Articles de revues sur le sujet « Nitroarene »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Nitroarene.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Nitroarene ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Xu, DaPeng, Meilu Xiong et Milad Kazemnejadi. « Efficient reduction of nitro compounds and domino preparation of 1-substituted-1H-1,2,3,4-tetrazoles by Pd(ii)-polysalophen coated magnetite NPs as a robust versatile nanocomposite ». RSC Advances 11, no 21 (2021) : 12484–99. http://dx.doi.org/10.1039/d1ra01164b.

Texte intégral
Résumé :
Facile nitroarene reduction as well as domino/reduction MCR preparation of 1-substituted-1H-1,2,3,4-tetrazoles from nitroarenes was performed by Pd(ii)-polysalophen coated magnetite NPs as a highly selective, recyclable and efficient nanocomposite.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Loska, Rafał, et Mieczysław Mąkosza. « Introduction of Carbon Substituents into Nitroarenes via Nucleophilic Substitution of Hydrogen : New Developments ». Synthesis 52, no 21 (18 juin 2020) : 3095–110. http://dx.doi.org/10.1055/s-0040-1707149.

Texte intégral
Résumé :
Nucleophilic substitution of hydrogen in nitroarenes has become a powerful synthetic tool for functionalization of these important organic substrates, complementary to other modern methods. In this review we present new developments in the area of introduction of alkyl and functionalized alkyl substituents into nitroarene rings via nucleo­philic substitution of hydrogen, followed by application of these processes in the construction of carbo- and heterocyclic rings. Finally, new developments in the investigation of the mechanism of SNArH are summarized.1 Introduction2 Alkylation and Haloalkylation3 Functionalized Carbon Substituents4 Formation of Carbo- and Heterocyclic Rings5 Mechanistic Aspects of SNArH6 Conclusion
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lim, Taeho, et Min Su Han. « Preparation of Metal Oxides Containing ppm Levels of Pd as Catalysts for the Reduction of Nitroarene and Evaluation of Their Catalytic Activity by the Fluorescence-Based High-Throughput Screening Method ». Catalysts 10, no 5 (13 mai 2020) : 542. http://dx.doi.org/10.3390/catal10050542.

Texte intégral
Résumé :
Herein, an easily accessible and efficient green method for the reduction of nitroarene compounds was developed using metal oxide catalysts. Heterogeneous metal oxides with or without Pd were prepared by a simple and scalable co-precipitation method and used for the reduction of nitroarenes. A fluorescence-based high-throughput screening (HTS) method was also developed for the rapid analysis of the reaction conditions. The catalytic activity of the metal oxides and reaction conditions were rapidly screened by the fluorescence-based HTS method, and Pd/CuO showed the highest catalytic activity under mild reaction conditions. After identifying the optimal reaction conditions, various nitroarenes were reduced to the corresponding aniline derivatives by Pd/CuO (0.005 mol% of Pd) under these conditions. Furthermore, the Pd/CuO catalyst was used for the one-pot Suzuki–Miyaura cross-coupling/reduction reaction. A gram-scale reaction (20 mmol) was successfully performed using the present method, and Pd/CuO showed high reusability without a loss of catalytic activity for five cycles.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lin, Yangming, Shuchang Wu, Wen Shi, Bingsen Zhang, Jia Wang, Yoong Ahm Kim, Morinobu Endo et Dang Sheng Su. « Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes ». Chemical Communications 51, no 66 (2015) : 13086–89. http://dx.doi.org/10.1039/c5cc01963j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Uberman, Paula M., Carolina S. García, Julieta R. Rodríguez et Sandra E. Martín. « PVP-Pd nanoparticles as efficient catalyst for nitroarene reduction under mild conditions in aqueous media ». Green Chemistry 19, no 3 (2017) : 739–48. http://dx.doi.org/10.1039/c6gc02710e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jia, Wei-Guo, Tai Zhang, Dong Xie, Qiu-Tong Xu, Shuo Ling et Qing Zhang. « Half-sandwich cycloruthenated complexes from aryloxazolines : synthesis, structures, and catalytic activities ». Dalton Transactions 45, no 36 (2016) : 14230–37. http://dx.doi.org/10.1039/c6dt02734b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Marakatti, Vijaykumar S., et Sebastian C. Peter. « Nickel–antimony nanoparticles confined in SBA-15 as highly efficient catalysts for the hydrogenation of nitroarenes ». New Journal of Chemistry 40, no 6 (2016) : 5448–57. http://dx.doi.org/10.1039/c5nj03479e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Moshapo, Paseka T., et Sandile B. Simelane. « Advances in nitroarene reductive amidations ». Arkivoc 2020, no 5 (10 février 2021) : 190–215. http://dx.doi.org/10.24820/ark.5550190.p011.417.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mondal, Manoj, Saitanya K. Bharadwaj et Utpal Bora. « O-Arylation with nitroarenes : metal-catalyzed and metal-free methodologies ». New Journal of Chemistry 39, no 1 (2015) : 31–37. http://dx.doi.org/10.1039/c4nj01293c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Laolob, Thanet, Nuntavan Bunyapraphatsara, Neti Waranuch, Sutatip Pongcharoen, Wikorn Punyain, Sirirat Chancharunee, Krisada Sakchaisri et al. « Enhancement of Lipolysis in 3T3-L1 Adipocytes by Nitroarene Capsaicinoid Analogs ». Natural Product Communications 16, no 1 (janvier 2021) : 1934578X2098794. http://dx.doi.org/10.1177/1934578x20987949.

Texte intégral
Résumé :
Transient receptor potential vanilloid 1 (TRPV1) activation by capsaicin binding increased intracellular calcium influx and stimulated adipocyte-to-adipocyte communication, leading to lipolysis. Generally, enhancement of π-stacking capabilities improves certain binding interactions. Notably, nitroarenes exhibit strong binding interactions with aromatic amino acid side chains in proteins. New capsaicinoid analogs were designed by substitution of the OCH3 group with a nitrogen dioxide (NO2) group on the vanillyl ring to investigate how π-stacking interactions in capsaicinoid analogs contribute to lipolysis. Capsaicinoid analogs, nitro capsaicin (5), and nitro dihydrocapsaicin (6) were prepared in moderate yields via coupling of a nitroaromatic amine salt and fatty acids. Oil Red O staining and triglyceride assays with 10 µM loading of capsaicin (CAP), dihydrocapsaicin (DHC), 5, and 6 were performed to investigate their effect on lipolysis in 3T3-L1 adipocytes. Both assay results indicated that 5 and 6 decreased lipid accumulation by 13.6% and 14.7%, respectively, and significantly reduced triglyceride content by 26.9% and 28.4%, respectively, in comparison with the control experiment. Furthermore, the decrease in triglyceride content observed in response to nitroarene capsaicinoid analogs was approximately 2-folds higher than that of CAP and DHC. These results arose from the NO2 group augmented π-π stacking with Tyr511 and the attractive charge interaction with Glu570 affecting binding interactions with TRPV1 receptors.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Chang, Liu, Jin Li, Na Wu et Xu Cheng. « Chemoselective electrochemical reduction of nitroarenes with gaseous ammonia ». Organic & ; Biomolecular Chemistry 19, no 11 (2021) : 2468–72. http://dx.doi.org/10.1039/d1ob00077b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Sakthikumar, K., S. Anantharaj, Sivasankara Rao Ede, K. Karthick, G. Ravi, T. Karthik et Subrata Kundu. « Prompt synthesis of iridium organosol on DNA for catalysis and SERS applications ». Journal of Materials Chemistry C 5, no 45 (2017) : 11947–57. http://dx.doi.org/10.1039/c7tc03742b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zhou, Ying-Hua, Qihao Yang, Yu-Zhen Chen et Hai-Long Jiang. « Low-cost CuNi@MIL-101 as an excellent catalyst toward cascade reaction : integration of ammonia borane dehydrogenation with nitroarene hydrogenation ». Chemical Communications 53, no 91 (2017) : 12361–64. http://dx.doi.org/10.1039/c7cc06530b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Gnanaprakasam, P., et T. Selvaraju. « Correction : Green synthesis of self assembled silver nanowire decorated reduced graphene oxide for efficient nitroarene reduction ». RSC Advances 5, no 9 (2015) : 6892. http://dx.doi.org/10.1039/c4ra90060j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Giri, Arkaprabha, Niraj Nitish Patil et Abhijit Patra. « Porous noria polymer : a cage-to-network approach toward a robust catalyst for CO2 fixation and nitroarene reduction ». Chemical Communications 57, no 36 (2021) : 4404–7. http://dx.doi.org/10.1039/d0cc07805k.

Texte intégral
Résumé :
A ‘preporous’ waterwheel-like molecular cage, noria, was knitted with rigid aromatic linkers to obtain porous organic polymers exhibiting excellent catalytic activity toward CO2 fixation and nitroarene reduction.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Özkaya, Bünyamin, Christina L. Bub et Frederic W. Patureau. « Step and redox efficient nitroarene to indole synthesis ». Chemical Communications 56, no 86 (2020) : 13185–88. http://dx.doi.org/10.1039/d0cc03258a.

Texte intégral
Résumé :
A step and redox efficient nitroarene to indole synthesis was herein developed, in sharp contrast to the rich literature on the construction of indoles. Elemental Zinc was found to be best terminal reductant.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Maity, Tanmoy, Susmita Bhunia, Soma Das et Subratanath Koner. « Heterogeneous O-arylation of nitroarenes with substituted phenols over a copper immobilized mesoporous silica catalyst ». RSC Advances 6, no 40 (2016) : 33380–86. http://dx.doi.org/10.1039/c6ra04409c.

Texte intégral
Résumé :
Highly efficient heterogeneous mesoporous silica based Cu-catalyst has been designed forO-arylation of phenol using nitroarene to afford unsymmetrical diarylethers. It can be recycled up to 5 times without any significant loss of catalytic activity.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Bhaumik, Kankan, et K. G. Akamanchi. « Nitroarene reduction using Raney nickel alloy with ammonium chloride in water ». Canadian Journal of Chemistry 81, no 3 (1 mars 2003) : 197–98. http://dx.doi.org/10.1139/v03-021.

Texte intégral
Résumé :
Aromatic nitroarenes are reduced in high yields using a user-friendly combination of Raney nickel alloy and ammonium chloride in water at 80–90°C.Key words: Raney nickel alloy, nitroarenes reduction, ammonium chloride, water.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Fu, Huan, Huan Zhang, Guichun Yang, Jun Liu, Junyuan Xu, Peihuan Wang, Ning Zhao, Lihua Zhu et Bing Hui Chen. « Highly dispersed rhodium atoms supported on defect-rich Co(OH)2 for the chemoselective hydrogenation of nitroarenes ». New Journal of Chemistry 46, no 3 (2022) : 1158–67. http://dx.doi.org/10.1039/d1nj04936d.

Texte intégral
Résumé :
0.54% Rh/Co(OH)2 exhibited 100% selectivity for –NO2 hydrogenation at >96% conversion for nitroarene hydrogenation. Its excellent catalytic performance is due to the interfacial effect of Rh–Co(OH)2 and Rh in the form of single atoms and nanoclusters.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Johnson, Glenn R., Barth F. Smets et Jim C. Spain. « Oxidative Transformation of Aminodinitrotoluene Isomers by Multicomponent Dioxygenases ». Applied and Environmental Microbiology 67, no 12 (1 décembre 2001) : 5460–66. http://dx.doi.org/10.1128/aem.67.12.5460-5466.2001.

Texte intégral
Résumé :
ABSTRACT The electron-withdrawing nitro substituents of 2,4,6-trinitrotoluene (TNT) make the aromatic ring highly resistant to oxidative transformation. The typical biological transformation of TNT involves reduction of one or more of the nitro groups of the ring to produce the corresponding amine. Reduction of a single nitro substituent of TNT to an amino substituent increases the electron density of the aromatic nucleus considerably. The comparatively electron-dense nuclei of the aminodinitrotoluene (ADNT) isomers would be expected to be more susceptible to oxygenase attack than TNT. The hypothesis was tested by evaluating three nitroarene dioxygenases for the ability to hydroxylate the ADNT isomers. The predominant reaction was dioxygenation of the ring to yield nitrite and the corresponding aminomethylnitrocatechol. A secondary reaction was benzylic monooxygenation to form aminodinitrobenzyl alcohol. The substrate preferences and catalytic specificities of the three enzymes differed considerably. The discovery that the ADNT isomers are substrates for the nitroarene dioxygenases reveals the potential for extensive bacterial transformation of TNT under aerobic conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Li, X., Y. Xiang, Q. Meng et J. Wang. « Imine Formation via Hydrogen-Transfer Nitroarene Reduction ». Synfacts 2010, no 11 (21 octobre 2010) : 1322. http://dx.doi.org/10.1055/s-0030-1258830.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Johnson, Glenn R., et Jim C. Spain. « Synthesis of substituted catechols using nitroarene dioxygenases ». Enzyme and Microbial Technology 38, no 1-2 (janvier 2006) : 142–47. http://dx.doi.org/10.1016/j.enzmictec.2005.05.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Zhang, Lidong, Xiao-Ming Cao et P. Hu. « Insight into chemoselectivity of nitroarene hydrogenation : A DFT-D3 study of nitroarene adsorption on metal surfaces under the realistic reaction conditions ». Applied Surface Science 392 (janvier 2017) : 456–71. http://dx.doi.org/10.1016/j.apsusc.2016.09.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

OHMORI, Kiyomi, Michiko KISHI, Tadayoshi NAKAOKA et Naoki MIYATA. « Synergistic Effect of Naphthoquinones on the Mutagenicity of Nitroarene. » Biological & ; Pharmaceutical Bulletin 22, no 1 (1999) : 90–92. http://dx.doi.org/10.1248/bpb.22.90.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Xu, Shaodan, Junhong Tang, Qingwei Zhou, Jia Du et Huanxuan Li. « Interfacing Anatase with Carbon Layers for Photocatalytic Nitroarene Hydrogenation ». ACS Sustainable Chemistry & ; Engineering 7, no 19 (9 septembre 2019) : 16190–99. http://dx.doi.org/10.1021/acssuschemeng.9b03149.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Liu, Aijie, Christoph H. H. Traulsen et Jeroen J. L. M. Cornelissen. « Nitroarene Reduction by a Virus Protein Cage Based Nanoreactor ». ACS Catalysis 6, no 5 (14 avril 2016) : 3084–91. http://dx.doi.org/10.1021/acscatal.6b00106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Pretzer, Lori A., Kimberly N. Heck, Sean S. Kim, Yu-Lun Fang, Zhun Zhao, Neng Guo, Tianpin Wu, Jeffrey T. Miller et Michael S. Wong. « Improving gold catalysis of nitroarene reduction with surface Pd ». Catalysis Today 264 (avril 2016) : 31–36. http://dx.doi.org/10.1016/j.cattod.2015.07.040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kommu, Nagarjuna, Vikas D. Ghule, A. Sudheer Kumar et Akhila K. Sahoo. « Triazole-Substituted Nitroarene Derivatives : Synthesis, Characterization, and Energetic Studies ». Chemistry - An Asian Journal 9, no 1 (9 octobre 2013) : 166–78. http://dx.doi.org/10.1002/asia.201300969.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Shi, Guanying, et Zhenhua Dong. « Palladium Supported on Porous Organic Polymer as Heterogeneous and Recyclable Catalyst for Cross Coupling Reaction ». Molecules 27, no 15 (26 juillet 2022) : 4777. http://dx.doi.org/10.3390/molecules27154777.

Texte intégral
Résumé :
Palladium immobilized on an amide and ether functionalized porous organic polymer (Pd@AEPOP) is reported to be an effective heterogeneous catalyst for the Heck cross-coupling reaction of aryl iodides with styrene for the synthesis of diphenylethene derivatives. Excellent yields can be obtained using a 0.8 mol% Pd catalyst loading under the optimized reaction condition. The heterogeneous Pd@AEPOP catalyst can also be applied on the Suzuki reaction and the reduction of nitroarene.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Piggott, Emily K., Taylor O. Hope, Bry W. Crabbe, Pierre-Michel Jalbert, Galina Orlova et Geniece L. Hallett-Tapley. « Exploiting the photocatalytic activity of gold nanoparticle-functionalized niobium oxide perovskites in nitroarene reductions ». Catalysis Science & ; Technology 7, no 23 (2017) : 5758–65. http://dx.doi.org/10.1039/c7cy01820g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Shi, Hongbin, Xiaofeng Dai, Qing Liu, Teng Zhang, Yabing Zhang, Yuling Shi et Tao Wang. « Magnetic CuNi Alloy Nanoparticles for Catalytic Transfer Hydrogenation of Nitroarene ». Industrial & ; Engineering Chemistry Research 60, no 44 (27 octobre 2021) : 16011–22. http://dx.doi.org/10.1021/acs.iecr.1c03175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wang, Xiaodong, Fernando Cárdenas-Lizana et Mark A. Keane. « Toward Sustainable Chemoselective Nitroarene Hydrogenation Using Supported Gold as Catalyst ». ACS Sustainable Chemistry & ; Engineering 2, no 12 (27 octobre 2014) : 2781–89. http://dx.doi.org/10.1021/sc500544s.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Aditya, Teresa, Anjali Pal et Tarasankar Pal. « Nitroarene reduction : a trusted model reaction to test nanoparticle catalysts ». Chemical Communications 51, no 46 (2015) : 9410–31. http://dx.doi.org/10.1039/c5cc01131k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Asamizu, Takamichi, Risa Naruse, Guo Yongxue et Kyosuke Kaneda. « Domino Nicholas and Pauson–Khand process induced by nitroarene reduction ». Tetrahedron Letters 56, no 32 (août 2015) : 4674–77. http://dx.doi.org/10.1016/j.tetlet.2015.06.038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Madasu, Mahesh, Chi-Fu Hsia, Sourav Rej et Michael H. Huang. « Cu2O Pseudomorphic Conversion to Cu Crystals for Diverse Nitroarene Reduction ». ACS Sustainable Chemistry & ; Engineering 6, no 8 (21 juin 2018) : 11071–77. http://dx.doi.org/10.1021/acssuschemeng.8b02537.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Cai, Xinyi, Junqi Nie, Guichun Yang, Feiyi Wang, Chao Ma, Cuifen Lu et Zuxing Chen. « Phosphorus-rich network polymer supported ruthenium nanoparticles for nitroarene reduction ». Materials Letters 240 (avril 2019) : 80–83. http://dx.doi.org/10.1016/j.matlet.2018.12.140.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Wardman, Peter. « ChemInform Abstract : Chemistry of Nitroarene and Aromatic N-Oxide Radicals ». ChemInform 30, no 17 (16 juin 2010) : no. http://dx.doi.org/10.1002/chin.199917321.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Taleb, Abdeslam Ben, et Gérard Jenner. « Synthesis of aminoarenes in homogeneously catalyzed nitroarene — methyl formate reactions ». Journal of Molecular Catalysis 91, no 2 (juillet 1994) : L149—L153. http://dx.doi.org/10.1016/0304-5102(94)00055-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Patra, Dinabandhu, Ramakrishnan Ganesan et Balaji Gopalan. « Hydrogen generation rate enhancement by in situ Fe(0) and nitroarene substrates in Fe3O4@Pd catalyzed ammonia borane hydrolysis and nitroarene reduction tandem reaction ». International Journal of Hydrogen Energy 46, no 50 (juillet 2021) : 25486–99. http://dx.doi.org/10.1016/j.ijhydene.2021.05.106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Wu, Shuchang, Guodong Wen, Robert Schlögl et Dang Sheng Su. « Carbon nanotubes oxidized by a green method as efficient metal-free catalysts for nitroarene reduction ». Physical Chemistry Chemical Physics 17, no 3 (2015) : 1567–71. http://dx.doi.org/10.1039/c4cp04658g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Ju, Kou-San, et Rebecca E. Parales. « Control of Substrate Specificity by Active-Site Residues in Nitrobenzene Dioxygenase ». Applied and Environmental Microbiology 72, no 3 (mars 2006) : 1817–24. http://dx.doi.org/10.1128/aem.72.3.1817-1824.2006.

Texte intégral
Résumé :
ABSTRACT Nitrobenzene 1,2-dioxygenase from Comamonas sp. strain JS765 catalyzes the initial reaction in nitrobenzene degradation, forming catechol and nitrite. The enzyme also oxidizes the aromatic rings of mono- and dinitrotoluenes at the nitro-substituted carbon, but the basis for this specificity is not understood. In this study, site-directed mutagenesis was used to modify the active site of nitrobenzene dioxygenase, and the contribution of specific residues in controlling substrate specificity and enzyme performance was evaluated. The activities of six mutant enzymes indicated that the residues at positions 258, 293, and 350 in the α subunit are important for determining regiospecificity with nitroarene substrates and enantiospecificity with naphthalene. The results provide an explanation for the characteristic specificity with nitroarene substrates. Based on the structure of nitrobenzene dioxygenase, substitution of valine for the asparagine at position 258 should eliminate a hydrogen bond between the substrate nitro group and the amino group of asparagine. Up to 99% of the mononitrotoluene oxidation products formed by the N258V mutant were nitrobenzyl alcohols rather than catechols, supporting the importance of this hydrogen bond in positioning substrates in the active site for ring oxidation. Similar results were obtained with an I350F mutant, where the formation of the hydrogen bond appeared to be prevented by steric interference. The specificity of enzymes with substitutions at position 293 varied depending on the residue present. Compared to the wild type, the F293Q mutant was 2.5 times faster at oxidizing 2,6-dinitrotoluene while retaining a similar Km for the substrate based on product formation rates and whole-cell kinetics.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Bäumler, Christoph, et Rhett Kempe. « The Direct Synthesis of Imines, Benzimidazoles and Quinoxalines from Nitroarenes and Carbonyl Compounds by Selective Nitroarene Hydrogenation Employing a Reusable Iron Catalyst ». Chemistry - A European Journal 24, no 36 (25 mai 2018) : 8989–93. http://dx.doi.org/10.1002/chem.201801525.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Nethravathi, C., Janak Prabhu, S. Lakshmipriya et Michael Rajamathi. « Magnetic Co-Doped MoS2 Nanosheets for Efficient Catalysis of Nitroarene Reduction ». ACS Omega 2, no 9 (18 septembre 2017) : 5891–97. http://dx.doi.org/10.1021/acsomega.7b00848.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

An, Yi, Jacob W. G. Bloom et Steven E. Wheeler. « Quantifying the π-Stacking Interactions in Nitroarene Binding Sites of Proteins ». Journal of Physical Chemistry B 119, no 45 (2 novembre 2015) : 14441–50. http://dx.doi.org/10.1021/acs.jpcb.5b08126.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Kottappara, Revathi, Suresh C. Pillai et Baiju Kizhakkekilikoodayil Vijayan. « Copper-based nanocatalysts for nitroarene reduction-A review of recent advances ». Inorganic Chemistry Communications 121 (novembre 2020) : 108181. http://dx.doi.org/10.1016/j.inoche.2020.108181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Kommu, Nagarjuna, Vikas D. Ghule, A. Sudheer Kumar et Akhila K. Sahoo. « ChemInform Abstract : Triazole-Substituted Nitroarene Derivatives : Synthesis, Characterization, and Energetic Studies. » ChemInform 45, no 25 (5 juin 2014) : no. http://dx.doi.org/10.1002/chin.201425143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Gutiérrez-Tarriño, Silvia, Sergio Rojas-Buzo, Christian W. Lopes, Giovanni Agostini, Jose J. Calvino, Avelino Corma et Pascual Oña-Burgos. « Cobalt nanoclusters coated with N-doped carbon for chemoselective nitroarene hydrogenation and tandem reactions in water ». Green Chemistry 23, no 12 (2021) : 4490–501. http://dx.doi.org/10.1039/d1gc00706h.

Texte intégral
Résumé :
Subnanometric cobalt nanoclusters covered by N-doped carbon layers (Co@NC-800) catalyze the chemoselective reduction of nitroarenes and the one-pot synthesis of secondary aryl amines and isoindolinones in aquo media under mild reaction conditions.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Chen, Jian, Yi Yao, Jiao Zhao, Yaopeng Zhao, Yuanyuan Zheng, Mingrun Li et Qihua Yang. « A highly active non-precious metal catalyst based on Fe–N–C@CNTs for nitroarene reduction ». RSC Advances 6, no 98 (2016) : 96203–9. http://dx.doi.org/10.1039/c6ra20666b.

Texte intégral
Résumé :
An efficient Fe–N–C@CNTs for the hydrogenation of nitroarenes was prepared. ε-Fe3N is the active site and nitrogen/carbon atoms serve as bridges to transport the dissociated hydrogen atoms via spillover effect.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Chowdhury, R. L., C. C. Lee, A. Piorko et R. G. Sutherland. « Nucleophilic Displacement of the Nitro Group in n6-Nitroarene-n5-cyclopentadienyliron Hexafluorophosphates ». Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 15, no 9 (décembre 1985) : 1237–45. http://dx.doi.org/10.1080/00945718508059404.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Furukawa, Shinya, Katsuya Takahashi et Takayuki Komatsu. « Well-structured bimetallic surface capable of molecular recognition for chemoselective nitroarene hydrogenation ». Chemical Science 7, no 7 (2016) : 4476–84. http://dx.doi.org/10.1039/c6sc00817h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie