtenstein. « Energy Coupling and Electron Transfer in Nitrogenase ». Dans Nitrogen Fixation, 61–62. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3486-6_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ramsay, Joshua P., et Clive W. Ronson. « Genetic Regulation of Symbiosis Island Transfer inMesorhizobium loti ». Dans Biological Nitrogen Fixation, 217–24. Hoboken, NJ, USA : John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781119053095.ch21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Thorneley, Roger N. F. « Kinetics and mechanisms of ATP hydrolysis, electron transfers and proton release by Klebsiella pneumoniae nitrogenase ». Dans Nitrogen Fixation, 103–9. Boston, MA : Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-6432-0_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lambert, G. R., A. R. Harker, M. Zuber, D. A. Dalton, F. J. Hanus, S. A. Russell et H. J. Evans. « Characterization, Significance and Transfer of Hydrogen Uptake Genes from Rhizobium Japonicum ». Dans Nitrogen fixation research progress, 209–15. Dordrecht : Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5175-4_28.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hubbell, David H. « Extension/Transfer of BNF Technology ». Dans Nitrogen Fixation by Legumes in Mediterranean Agriculture, 367–70. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1387-5_36.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Dora, S. A., et A. M. M. Hammad. « Transfer of Salt-Tolerance Encoded Genes of Halophilic Bacteria to R. leguminosarum via Plasmid Transfer Technique ». Dans Biological Nitrogen Fixation for the 21st Century, 511. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5159-7_321.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kim, Chul-Hwan, Limin Zheng, William E. Newton et Dennis R. Dean. « Intermolecular Electron Transfer and Substrate Reduction Properties of MoFe Proteins Altered by Site-Specific Amino Acid Substitution ». Dans New Horizons in Nitrogen Fixation, 105–10. Dordrecht : Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2416-6_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Isawa, T., K. Yuhashi, H. Ichige, M. Suzuki, T. Mikami, M. Itakura et K. Minamisawa. « Genome Rearrangements and Horizontal Gene Transfer in Bradyrhizobium japonicum ». Dans Biological Nitrogen Fixation for the 21st Century, 552. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5159-7_352.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Seefeldt, L. C., M. J. Ryle, J. M. Chan et W. N. Lanzilotta. « Nucleotide Hydrolysis and Electron Transfer Reactions in Nitrogenase Catalysis ». Dans Biological Nitrogen Fixation for the 21st Century, 39–42. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5159-7_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Parsons, R., et W. B. Silvester. « Sugar Transfer and Ammonia Production within the Gunnera / Nostoc Symbiosis ». Dans Biological Nitrogen Fixation for the 21st Century, 487. Dordrecht : Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5159-7_302.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Nitrogen fixation and transfer"

1

Zhang, L., S. Zhao, S. Wang, Y. Li et Z. Fang. « Nitrogen fixation via an underwater bubblesdischarge:Plasma Characteristics and nitrogen fixation performance ». Dans 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liu, D. « Plasma water based nitrogen fixation : production, regulation and application ». Dans 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626657.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Luo, Y., Y. Li, T. Zhang, C. Man, J. Wang, S. Jiang et X. Pei. « Pulse Modulated Microwave Air Plasma for Nitrogen Fixation as NOx ». Dans 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627505.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Manaigo, F., A. Bogaerts et R. Snyders. « Study of a gliding arc discharge for sustainable nitrogen fixation into NOx ». Dans 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10626847.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chen, Q., et M. Zhang. « Nitrogen fixation using a dc discharge plasma operated in an aqueous solution ». Dans 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Man, C., C. Zhang, X. Pei et T. Shao. « Rotating gliding arc reactor for nitrogen fixation in tandem with electrochemical ammonia synthesis ». Dans 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627609.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Y., et X. Pei. « Transition of Glow-like Discharge Mode to Enhance the Energy Efficiency in Nitrogen Fixation ». Dans 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10627496.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Shuyan, G., W. Yuan et Z. Hao. « Understanding Non-equilibrium NOx/O3 chemistry in Plasma-Assisted Nitrogen Fixation ». Dans 2024 IEEE International Conference on Plasma Science (ICOPS), 1. IEEE, 2024. http://dx.doi.org/10.1109/icops58192.2024.10625935.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dekas, Anne E. « NITROGEN FIXATION IN DEEP-SEA SEDIMENTS ». Dans GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-306667.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Stephens, Ifan. « Electrochemical nitrogen fixation : lithium and beyond ». Dans MATSUS Spring 2024 Conference. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Nitrogen fixation and transfer"

1

Paul J. Chirik. Understanding Nitrogen Fixation. Office of Scientific and Technical Information (OSTI), mai 2012. http://dx.doi.org/10.2172/1041006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Burris, R. H. Enzymology of biological nitrogen fixation. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/5403340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Burris, R. H. Enzymology of biological nitrogen fixation. Annual report. Office of Scientific and Technical Information (OSTI), mai 1992. http://dx.doi.org/10.2172/10138605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Okon, Yaacov, Robert Burris et Yigal Henis. Biological Nitrogen Fixation in Grass-Azospirillom Association. United States Department of Agriculture, janvier 1985. http://dx.doi.org/10.32747/1985.7593407.bard.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

James W Golden. Regulation of Development and Nitrogen Fixation in Anabaena. Office of Scientific and Technical Information (OSTI), août 2004. http://dx.doi.org/10.2172/838436.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Golden, James W. Regulation of Development and Nitrogen Fixation in Anabaena. Office of Scientific and Technical Information (OSTI), octobre 2008. http://dx.doi.org/10.2172/939624.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Cramer, Stephen. Support for the 19th International Congress on Nitrogen Fixation. Office of Scientific and Technical Information (OSTI), janvier 2018. http://dx.doi.org/10.2172/1418239.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Westgate, Mark E., Gerald Sebuwufu et Mercy K. Kabahuma. Enhancing Yield and Biological Nitrogen Fixation of Common Beans. Ames : Iowa State University, Digital Repository, 2012. http://dx.doi.org/10.31274/farmprogressreports-180814-203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kahn, Michael, Svetlana Yurgel, Aaron Ogden, Mahmoud Gargouri, Jeong-Jin Park, David Gang, Kelly Hagberg et al. Unbalancing Symbiotic Nitrogen Fixation : Can We Make Effectiveness More Effective ? Office of Scientific and Technical Information (OSTI), février 2021. http://dx.doi.org/10.2172/1764578.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kapulnik, Yoram, et Donald Phillips. Enhancing Nitrogen Fixation and Alfalfa Forage Production in Saline Environment. United States Department of Agriculture, mars 1993. http://dx.doi.org/10.32747/1993.7603516.bard.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie