Sommaire
Littérature scientifique sur le sujet « Neuroretinal organoids »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Neuroretinal organoids ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Neuroretinal organoids"
Atac, David, Kevin Maggi, Silke Feil, Jordi Maggi, Elisa Cuevas, Jane C. Sowden, Samuel Koller et Wolfgang Berger. « Identification and Characterization of ATOH7-Regulated Target Genes and Pathways in Human Neuroretinal Development ». Cells 13, no 13 (3 juillet 2024) : 1142. http://dx.doi.org/10.3390/cells13131142.
Texte intégralTakata, Nozomu, Deepti Abbey, Luciano Fiore, Sandra Acosta, Ruopeng Feng, Hyea Jin Gil, Alfonso Lavado et al. « An Eye Organoid Approach Identifies Six3 Suppression of R-spondin 2 as a Critical Step in Mouse Neuroretina Differentiation ». Cell Reports 21, no 6 (novembre 2017) : 1534–49. http://dx.doi.org/10.1016/j.celrep.2017.10.041.
Texte intégralAfting, Cassian, Tobias Walther, Oliver M. Drozdowski, Christina Schlagheck, Ulrich S. Schwarz, Joachim Wittbrodt et Kerstin Göpfrich. « DNA microbeads for spatio-temporally controlled morphogen release within organoids ». Nature Nanotechnology, 9 septembre 2024. http://dx.doi.org/10.1038/s41565-024-01779-y.
Texte intégralLiu, Wei, Rupendra Shrestha, Albert Lowe, Xusheng Zhang et Ludovic Spaeth. « Self-formation of concentric zones of telencephalic and ocular tissues and directional retinal ganglion cell axons ». eLife 12 (4 septembre 2023). http://dx.doi.org/10.7554/elife.87306.3.
Texte intégralIsla-Magrané, Helena, Maddalen Zufiaurre-Seijo, José García-Arumí et Anna Duarri. « All-trans retinoic acid modulates pigmentation, neuroretinal maturation, and corneal transparency in human multiocular organoids ». Stem Cell Research & ; Therapy 13, no 1 (28 juillet 2022). http://dx.doi.org/10.1186/s13287-022-03053-1.
Texte intégralThèses sur le sujet "Neuroretinal organoids"
Frank, Elie. « Modélisation du Syndrome d'Alström à partir de cellules souches pluripotentes humaines pour l'identification de cibles moléculaires d'intérêt thérapeutique ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASQ041.
Texte intégralAlström syndrome (AS) is a monogenic recessive multi-systemic disease characterized by hearing and vision loss, obesity, type 2 diabetes, cardiomyopathy and progressive liver and kidney failure. Symptoms affecting vision develop in the first few weeks after birth and gradually lead to total loss of sight. At present, there is no cure for this disease, and only solutions that reduce the effects of the symptoms can be proposed.The aim of this thesis is to develop a cellular model of AS with a view to understanding the molecular mechanisms driving the disease and identifying therapeutic targets.We obtained different clones with pathological or de novo mutations using genome-editing systems associated with CRISPR/Cas9. We characterized these model clones by seeking to identify specific phenotypic markers within the hiPSCs. The mutations generated did not change the properties of these cells.In a second step, still with the aim of identifying a pathological phenotype, we differentiated the model iPSC lines into RPE cells.Again, no specific phenotypic marker was identified. Finally, we differentiated our model hiPSC lines into neuroretinal organoids to study retinal cells development within these structures with a particular focus on photoreceptors. We were able to observe the absence or reduced expression of opsins characteristic of cones and rods in organoids derived from ALMS1-mutant hiPSCs. In addition, these organoids showed increased cell death compared with organoids derived from healthy hiPSC lines. This suggests that photoreceptors degenerate during differentiation within organoids. The mechanisms by which mutations in ALMS1 lead to this degeneration remain unclear.The cellular models of AS presented in this thesis therefore reproduce a pathological phenotype and will be invaluable tools for understanding the mechanisms responsible for the visual symptoms of the disease, and pave the way for screening strategies aimed at identifying new therapeutic targets