Littérature scientifique sur le sujet « Nested Dataset »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nested Dataset ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Nested Dataset"
Dinh, Thi Lan Anh, et Filipe Aires. « Nested leave-two-out cross-validation for the optimal crop yield model selection ». Geoscientific Model Development 15, no 9 (5 mai 2022) : 3519–35. http://dx.doi.org/10.5194/gmd-15-3519-2022.
Texte intégralSheikhaei, Mohammad Sadegh, Hasan Zafari et Yuan Tian. « Joined Type Length Encoding for Nested Named Entity Recognition ». ACM Transactions on Asian and Low-Resource Language Information Processing 21, no 3 (31 mai 2022) : 1–23. http://dx.doi.org/10.1145/3487057.
Texte intégralLi, Zan, Hong Zhang, Zhengzhen Li et Zuyue Ren. « Residual-Attention UNet++ : A Nested Residual-Attention U-Net for Medical Image Segmentation ». Applied Sciences 12, no 14 (15 juillet 2022) : 7149. http://dx.doi.org/10.3390/app12147149.
Texte intégralZhang, Jilong, Yajuan Zhang, Hongyang Zhang, Quan Zhang, Weihua Su, Shijie Guo et Yuanquan Wang. « Segmentation of biventricle in cardiac cine MRI via nested capsule dense network ». PeerJ Computer Science 8 (30 novembre 2022) : e1146. http://dx.doi.org/10.7717/peerj-cs.1146.
Texte intégralFu, Yao, Chuanqi Tan, Mosha Chen, Songfang Huang et Fei Huang. « Nested Named Entity Recognition with Partially-Observed TreeCRFs ». Proceedings of the AAAI Conference on Artificial Intelligence 35, no 14 (18 mai 2021) : 12839–47. http://dx.doi.org/10.1609/aaai.v35i14.17519.
Texte intégralKulkarni, Rishikesh U., Catherine L. Wang et Carolyn R. Bertozzi. « Analyzing nested experimental designs—A user-friendly resampling method to determine experimental significance ». PLOS Computational Biology 18, no 5 (2 mai 2022) : e1010061. http://dx.doi.org/10.1371/journal.pcbi.1010061.
Texte intégralLiu, Wen, Yankui Sun et Qingge Ji. « MDAN-UNet : Multi-Scale and Dual Attention Enhanced Nested U-Net Architecture for Segmentation of Optical Coherence Tomography Images ». Algorithms 13, no 3 (4 mars 2020) : 60. http://dx.doi.org/10.3390/a13030060.
Texte intégralTuranzas, J., M. Alonso, H. Amaris, J. Gutierrez et S. Pastrana. « A nested decision tree for event detection in smart grids ». Renewable Energy and Power Quality Journal 20 (septembre 2022) : 353–58. http://dx.doi.org/10.24084/repqj20.308.
Texte intégralJamali, A., et A. Abdul Rahman. « EVALUATION OF ADVANCED DATA MINING ALGORITHMS IN LAND USE/LAND COVER MAPPING ». ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W16 (1 octobre 2019) : 283–89. http://dx.doi.org/10.5194/isprs-archives-xlii-4-w16-283-2019.
Texte intégralHazard, Derek, Martin Schumacher, Mercedes Palomar-Martinez, Francisco Alvarez-Lerma, Pedro Olaechea-Astigarraga et Martin Wolkewitz. « Improving nested case-control studies to conduct a full competing-risks analysis for nosocomial infections ». Infection Control & ; Hospital Epidemiology 39, no 10 (30 août 2018) : 1196–201. http://dx.doi.org/10.1017/ice.2018.186.
Texte intégralThèses sur le sujet "Nested Dataset"
DENTI, FRANCESCO. « Bayesian Mixtures for Large Scale Inference ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262923.
Texte intégralBayesian mixture models are ubiquitous in statistics due to their simplicity and flexibility and can be easily employed in a wide variety of contexts. In this dissertation, we aim at providing a few contributions to current Bayesian data analysis methods, often motivated by research questions from biological applications. In particular, we focus on the development of novel Bayesian mixture models, typically in a nonparametric setting, to improve and extend active research areas that involve large-scale data: the modeling of nested data, multiple hypothesis testing, and dimensionality reduction.\\ Therefore, our goal is twofold: to develop robust statistical methods motivated by a solid theoretical background, and to propose efficient, scalable and tractable algorithms for their applications.\\ The thesis is organized as follows. In Chapter \ref{intro} we shortly review the methodological background and discuss the necessary concepts that belong to the different areas that we will contribute to with this dissertation. \\ In Chapter \ref{CAM} we propose a Common Atoms model (CAM) for nested datasets, which overcomes the limitations of the nested Dirichlet Process, as discussed in \citep{Camerlenghi2018}. We derive its theoretical properties and develop a slice sampler for nested data to obtain an efficient algorithm for posterior simulation. We then embed the model in a Rounded Mixture of Gaussian kernels framework to apply our method to an abundance table from a microbiome study.\\ In Chapter \ref{BNPT} we develop a BNP version of the two-group model \citep{Efron2004}, modeling both the null density $f_0$ and the alternative density $f_1$ with Pitman-Yor process mixture models. We propose to fix the two discount parameters $\sigma_0$ and $\sigma_1$ so that $\sigma_0>\sigma_1$, according to the rationale that the null PY should be closer to its base measure (appropriately chosen to be a standard Gaussian base measure), while the alternative PY should have fewer constraints. To induce separation, we employ a non-local prior \citep{Johnson} on the location parameter of the base measure of the PY placed on $f_1$. We show how the model performs in different scenarios and apply this methodology to a microbiome dataset.\\ Chapter \ref{Peluso} presents a second proposal for the two-group model. Here, we make use of non-local distributions to model the alternative density directly in the likelihood formulation. We propose both a parametric and a nonparametric formulation of the model. We provide a theoretical justification for the adoption of this approach and, after comparing the performance of our model with several competitors, we present three applications on real, publicly available genomic datasets.\\ In Chapter \ref{CRIME} we focus on improving the model for intrinsic dimensions (IDs) estimation discussed in \citet{Allegra}. In particular, the authors estimate the IDs modeling the ratio of the distances from a point to its first and second nearest neighbors (NNs). First, we propose to include more suitable priors in their parametric, finite mixture model. Then, we extend the existing theoretical methodology by deriving closed-form distributions for the ratios of distances from a point to two NNs of generic order. We propose a simple Dirichlet process mixture model, where we exploit the novel theoretical results to extract more information from the data. The chapter is then concluded with simulation studies and the application to real data.\\ Finally, Chapter \ref{Conclusions} presents the future directions and concludes.
Schulz, Sebastian [Verfasser], et B. [Akademischer Betreuer] Nestler. « Phase-field simulations of multi-component solidification and coarsening based on thermodynamic datasets / Sebastian Schulz. Betreuer : B. Nestler ». Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1106330110/34.
Texte intégralSchulz, Sebastian [Verfasser], et B. [Akademischer Betreuer] Nestler. « Phase-field simulations of multi-component solidification and coarsening based on thermodynamic datasets / Sebastian Schulz ; Betreuer : B. Nestler ». Karlsruhe : KIT Scientific Publishing, 2017. http://d-nb.info/1185759832/34.
Texte intégralMauricio-Sanchez, David, Andrade Lopes Alneu de et higuihara Juarez Pedro Nelson. « Approaches based on tree-structures classifiers to protein fold prediction ». Institute of Electrical and Electronics Engineers Inc, 2017. http://hdl.handle.net/10757/622536.
Texte intégralProtein fold recognition is an important task in the biological area. Different machine learning methods such as multiclass classifiers, one-vs-all and ensemble nested dichotomies were applied to this task and, in most of the cases, multiclass approaches were used. In this paper, we compare classifiers organized in tree structures to classify folds. We used a benchmark dataset containing 125 features to predict folds, comparing different supervised methods and achieving 54% of accuracy. An approach related to tree-structure of classifiers obtained better results in comparison with a hierarchical approach.
Revisión por pares
Calçada, David Tiago. « Predicting chelonia mydas nests survivability rates with use of machine learning techniques : applying machine learning techniques on conservation data – case study ». Master's thesis, 2020. http://hdl.handle.net/10362/97228.
Texte intégralIt is the generalized goal of knowledge discovery techniques to help us find useful patterns in data whilst not subjecting us to the ambiguity and overcomplexity of models. In fact, it has become increasingly important to allow for a common language to exist between biologists and data scientists. In my thesis I aim to make use of Green Turtle (Chelonya mydas) nesting data obtained in surveys conducted from 2015 to 2019 in Príncipe Island, in order to obtain two things: Firstly, to understand insights related to sea turtle survivability rates; Secondly, to develop prediction models on said rates via popular Machine Learning algorithms. For this purpose, I will detail how my collaboration with the sea turtle conservation team in Principe Island began, and work has been developed since. I will describe all steps referring to the dataset transformation, manipulation and exploration, and detail how each step has allowed me to feed the sea turtle data into powerful Machine Learning algorithms that are to be evaluated against their ability to predict accurate nest survivability rates. At the end of the contextual part of this document, I will explain my findings and present the limitations of this project; I hope to provide a solid example that will allow future students and researchers to keep in mind what challenges await them should they pursue this field. Finally, a key aspect of this thesis that is very important that it’s written in such a way that individuals with different backgrounds are able to understand its content and objectives.
Livres sur le sujet "Nested Dataset"
Reis, Lucas Bond. Florianópolis arqueológica. Editora da UFSC, 2021. http://dx.doi.org/10.5007/978-65-5805-023-0.
Texte intégralChapitres de livres sur le sujet "Nested Dataset"
Gong, Yansheng, et Wenfeng Jing. « A Fully-Nested Encoder-Decoder Framework for Anomaly Detection ». Dans Proceeding of 2021 International Conference on Wireless Communications, Networking and Applications, 749–59. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2456-9_75.
Texte intégralQuicke, Donald, Buntika A. Butcher et Rachel Kruft Welton. « More on apply family of functions - avoid loops to get more speed. » Dans Practical R for biologists : an introduction, 322–25. Wallingford : CABI, 2021. http://dx.doi.org/10.1079/9781789245349.0027.
Texte intégralQuicke, Donald, Buntika A. Butcher et Rachel Kruft Welton. « More on apply family of functions - avoid loops to get more speed. » Dans Practical R for biologists : an introduction, 322–25. Wallingford : CABI, 2021. http://dx.doi.org/10.1079/9781789245349.0322.
Texte intégralOsakabe, Yoshihiro, et Akinori Asahara. « Proposing Novel High-Performance Compounds by Nested VAEs Trained Independently on Different Datasets ». Dans Advances and Trends in Artificial Intelligence. Theory and Practices in Artificial Intelligence, 714–22. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08530-7_60.
Texte intégralChebotko, Artem, et Shiyong Lu. « Nested Optional Join for Efficient Evaluation of SPARQL Nested Optional Graph Patterns ». Dans Advances in Semantic Web and Information Systems, 281–308. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-60566-992-2.ch013.
Texte intégralLi, Liu, et Fusong Ling. « Chinese Medical Named Entity Recognition Method Based on Word-Word Relationship ». Dans Computer Methods in Medicine and Health Care. IOS Press, 2022. http://dx.doi.org/10.3233/atde220541.
Texte intégralPham, Thien, Loi Truong, Mao Nguyen, Akhil Garg, Liang Gao et Tho Quan. « Sequence-in-Sequence Learning for SOH Estimation of Lithium-Ion Battery ». Dans Proceedings of CECNet 2021. IOS Press, 2021. http://dx.doi.org/10.3233/faia210385.
Texte intégralMuche Fenta, Setegn, et Haile Mekonnen Fenta. « Level and Determinant of Child Mortality Rate in Ethiopia ». Dans Mortality Rates in Middle and Low-Income Countries. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.100482.
Texte intégralMu’inah, U. M., R. Fajriyah et H. Nugrahapraja. « Organ-specific expression revealed using support vector machine on maize nested association mapping datasets ». Dans Empowering Science and Mathematics for Global Competitiveness, 532–36. CRC Press, 2019. http://dx.doi.org/10.1201/9780429461903-72.
Texte intégralRavindra, Padmashree, et Kemafor Anyanwu. « Nesting Strategies for Enabling Nimble MapReduce Dataflows for Large RDF Data ». Dans Information Retrieval and Management, 811–38. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5191-1.ch035.
Texte intégralActes de conférences sur le sujet "Nested Dataset"
Ringland, Nicky, Xiang Dai, Ben Hachey, Sarvnaz Karimi, Cecile Paris et James R. Curran. « NNE : A Dataset for Nested Named Entity Recognition in English Newswire ». Dans Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA : Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/p19-1510.
Texte intégralJonak, Martin, Stepan Jezek et Radim Burget. « Evaluation of Nested U-Net models performance on MVTec AD dataset ». Dans 2022 14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). IEEE, 2022. http://dx.doi.org/10.1109/icumt57764.2022.9943348.
Texte intégralLoukachevitch, Natalia, Ekaterina Artemova, Tatiana Batura, Pavel Braslavski, Ilia Denisov, Vladimir Ivanov, Suresh Manandhar, Alexander Pugachev et Elena Tutubalina. « NEREL : A Russian Dataset with Nested Named Entities, Relations and Events ». Dans International Conference Recent Advances in Natural Language Processing. INCOMA Ltd. Shoumen, BULGARIA, 2021. http://dx.doi.org/10.26615/978-954-452-072-4_100.
Texte intégralDinh, Tuan Le, Suk-Hwan Lee, Seong-Geun Kwon et Ki-Ryong Kwon. « Cell Nuclei Segmentation in Cryonuseg dataset using Nested Unet with EfficientNet Encoder ». Dans 2022 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, 2022. http://dx.doi.org/10.1109/iceic54506.2022.9748537.
Texte intégralWu, Shuhui, Yongliang Shen, Zeqi Tan et Weiming Lu. « Propose-and-Refine : A Two-Stage Set Prediction Network for Nested Named Entity Recognition ». Dans Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California : International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/613.
Texte intégralZeng, Yu, Yan Gao, Jiaqi Guo, Bei Chen, Qian Liu, Jian-Guang Lou, Fei Teng et Dongmei Zhang. « RECPARSER : A Recursive Semantic Parsing Framework for Text-to-SQL Task ». Dans Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California : International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/504.
Texte intégralCouto, João M. M., Breno Pimenta, Igor M. de Araújo, Samuel Assis, Julio C. S. Reis, Ana Paula C. da Silva, Jussara M. Almeida et Fabrício Benevenuto. « Central de Fatos : Um Repositório de Checagens de Fatos ». Dans Dataset Showcase Workshop. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/dsw.2021.17421.
Texte intégralSilva, Mariana O., Amanda F. Paula, Gabriel P. Oliveira, Iago A. D. Vaz, Henrique Hott, Larissa D. Gomide, Arthur P. G. Reis et al. « LiPSet : Um conjunto de Dados com Documentos Rotulados de Licitações Públicas ». Dans Dataset Showcase Workshop. Sociedade Brasileira de Computação, 2022. http://dx.doi.org/10.5753/dsw.2022.224925.
Texte intégralAlbuquerque, Aldéryck Félix de, Abílio Nogueira Barros, Andreza Alencar, André Nascimento, Ibsen Mateus Bittencourt et Rafael Ferreira Mello. « Dataset de Estimativas populacionais desagregada por município e idade 2014-2020 ». Dans Dataset Showcase Workshop. Sociedade Brasileira de Computação, 2022. http://dx.doi.org/10.5753/dsw.2022.225525.
Texte intégralPorto, Fabio, Amir Khatibi, João N. Rittmeyer, Eduardo Ogasawara, Patrick Valduriez et Dennis Shasha. « Constellation Queries over Big Data ». Dans Simpósio Brasileiro de Banco de Dados. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/sbbd.2018.22221.
Texte intégralRapports d'organisations sur le sujet "Nested Dataset"
Idakwo, Gabriel, Sundar Thangapandian, Joseph Luttrell, Zhaoxian Zhou, Chaoyang Zhang et Ping Gong. Deep learning-based structure-activity relationship modeling for multi-category toxicity classification : a case study of 10K Tox21 chemicals with high-throughput cell-based androgen receptor bioassay data. Engineer Research and Development Center (U.S.), juillet 2021. http://dx.doi.org/10.21079/11681/41302.
Texte intégralAlviarez, Vanessa, Michele Fioretti, Ken Kikkawa et Monica Morlacco. Two-Sided Market Power in Firm-to-Firm Trade. Inter-American Development Bank, août 2021. http://dx.doi.org/10.18235/0003493.
Texte intégral