Articles de revues sur le sujet « NEUROPROTECTANTS »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : NEUROPROTECTANTS.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « NEUROPROTECTANTS ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Palmer, Katharine J., et Joanne Dalton. « Neuroprotectants in Stroke ». Drugs in R & ; D 1, no 1 (janvier 1999) : 9–13. http://dx.doi.org/10.2165/00126839-199901010-00002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schreihofer, D. A. « Phytoestrogens as neuroprotectants ». Drugs of Today 45, no 8 (2009) : 609. http://dx.doi.org/10.1358/dot.2009.45.8.1395520.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shi, Ligen, Marcelo Rocha, Rehana K. Leak, Jingyan Zhao, Tarun N. Bhatia, Hongfeng Mu, Zhishuo Wei et al. « A new era for stroke therapy : Integrating neurovascular protection with optimal reperfusion ». Journal of Cerebral Blood Flow & ; Metabolism 38, no 12 (7 septembre 2018) : 2073–91. http://dx.doi.org/10.1177/0271678x18798162.

Texte intégral
Résumé :
Recent advances in stroke reperfusion therapies have led to remarkable improvement in clinical outcomes, but many patients remain severely disabled, due in part to the lack of effective neuroprotective strategies. In this review, we show that 95% of published preclinical studies on “neuroprotectants” (1990–2018) reported positive outcomes in animal models of ischemic stroke, while none translated to successful Phase III trials. There are many complex reasons for this failure in translational research, including that the majority of clinical trials did not test early delivery of neuroprotectants in combination with successful reperfusion. In contrast to the clinical trials, >80% of recent preclinical studies examined the neuroprotectant in animal models of transient ischemia with complete reperfusion. Furthermore, only a small fraction of preclinical studies included long-term functional assessments, aged animals of both genders, and models with stroke comorbidities. Recent clinical trials demonstrate that 70%–80% of patients treated with endovascular thrombectomy achieve successful reperfusion. These successes revive the opportunity to retest previously failed approaches, including cocktail drugs that target multiple injury phases and different cell types. It is our hope that neurovascular protectants can be retested in future stroke research studies with specific criteria outlined in this review to increase translational successes.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Sharkey, John, Paul A. Jones, Jennifer F. McCarter et John S. Kelly. « Calcineurin Inhibitors as Neuroprotectants ». CNS Drugs 13, no 1 (janvier 2000) : 1–13. http://dx.doi.org/10.2165/00023210-200013010-00001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Jeyaseelan, K., KY Lim et A. Armugam. « Neuroprotectants in stroke therapy ». Expert Opinion on Pharmacotherapy 9, no 6 (avril 2008) : 887–900. http://dx.doi.org/10.1517/14656566.9.6.887.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Štolc, Svorad. « Indole derivatives as neuroprotectants ». Life Sciences 65, no 18-19 (octobre 1999) : 1943–50. http://dx.doi.org/10.1016/s0024-3205(99)00453-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kelly, J. S., et J. Sharkey. « Immunosuppressants-ligands as neuroprotectants ». Transplantation Proceedings 33, no 3 (mai 2001) : 2217–19. http://dx.doi.org/10.1016/s0041-1345(01)01945-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Muir, K. W., et Ph A. Teal. « Why have neuroprotectants failed ? » Journal of Neurology 252, no 9 (25 août 2005) : 1011–20. http://dx.doi.org/10.1007/s00415-005-0933-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

&NA;. « Neuroprotectants for Parkinson's disease reviewed ». Inpharma Weekly &NA;, no 1389 (mai 2003) : 4. http://dx.doi.org/10.2165/00128413-200313890-00007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

KLEIN, MICHAEL, SILVIA CALDERON et BELINDA HAYES. « Abuse Liability Assessment of Neuroprotectants ». Annals of the New York Academy of Sciences 890, no 1 NEUROPROTECTI (décembre 1999) : 515–25. http://dx.doi.org/10.1111/j.1749-6632.1999.tb08033.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Elmer, Jonathan, et Jon C. Rittenberger. « Inhalational neuroprotectants : A noble cause ». Resuscitation 107 (octobre 2016) : A7—A8. http://dx.doi.org/10.1016/j.resuscitation.2016.08.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Tizabi, Yousef. « Duality of Antidepressants and Neuroprotectants ». Neurotoxicity Research 30, no 1 (27 novembre 2015) : 1–13. http://dx.doi.org/10.1007/s12640-015-9577-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ahn, Young Hwan, Mia Emgård et Patrik Brundin. « Ultrastructural Characterization of Dissociated Embryonic Ventral Mesencephalic Tissue Treated with Neuroprotectants ». Cell Transplantation 12, no 3 (avril 2003) : 235–41. http://dx.doi.org/10.3727/000000003108746795.

Texte intégral
Résumé :
Poor survival and differentiation of grafted dopamine neurons limits the application of clinical transplantation in Parkinson's disease. The survival of grafted dopamine neurons is only improved by a factor of 2–3 by adding neuroprotectants during tissue preparation. We used dye exclusion cell viability and electron microscopy to investigate the effects of the caspase inhibitor ac-YVAD-cmk and the lazaroid tirilazad mesylate on ultrastructural changes in dissociated embryonic mesencephalic cells. In addition, we examined whether the neuroprotectants selectively counteracted specific signs of neurodegeneration. Cell viability decreased significantly over time in both control and treated cell suspensions, but the number of viable cells remaining was significantly higher in tirilazad mesylate-treated cell suspensions. In control samples, the proportion of cells with an ultrastructure consistent with healthy cells decreased from 70%, immediately after dissociation, to 30% after 8 h of incubation. Similar changes were also observed in cell suspensions treated with neuroprotectants. Thus, the neuroprotectants examined did not block the development of specific morphological signs of neurodegeneration. However, when also taking into account that dead cells lysed and disappeared from each cell suspension with time, we found that the total number of remaining viable cells with healthy nuclear chromatin or intact membrane integrity was significantly higher in the tirilazad mesylate-treated group. The results indicate that tirilazad mesylate protects only a small subpopulation of embryonic mesencephalic cells from degeneration induced by mechanical trauma during tissue dissection and dissociation.
Styles APA, Harvard, Vancouver, ISO, etc.
14

FLOYD, ROBERT A., KENNETH HENSLEY, MICHAEL J. FORSTER, JUDITH A. KELLEHER-ANDERSON et PAUL L. WOOD. « Nitrones as Neuroprotectants and Antiaging Drugs ». Annals of the New York Academy of Sciences 959, no 1 (avril 2002) : 321–29. http://dx.doi.org/10.1111/j.1749-6632.2002.tb02103.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Dawson, V. L. « Potent neuroprotectants linked to bifunctional inhibition ». Proceedings of the National Academy of Sciences 96, no 19 (14 septembre 1999) : 10557–58. http://dx.doi.org/10.1073/pnas.96.19.10557.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Kandela, Peter. « Apply neuroprotectants rapidly for best results ». Lancet 350, no 9082 (septembre 1997) : 936. http://dx.doi.org/10.1016/s0140-6736(05)63276-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bhardwaj, Anish. « Statins as neuroprotectants after subarachnoid hemorrhage* ». Critical Care Medicine 40, no 2 (février 2012) : 695–97. http://dx.doi.org/10.1097/ccm.0b013e318236e307.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Alonso de Leciñana, María, et Jose Antonio Egido. « Estrogens as Neuroprotectants against Ischemic Stroke ». Cerebrovascular Diseases 21, no 2 (2006) : 48–53. http://dx.doi.org/10.1159/000091703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lobine, D., M.-J. R. Howes, I. Cummins, J. Govinden-Soulange, M. Ranghoo-Sanmukhiya, K. Lindsey et P. L. Chazot. « Bio-prospecting endemic MascareneAloesfor potential neuroprotectants ». Phytotherapy Research 31, no 12 (11 octobre 2017) : 1926–34. http://dx.doi.org/10.1002/ptr.5941.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Babadjouni, Robin Moshe, Ryan E. Radwanski, Brian P. Walcott, Arati Patel, Ramon Durazo, Drew M. Hodis, Benjamin A. Emanuel et William J. Mack. « Neuroprotective strategies following intraparenchymal hemorrhage ». Journal of NeuroInterventional Surgery 9, no 12 (14 juillet 2017) : 1202–7. http://dx.doi.org/10.1136/neurintsurg-2017-013197.

Texte intégral
Résumé :
Intracerebral hemorrhage and, more specifically, intraparenchymal hemorrhage, are devastating disease processes with poor clinical outcomes. Primary injury to the brain results from initial hematoma expansion while secondary hemorrhagic injury occurs from blood-derived products such as hemoglobin, heme, iron, and coagulation factors that overwhelm the brains natural defenses. Novel neuroprotective treatments have emerged that target primary and secondary mechanisms of injury. Nonetheless, translational application of neuroprotectants from preclinical to clinical studies has yet to show beneficial clinical outcomes. This review summarizes therapeutic agents and neuroprotectants in ongoing clinical trials aimed at targeting primary and secondary mechanisms of injury after intraparenchymal hemorrhage.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Redivo, Luca, Rozalia-Maria Anastasiadi, Marco Pividori, Federico Berti, Maria Peressi, Devis Di Tommaso et Marina Resmini. « Prediction of self-assembly of adenosine analogues in solution : a computational approach validated by isothermal titration calorimetry ». Physical Chemistry Chemical Physics 21, no 8 (2019) : 4258–67. http://dx.doi.org/10.1039/c8cp05647a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Chamorro, Ángel. « Neuroprotectants in the Era of Reperfusion Therapy ». Journal of Stroke 20, no 2 (31 mai 2018) : 197–207. http://dx.doi.org/10.5853/jos.2017.02901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Thauerer, Bettina, Stephanie zur Nedden et Gabriele Baier‐Bitterlich. « Purine nucleosides : endogenous neuroprotectants in hypoxic brain ». Journal of Neurochemistry 121, no 3 (14 mars 2012) : 329–42. http://dx.doi.org/10.1111/j.1471-4159.2012.07692.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Penkowa, Milena. « Metallothioneins are multipurpose neuroprotectants during brain pathology ». FEBS Journal 273, no 9 (5 avril 2006) : 1857–70. http://dx.doi.org/10.1111/j.1742-4658.2006.05207.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Lyden, Patrick, et Nils Gunnar Wahlgren. « Mechanisms of action of neuroprotectants in stroke ». Journal of Stroke and Cerebrovascular Diseases 9, no 6 (novembre 2000) : 9–14. http://dx.doi.org/10.1053/jscd.2000.19316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bankhead, Charles. « Neuroprotectants not up to scratch in stroke ». Inpharma Weekly &NA;, no 1228 (mars 2000) : 3–4. http://dx.doi.org/10.2165/00128413-200012280-00003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

&NA;. « 'Doom and gloom' for neuroprotectants in stroke ? » Inpharma Weekly &NA;, no 1241 (juin 2000) : 3. http://dx.doi.org/10.2165/00128413-200012410-00004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Callaway, Jennifer. « Acute Stroke Therapy : Combination Drugs and Multifunctional Neuroprotectants ». Current Neuropharmacology 2, no 3 (1 juillet 2004) : 277–94. http://dx.doi.org/10.2174/1570159043359602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Wahlgren, Nils Gunnar. « Neuroprotectants in Late Clinical Development – A Status Report ». Cerebrovascular Diseases 7, no 2 (1997) : 13–17. http://dx.doi.org/10.1159/000108238.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Parng, Chuenlei, Christopher Ton, Ying-Xin Lin, Nicole Marie Roy et Patricia McGrath. « A zebrafish assay for identifying neuroprotectants in vivo ». Neurotoxicology and Teratology 28, no 4 (juillet 2006) : 509–16. http://dx.doi.org/10.1016/j.ntt.2006.04.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Danino, O., N. Giladi, S. Grossman et B. Fischer. « Nucleoside 5′-phosphorothioate derivatives are highly effective neuroprotectants ». Biochemical Pharmacology 88, no 3 (avril 2014) : 384–92. http://dx.doi.org/10.1016/j.bcp.2014.02.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Wahlgren, Nils Gunnar, et Patrick Lyden. « Neuroprotectants in the treatment of stroke—An overview ». Journal of Stroke and Cerebrovascular Diseases 9, no 6 (novembre 2000) : 32–35. http://dx.doi.org/10.1053/jscd.2000.19320.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

LoPachin, Richard M., Terrence Gavin, Brian C. Geohagen, Lihai Zhang, Diana Casper, Rukmani Lekhraj et David S. Barber. « β-Dicarbonyl enolates : a new class of neuroprotectants ». Journal of Neurochemistry 116, no 1 (2 décembre 2010) : 132–43. http://dx.doi.org/10.1111/j.1471-4159.2010.07091.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Yuen, P. W., et K. W. Wang. « Calpain inhibitors : Novel neuroprotectants and potential anticataract agents ». Drugs of the Future 23, no 7 (1998) : 741. http://dx.doi.org/10.1358/dof.1998.023.07.858362.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Abed, Edoardo, Giovanni Corbo et Benedetto Falsini. « Neurotrophin Family Members as Neuroprotectants in Retinal Degenerations ». BioDrugs 29, no 1 (19 novembre 2014) : 1–13. http://dx.doi.org/10.1007/s40259-014-0110-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Mitka, Mike. « News About Neuroprotectants for the Treatment of Stroke ». JAMA 287, no 10 (13 mars 2002) : 1253. http://dx.doi.org/10.1001/jama.287.10.1253-jmn0313-2-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Velpandian, Thirumurthy. « Closed Gateways — Can Neuroprotectants Shield the Retina in Glaucoma ? » Drugs in R&D 10, no 2 (juillet 2010) : 93–96. http://dx.doi.org/10.2165/11539310-000000000-00000.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Carlson, Robert H. « Rough road to development for neuroprotectants in acute stroke ». Inpharma Weekly &NA;, no 1027 (mars 1996) : 9–10. http://dx.doi.org/10.2165/00128413-199610270-00015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Yang, Nan, Qi-Wen Guan, Fang-Hui Chen, Qin-Xuan Xia, Xi-Xi Yin, Hong-Hao Zhou et Xiao-Yuan Mao. « Antioxidants Targeting Mitochondrial Oxidative Stress : Promising Neuroprotectants for Epilepsy ». Oxidative Medicine and Cellular Longevity 2020 (25 novembre 2020) : 1–14. http://dx.doi.org/10.1155/2020/6687185.

Texte intégral
Résumé :
Mitochondria are major sources of reactive oxygen species (ROS) within the cell and are especially vulnerable to oxidative stress. Oxidative damage to mitochondria results in disrupted mitochondrial function and cell death signaling, finally triggering diverse pathologies such as epilepsy, a common neurological disease characterized with aberrant electrical brain activity. Antioxidants are considered as promising neuroprotective strategies for epileptic condition via combating the deleterious effects of excessive ROS production in mitochondria. In this review, we provide a brief discussion of the role of mitochondrial oxidative stress in the pathophysiology of epilepsy and evidences that support neuroprotective roles of antioxidants targeting mitochondrial oxidative stress including mitochondria-targeted antioxidants, polyphenols, vitamins, thiols, and nuclear factor E2-related factor 2 (Nrf2) activators in epilepsy. We point out these antioxidative compounds as effectively protective approaches for improving prognosis. In addition, we specially propose that these antioxidants exert neuroprotection against epileptic impairment possibly by modulating cell death interactions, notably autophagy-apoptosis, and autophagy-ferroptosis crosstalk.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Leker, R. R., et M. Y. Neufeld. « Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia ». Brain Research Reviews 42, no 3 (juin 2003) : 187–203. http://dx.doi.org/10.1016/s0165-0173(03)00170-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Shen, J., K. Ghai, P. Sompol, X. Liu, X. Cao, P. M. Iuvone et K. Ye. « N-acetyl serotonin derivatives as potent neuroprotectants for retinas ». Proceedings of the National Academy of Sciences 109, no 9 (13 février 2012) : 3540–45. http://dx.doi.org/10.1073/pnas.1119201109.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Fukuta, Tatsuya, Naoto Oku et Kentaro Kogure. « Application and Utility of Liposomal Neuroprotective Agents and Biomimetic Nanoparticles for the Treatment of Ischemic Stroke ». Pharmaceutics 14, no 2 (4 février 2022) : 361. http://dx.doi.org/10.3390/pharmaceutics14020361.

Texte intégral
Résumé :
Ischemic stroke is still one of the leading causes of high mortality and severe disability worldwide. Therapeutic options for ischemic stroke and subsequent cerebral ischemia/reperfusion injury remain limited due to challenges associated with drug permeability through the blood-brain barrier (BBB). Neuroprotectant delivery with nanoparticles, including liposomes, offers a promising solution to address this problem, as BBB disruption following ischemic stroke allows nanoparticles to pass through the intercellular gaps between endothelial cells. To ameliorate ischemic brain damage, a number of nanotherapeutics encapsulating neuroprotective agents, as well as surface-modified nanoparticles with specific ligands targeting the injured brain regions, have been developed. Combination therapy with nanoparticles encapsulating neuroprotectants and tissue plasminogen activator (t-PA), a globally approved thrombolytic agent, has been demonstrated to extend the narrow therapeutic time window of t-PA. In addition, the design of biomimetic drug delivery systems (DDS) employing circulating cells (e.g., leukocytes, platelets) with unique properties has recently been investigated to overcome the injured BBB, utilizing these cells’ inherent capability to penetrate the ischemic brain. Herein, we review recent findings on the application and utility of nanoparticle DDS, particularly liposomes, and various approaches to developing biomimetic DDS functionalized with cellular membranes/membrane proteins for the treatment of ischemic stroke.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Pattarachotanant, Nattaporn, Anchalee Prasansuklab et Tewin Tencomnao. « Momordica charantia L. Extract Protects Hippocampal Neuronal Cells against PAHs-Induced Neurotoxicity : Possible Active Constituents Include Stigmasterol and Vitamin E ». Nutrients 13, no 7 (10 juillet 2021) : 2368. http://dx.doi.org/10.3390/nu13072368.

Texte intégral
Résumé :
Polycyclic aromatic hydrocarbons (PAHs) have been recognized to cause neurobehavioral dysfunctions and disorder of cognition and behavioral patterns in childhood. Momordica charantia L. (MC) has been widely known for its nutraceutical and health-promoting properties. To date, the effect of MC for the prevention and handling of PAHs-induced neurotoxicity has not been reported. In the current study, the neuroprotective effects of MC and its underlying mechanisms were investigated in mouse hippocampal neuronal cell line (HT22); moreover, in silico analysis was performed with the phytochemicals MC to decipher their potential function as neuroprotectants. MC was demonstrated to possess neuroprotective effect by reducing reactive oxygen species’ (ROS’) production and down-regulating cyclin D1, p53, and p38 mitogen-activated protein kinase (MAPK) protein expressions, resulting in the inhibition of cell apoptosis and the normalization of cell cycle progression. Additionally, 28 phytochemicals of MC and their competence on inhibiting cytochrome P450 (CYP: CYP1A1, CYP1A2, and CYP1B1) functions were resolved. In silico analysis of vitamin E and stigmasterol revealed that their binding to either CYP1A1 or CYP1A2 was more efficient than the binding of each positive control (alizarin or purpurin). Together, MC is potentially an interesting neuroprotectant including vitamin E and stigmasterol as probable active components for the prevention for PAHs-induced neurotoxicity.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Kaur, Prameet, Fujia Liu, Jun Tan, Kai Lim, Sugunavathi Sepramaniam, Dwi Karolina, Arunmozhiarasi Armugam et Kandiah Jeyaseelan. « Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury ». Brain Sciences 3, no 4 (20 mars 2013) : 360–95. http://dx.doi.org/10.3390/brainsci3010360.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

A. Sutherland, Brad, Joanne C. Harrison, Shiva M. Nair et Ivan A. Sammut. « Inhalation Gases or Gaseous Mediators As Neuroprotectants for Cerebral Ischaemia ». Current Drug Targets 14, no 1 (1 décembre 2012) : 56–73. http://dx.doi.org/10.2174/1389450111314010007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

A. Sutherland, Brad, Joanne C. Harrison, Shiva M. Nair et Ivan A. Sammut. « Inhalation Gases or Gaseous Mediators As Neuroprotectants for Cerebral Ischaemia ». Current Drug Targets 14, no 1 (1 janvier 2013) : 56–73. http://dx.doi.org/10.2174/138945013804806433.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

FUKUTA, Tatsuya, Tomohiro ASAI et Naoto OKU. « Usefulness of Liposomal Neuroprotectants for the Treatment of Ischemic Stroke ». Oleoscience 17, no 8 (2017) : 359–66. http://dx.doi.org/10.5650/oleoscience.17.359.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Pei, Zhang, Chen Jie-Si, Li Qi-Ye, Sheng Long-Xiang, Gao Yi-Xing, Lu Bing-Zheng, Zhu Wen-Bo et al. « Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys ». Zool. Res. 41, no 1 (2020) : 3–19. http://dx.doi.org/10.24272/j.issn.2095-8137.2020.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Singh, Meharvan. « Estrogens and progesterone as neuroprotectants : what animal models teach us ». Frontiers in Bioscience 13, no 13 (2008) : 1083. http://dx.doi.org/10.2741/2746.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Steiner, Thorsten, et Werner Hacke. « Combination Therapy with Neuroprotectants and Thrombolytics in Acute Ischaemic Stroke ». European Neurology 40, no 1 (1998) : 1–8. http://dx.doi.org/10.1159/000007947.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie