Littérature scientifique sur le sujet « Neuromorphic devices »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Neuromorphic devices ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Neuromorphic devices"
Ielmini, Daniele, et Stefano Ambrogio. « Emerging neuromorphic devices ». Nanotechnology 31, no 9 (9 décembre 2019) : 092001. http://dx.doi.org/10.1088/1361-6528/ab554b.
Texte intégralGuo, Zhonghao. « Synaptic device-based neuromorphic computing in artificial intelligence ». Applied and Computational Engineering 65, no 1 (23 mai 2024) : 253–59. http://dx.doi.org/10.54254/2755-2721/65/20240511.
Texte intégralPark, Jisoo, Jihyun Shin et Hocheon Yoo. « Heterostructure-Based Optoelectronic Neuromorphic Devices ». Electronics 13, no 6 (14 mars 2024) : 1076. http://dx.doi.org/10.3390/electronics13061076.
Texte intégralHuang, Wen, Huixing Zhang, Zhengjian Lin, Pengjie Hang et Xing’ao Li. « Transistor-Based Synaptic Devices for Neuromorphic Computing ». Crystals 14, no 1 (9 janvier 2024) : 69. http://dx.doi.org/10.3390/cryst14010069.
Texte intégralLim, Jung Wook, Su Jae Heo, Min A. Park et Jieun Kim. « Synaptic Transistors Exhibiting Gate-Pulse-Driven, Metal-Semiconductor Transition of Conduction ». Materials 14, no 24 (7 décembre 2021) : 7508. http://dx.doi.org/10.3390/ma14247508.
Texte intégralDiao, Yu, Yaoxuan Zhang, Yanran Li et Jie Jiang. « Metal-Oxide Heterojunction : From Material Process to Neuromorphic Applications ». Sensors 23, no 24 (12 décembre 2023) : 9779. http://dx.doi.org/10.3390/s23249779.
Texte intégralFeng, Chenyin, Wenwei Wu, Huidi Liu, Junke Wang, Houzhao Wan, Guokun Ma et Hao Wang. « Emerging Opportunities for 2D Materials in Neuromorphic Computing ». Nanomaterials 13, no 19 (7 octobre 2023) : 2720. http://dx.doi.org/10.3390/nano13192720.
Texte intégralKim, Dongshin, Ik-Jyae Kim et Jang-Sik Lee. « Memory Devices for Flexible and Neuromorphic Device Applications ». Advanced Intelligent Systems 3, no 5 (25 janvier 2021) : 2000206. http://dx.doi.org/10.1002/aisy.202000206.
Texte intégralHuang, Yi, Fatemeh Kiani, Fan Ye et Qiangfei Xia. « From memristive devices to neuromorphic systems ». Applied Physics Letters 122, no 11 (13 mars 2023) : 110501. http://dx.doi.org/10.1063/5.0133044.
Texte intégralMachado, Pau, Salvador Manich, Álvaro Gómez-Pau, Rosa Rodríguez-Montañés, Mireia Bargalló González, Francesca Campabadal et Daniel Arumí. « Programming Techniques of Resistive Random-Access Memory Devices for Neuromorphic Computing ». Electronics 12, no 23 (27 novembre 2023) : 4803. http://dx.doi.org/10.3390/electronics12234803.
Texte intégralThèses sur le sujet "Neuromorphic devices"
Islam, Rabiul. « Fabrication and Electrical Characterization of Organic Neuromorphic Memory Devices ». Master's thesis, Department of Materials Science, TU Darmstadt, 2019. https://tuprints.ulb.tu-darmstadt.de/9208/1/Final%20Thesis%20Report_Rabiul%20Islam_2997810.pdf.
Texte intégralHirtzlin, Tifenn. « Digital Implementation of Neuromorphic systems using Emerging Memory devices ». Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPAST071.
Texte intégralWhile electronics has prospered inexorably for several decades, its leading source of progress will stop in the next coming years, due to the fundamental technological limits of transistors. Nevertheless, microelectronics is currently offering a major breakthrough: in recent years, memory technologies have undergone incredible progress, opening the way for multiple research venues in embedded systems. Additionally, a major feature for future years will be the ability to integrate different technologies on the same chip. new emerging memory devices that can be embedded in the core of the CMOS, such as Resistive Random Access Memory (RRAM) or Spin Torque Magnetic Tunnel Junction (STMRAM) based on naturally intelligent inmemory-computing architecture. Three braininspired algorithms are carefully examined: Bayesian reasoning binarized neural networks, and an approach that further exploits the intrinsic behavior of components, population coding of neurons. Each of these approaches explores different aspects of in-memory computing
Lai, Qianxi. « Electrically configurable materials and devices for intelligent neuromorphic applications ». Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1872061101&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Texte intégralAzam, Md Ali. « Energy Efficient Spintronic Device for Neuromorphic Computation ». VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6036.
Texte intégralZaman, Ayesha. « Modeling and Experimental Characterization of Memristor Devices for Neuromorphic Computing ». University of Dayton / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton159636782366637.
Texte intégralMandal, Saptarshi. « Study of Mn doped HfO2 based Synaptic Devices for Neuromorphic Applications ». University of Toledo / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1384535471.
Texte intégralWenke, Sam. « Application and Simulation of Neuromorphic Devices for use in Neural Networks ». University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1523635913955071.
Texte intégralPedró, Puig Marta. « Implementation of unsupervised learning mechanisms on OxRAM devices for neuromorphic computing applications ». Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667894.
Texte intégralThe present thesis compiles the results of the research oriented to provide a methodology for the electrical characterization, modeling and simulation of resistive switching devices, taking into consideration neuromorphic applications based on unsupervised learning This is widely demanded today as a low-consumption solution to the following issues: on the one hand, the speed limitations that take place in data transfer between the memory and processing units that takes place in conventional computer architectures. On the other hand, the growing need for low-power computational systems that perform tasks of classification, analysis and inference of massive amounts of data (for example, for Big Data applications), together with pattern recognition, prediction of behaviors and decision-making tasks (for applications focused on Internet-of-Things, among others). Specifically, Oxide-based Resistive Random Access Memory (OxRAM) devices are investigated as candidates for the electronic implementation of synapses in physical artificial neural networks, also referred to as neuromorphic architectures. First of all, a theoretical introduction to the different electronic technologies with resistive switching and non-volatile memory properties is provided. The figures of merit demonstrated and projected of each one of them are indicated according to the International Roadmap for Devices and Systems of 2018. With this first chapter, the intention is to provide the reader with the necessary background required to understand the results outlined in the following chapters. Next, and by using a bottom-up approach divided into the three following chapters, the procedures and results of the electrical characterization and modeling of the OxRAM devices studied for the implementation of analog electronic synapses are discussed. As a starting point, it is experimentally verified that the devices meet the requirements for the indicated application. In the following chapter, two fundamental learning rules are demonstrated experimentally in order to permit the execution of an autonomous (unsupervised) learning algorithm on a neuromorphic architecture based on the tested devices. The proven learning rules allow the devices to emulate certain processes and learning mechanisms reported in the neuroscience field, such as spike-timing dependent plasticity, or the classical conditioning phenomenon, for which Pavlov’s dog experiment is replicated as to establish the foundations of associative learning, to be implemented between two or more synaptic devices. To conclude this part related to analog electronic synapses, the hardware adaptation of an unsupervised learning algorithm is proposed. The designed algorithm provides the system with the property of self-organization, in such a way that, once trained, the physical neuronal network shows a topographical organization in its output layer, which is characteristic of the sensory processing areas of the biological brain. Furthermore, the proposed design and algorithm allow the concatenation of several neuronal networks, in order to execute cognitive tasks of a more complex nature, such as the association of different attributes to the same concept, related to hierarchical computation. The last chapter is dedicated to the study of OxRAM devices when a low-power mode is considered, for the implementation of binary synapses. Again using a bottom-up perspective, the chapter begins with the electrical characterization and modeling of the devices, which in this case constitute a neuromorphic chip. A probabilistic learning rule is demonstrated, which is then used in an unsupervised on-line learning algorithm designed for the inference and prediction of periodic temporal sequences. Finally, the differences and similarities between the two algorithms described in the thesis are discussed, and a proposal is made as to how each of these can be used in a joint and complementary way.
Ignatov, Marina [Verfasser]. « Emulation of Neural Dynamics in Neuromorphic Circuits Based on Memristive Devices / Marina Ignatov ». Kiel : Universitätsbibliothek Kiel, 2018. http://d-nb.info/1156601932/34.
Texte intégralHosseini, Peiman. « Phase-change and carbon based materials for advanced memory and computing devices ». Thesis, University of Exeter, 2013. http://hdl.handle.net/10871/10122.
Texte intégralLivres sur le sujet "Neuromorphic devices"
Yilmaz, Yalcin, Pinaki Mazumder et Idongesit Ebong. Neuromorphic Circuits for Nanoscale Devices. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003338918.
Texte intégralSuri, Manan, dir. Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices. New Delhi : Springer India, 2017. http://dx.doi.org/10.1007/978-81-322-3703-7.
Texte intégralNeuromorphic Circuits for Nanoscale Devices. River Publishers, 2019.
Trouver le texte intégralMazumder, Pinaki, Yalcin Yilmaz et Idongesit Ebong. Neuromorphic Circuits for Nanoscale Devices. River Publishers, 2022.
Trouver le texte intégralMazumder, Pinaki, Yalcin Yilmaz et Idongesit Ebong. Neuromorphic Circuits for Nanoscale Devices. River Publishers, 2022.
Trouver le texte intégralMazumder, Pinaki, Yalcin Yilmaz et Idongesit Ebong. Neuromorphic Circuits for Nanoscale Devices. River Publishers, 2022.
Trouver le texte intégralDong, Yibo, Min Gu, Elena Goi, Yangyundou Wang et Zhengfen Wan. Neuromorphic Photonic Devices and Applications. Elsevier, 2023.
Trouver le texte intégralMazumder, Pinaki, Yalcin Yilmaz, Idongesit Ebong et Woo Hyung Lee. Neuromorphic Circuits for Nanoscale Devices. River Publishers, 2020.
Trouver le texte intégralWang, Jing, Min Gu, Elena Goi, Yangyundou Wang et Zhengfen Wan. Neuromorphic Photonic Devices and Applications. Elsevier, 2023.
Trouver le texte intégralWan, Qing, et Yi Shi, dir. Neuromorphic Devices for Brain‐Inspired Computing. Wiley, 2022. http://dx.doi.org/10.1002/9783527835317.
Texte intégralChapitres de livres sur le sujet "Neuromorphic devices"
Das, Sonali. « Perovskite Based Neuromorphic Devices ». Dans Engineering Materials, 417–46. Cham : Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-57663-8_12.
Texte intégralErokhin, Victor. « Memristive Devices and Circuits ». Dans Fundamentals of Organic Neuromorphic Systems, 1–17. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79492-7_1.
Texte intégralZahari, Finn, Martin Ziegler, Pouya Doerwald, Christian Wenger et Hermann Kohlstedt. « Neuromorphic Circuits with Redox-Based Memristive Devices ». Dans Springer Series on Bio- and Neurosystems, 43–85. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-36705-2_2.
Texte intégralEbong, Idongesit, et Pinaki Mazumder. « Neuromorphic Building Blocks with Memristors ». Dans Neuromorphic Circuits for Nanoscale Devices, 145–68. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003338918-5.
Texte intégralDanial, Loai, Parul Damahe, Purvi Agrawal, Ruchi Dhamnani et Shahar Kvatinsky. « Neuromorphic Data Converters Using Memristors ». Dans Emerging Computing : From Devices to Systems, 245–90. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7487-7_8.
Texte intégralYilmaz, Yalcin, et Pinaki Mazumder. « Multi-Level Memory Architecture ». Dans Neuromorphic Circuits for Nanoscale Devices, 117–44. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003338918-4.
Texte intégralYu, Yongbin, Lefei Men, Qingqing Hu, Shouming Zhong, Nyima Tashi, Pinaki Mazumder, Idongesit Ebong, Qishui Zhong et Xingwen Liu. « Dynamic Analysis of Memristor-based Neural Network and its Application ». Dans Neuromorphic Circuits for Nanoscale Devices, 303–49. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003338918-12.
Texte intégralMazumder, Pinaki, Sing-Rong Li et Idongesit Ebong. « Tunneling-Based Cellular Nonlinear Network Architectures for Image Processing ». Dans Neuromorphic Circuits for Nanoscale Devices, 183–203. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003338918-7.
Texte intégralHu, Xiaofang, Shukai Duan, Wenbo Song, Jiagui Wu et Pinaki Mazumder. « Memristor-based Cellular Nonlinear/Neural Network : Design, Analysis and Applications ». Dans Neuromorphic Circuits for Nanoscale Devices, 275–301. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003338918-11.
Texte intégralYilmaz, Yalcin, et Pinaki Mazumder. « Image Processing by a Programmable Artificial Retina Comprising Quantum Dots and Variable Resistance Devices ». Dans Neuromorphic Circuits for Nanoscale Devices, 255–74. New York : River Publishers, 2022. http://dx.doi.org/10.1201/9781003338918-10.
Texte intégralActes de conférences sur le sujet "Neuromorphic devices"
« Neuromorphic and Quantum Devices ». Dans 2018 76th Device Research Conference (DRC). IEEE, 2018. http://dx.doi.org/10.1109/drc.2018.8443299.
Texte intégralSantoro, Francesca. « Organic neuromorphic biointerfaces ». Dans Bioelectronic Interfaces : Materials, Devices and Applications. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2024. http://dx.doi.org/10.29363/nanoge.cybioel.2024.047.
Texte intégralNoheda, Beatriz. « Ferroelectrics for brain-inspired devices ». Dans Neuromorphic Materials, Devices, Circuits and Systems. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.neumatdecas.2023.072.
Texte intégralNeftci, Emre, Zhenming Yu et Nathan Lereoux. « Training-to-Learn with Memristive Devices ». Dans Neuromorphic Materials, Devices, Circuits and Systems. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.neumatdecas.2023.013.
Texte intégralHam, Donhee. « Neuroelectronic interface and neuromorphic engineering ». Dans Neuromorphic Materials, Devices, Circuits and Systems. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.neumatdecas.2023.058.
Texte intégralWu, Lingxi, Rahul Sreekumar, Rasool Sharifi, Kevin Skadron, Mircea R. Stant et Ashish Venkat. « Hardware Trojans in eNVM Neuromorphic Devices ». Dans 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2023. http://dx.doi.org/10.23919/date56975.2023.10136984.
Texte intégralReita, C. « Memory devices in Neuromorphic Computing Systems ». Dans 2017 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2017. http://dx.doi.org/10.7567/ssdm.2017.m-2-01.
Texte intégralZhu, Ruomin, Sam Lilak, Alon Loeffler, Joseph Lizier, Adam Stieg, James Gimzewski et Zdenka Kuncic. « Reservoir Computing with Neuromorphic Nanowire Networks ». Dans Neuromorphic Materials, Devices, Circuits and Systems. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.neumatdecas.2023.055.
Texte intégralFarronato, Matteo, Piergiulio Mannocci, Saverio Ricci, Alessandro Bricalli, Margherita Melegari, Christian Monzio Compagnoni et Daniele Ielmini. « Memtransistor devices based on MoS2 for neuromorphic computing ». Dans Neuromorphic Materials, Devices, Circuits and Systems. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.neumatdecas.2023.042.
Texte intégralVenkatesan, T. « Robust Resistive and Mem-devices for Neuromorphic Circuits ». Dans Neuromorphic Materials, Devices, Circuits and Systems. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.neumatdecas.2023.007.
Texte intégralRapports d'organisations sur le sujet "Neuromorphic devices"
Gall, W. E. Brain-Based Devices for Neuromorphic Computer Systems. Fort Belvoir, VA : Defense Technical Information Center, juillet 2013. http://dx.doi.org/10.21236/ada587348.
Texte intégral