Articles de revues sur le sujet « Near-infrared upconversion »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Near-infrared upconversion.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Near-infrared upconversion ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Baride, Aravind, Ganesh Sigdel, William M. Cross, Jon J. Kellar et P. Stanley May. « Near Infrared-to-Near Infrared Upconversion Nanocrystals for Latent Fingerprint Development ». ACS Applied Nano Materials 2, no 7 (7 juin 2019) : 4518–27. http://dx.doi.org/10.1021/acsanm.9b00890.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Xiang, Jun, Shenglin Zhou, Jianxun Lin, Jiating Wen, Yutong Xie, Bin Yan, Qiang Yan, Yue Zhao, Feng Shi et Haojun Fan. « Low-Power Near-Infrared-Responsive Upconversion Nanovectors ». ACS Applied Materials & ; Interfaces 13, no 6 (1 février 2021) : 7094–101. http://dx.doi.org/10.1021/acsami.0c21115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Li, Wen, Jiasi Wang, Jinsong Ren et Xiaogang Qu. « Near-Infrared Upconversion Controls Photocaged Cell Adhesion ». Journal of the American Chemical Society 136, no 6 (3 février 2014) : 2248–51. http://dx.doi.org/10.1021/ja412364m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dou, Qing Qing, Hong Chen Guo et Enyi Ye. « Near-infrared upconversion nanoparticles for bio-applications ». Materials Science and Engineering : C 45 (décembre 2014) : 635–43. http://dx.doi.org/10.1016/j.msec.2014.03.056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Li, Ruonan, Lifei Sun, Yangjian Cai, Yingying Ren, Hongliang Liu, Mark D. Mackenzie et Ajoy K. Kar. « Near-infrared lasing and tunable upconversion from femtosecond laser inscribed Nd,Gd:CaF2 waveguides ». Chinese Optics Letters 19, no 8 (2021) : 081301. http://dx.doi.org/10.3788/col202119.081301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sola, Daniel, Adrián Miguel, Eduardo Arias-Egido et Jose I. Peña. « Spectroscopy and Near-Infrared to Visible Upconversion of Er3+ Ions in Aluminosilicate Glasses Manufactured with Controlled Optical Transmission ». Applied Sciences 11, no 3 (26 janvier 2021) : 1137. http://dx.doi.org/10.3390/app11031137.

Texte intégral
Résumé :
In this work we report on the spectroscopic properties and the near-infrared to visible upconversion of Er3+ ions in aluminosilicate glasses manufactured by directionally solidification with the laser floating zone technique. Glasses were manufactured in a controlled oxidizing atmosphere to provide them with high optical transmission in the visible spectral range. Absorption and emission spectra, and lifetimes were assessed in both the visible and the near infrared spectral range. Green upconversion emissions of the 2H11/2→4I15/2 and 4S3/2→4I15/2 transitions at 525 nm and 550 nm attributed to a two-photon process were observed under excitation at 800 nm. Mechanisms responsible for the upconversion luminescence were discussed in terms of excited state absorption and energy transfer upconversion processes. Excitation spectra of the upconverted emission suggest that energy transfer upconversion processes are responsible for the green upconversion luminescence.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kshetri, Yuwaraj K., Bhupendra Joshi, Tae-Ho Kim et Soo W. Lee. « Visible and near-infrared upconversion in α-sialon ceramics ». Journal of Materials Chemistry C 5, no 14 (2017) : 3542–52. http://dx.doi.org/10.1039/c6tc05347e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zheng, Xiang, Ranjith Kumar Kankala, Chen-Guang Liu, Shi-Bin Wang, Ai-Zheng Chen et Yong Zhang. « Lanthanides-doped near-infrared active upconversion nanocrystals : Upconversion mechanisms and synthesis ». Coordination Chemistry Reviews 438 (juillet 2021) : 213870. http://dx.doi.org/10.1016/j.ccr.2021.213870.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wang, Zhaofeng, Yezhou Li, Qi Jiang, Huidan Zeng, Zhipeng Ci et Luyi Sun. « Pure near-infrared to near-infrared upconversion of multifunctional Tm3+ and Yb3+ co-doped NaGd(WO4)2 nanoparticles ». J. Mater. Chem. C 2, no 22 (2014) : 4495–501. http://dx.doi.org/10.1039/c4tc00424h.

Texte intégral
Résumé :
Pure near-infrared to near-infrared upconversion and paramagnetism were observed in NaGd(WO4)2:Tm3+,Yb3+ nanoparticles, suggesting that they are promising materials for applications in high-contrast bio-imaging and bio-separation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Chen, Xingzhong, Yang Li, Kai Huang, Ling Huang, Xiumei Tian, Huafeng Dong, Ru Kang et al. « Trap Energy Upconversion‐Like Near‐Infrared to Near‐Infrared Light Rejuvenateable Persistent Luminescence ». Advanced Materials 33, no 15 (26 février 2021) : 2008722. http://dx.doi.org/10.1002/adma.202008722.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zhang, Jiayin, Hua Zhao, Xitian Zhang, Xuanzhang Wang, Hong Gao, Zhiguo Zhang et Wenwu Cao. « Monochromatic Near-Infrared to Near-Infrared Upconversion Nanoparticles for High-Contrast Fluorescence Imaging ». Journal of Physical Chemistry C 118, no 5 (22 janvier 2014) : 2820–25. http://dx.doi.org/10.1021/jp410993a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Savelyev, Alexander G., Vladimir A. Semchishen, Andrey V. Nechaev, Kirill V. Khaydukov, Polina A. Demina, Alla N. Generalova et Evgeny V. Khaydukov. « Near-infrared photopolymerization assisted by upconversion nanophosphors for biomedical applications ». EPJ Web of Conferences 190 (2018) : 04018. http://dx.doi.org/10.1051/epjconf/201819004018.

Texte intégral
Résumé :
We present the concept and the experimental demonstration of near-infrared photopolymerization assisted by specially designed upconversion nanophosphors. The principle of this technique is based on conversion of 980 nm laser irradiation to ultraviolet photons subsequently absorbed by photoinitiator. The nonlinearity of upconversion allows for activation of the process locally in the laser beam waist. This approach enables precise fabrication of 3D constructs directly in the volume of photocurable composition. Furthermore, the presented technique is suitable for polymerization of a wide range of photocurable resins as well as gelation of hydrogels for biomedical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Liu, Yi, Qianqian Su, Xianmei Zou, Min Chen, Wei Feng, Yibing Shi et Fuyou Li. « Near-infrared in vivo bioimaging using a molecular upconversion probe ». Chemical Communications 52, no 47 (2016) : 7466–69. http://dx.doi.org/10.1039/c6cc03401b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Michael Dcona, M., Qing Yu, John A. Capobianco et Matthew C. T. Hartman. « Near infrared light mediated release of doxorubicin using upconversion nanoparticles ». Chemical Communications 51, no 40 (2015) : 8477–79. http://dx.doi.org/10.1039/c5cc01795e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Zhai, Yongbiao, Ye Zhou, Xueqing Yang, Feng Wang, Wenbin Ye, Xiaojian Zhu, Donghong She, Wei D. Lu et Su-Ting Han. « Near infrared neuromorphic computing via upconversion-mediated optogenetics ». Nano Energy 67 (janvier 2020) : 104262. http://dx.doi.org/10.1016/j.nanoen.2019.104262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zou, Wenqiang, Cindy Visser, Jeremio A. Maduro, Maxim S. Pshenichnikov et Jan C. Hummelen. « Broadband dye-sensitized upconversion of near-infrared light ». Nature Photonics 6, no 8 (15 juillet 2012) : 560–64. http://dx.doi.org/10.1038/nphoton.2012.158.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Zhimin, Do Cong Thang, Qingyu Han, Xuan Zhao, Xilei Xie, Zhiyong Wang, Jun Lin et Bengang Xing. « Near-infrared photocontrolled therapeutic release via upconversion nanocomposites ». Journal of Controlled Release 324 (août 2020) : 104–23. http://dx.doi.org/10.1016/j.jconrel.2020.05.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Liu, Shun-Wei, Chih-Chien Lee, Chih-Hsien Yuan, Wei-Cheng Su, Shao-Yu Lin, Wen-Chang Chang, Bo-Yao Huang et al. « Transparent Organic Upconversion Devices for Near-Infrared Sensing ». Advanced Materials 27, no 7 (12 décembre 2014) : 1217–22. http://dx.doi.org/10.1002/adma.201404355.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Lee, Gibum, Jonghwan Mun, Hyunsik Choi, Seulgi Han et Sei Kwang Hahn. « Multispectral upconversion nanoparticles for near infrared encoding of wearable devices ». RSC Advances 11, no 36 (2021) : 21897–903. http://dx.doi.org/10.1039/d1ra03572j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Mahata, Manoj Kumar, Ranjit De et Kang Taek Lee. « Near-Infrared-Triggered Upconverting Nanoparticles for Biomedicine Applications ». Biomedicines 9, no 7 (29 juin 2021) : 756. http://dx.doi.org/10.3390/biomedicines9070756.

Texte intégral
Résumé :
Due to the unique properties of lanthanide-doped upconverting nanoparticles (UCNP) under near-infrared (NIR) light, the last decade has shown a sharp progress in their biomedicine applications. Advances in the techniques for polymer, dye, and bio-molecule conjugation on the surface of the nanoparticles has further expanded their dynamic opportunities for optogenetics, oncotherapy and bioimaging. In this account, considering the primary benefits such as the absence of photobleaching, photoblinking, and autofluorescence of UCNPs not only facilitate the construction of accurate, sensitive and multifunctional nanoprobes, but also improve therapeutic and diagnostic results. We introduce, with the basic knowledge of upconversion, unique properties of UCNPs and the mechanisms involved in photon upconversion and discuss how UCNPs can be implemented in biological practices. In this focused review, we categorize the applications of UCNP-based various strategies into the following domains: neuromodulation, immunotherapy, drug delivery, photodynamic and photothermal therapy, bioimaging and biosensing. Herein, we also discuss the current emerging bioapplications with cutting edge nano-/biointerfacing of UCNPs. Finally, this review provides concluding remarks on future opportunities and challenges on clinical translation of UCNPs-based nanotechnology research.
Styles APA, Harvard, Vancouver, ISO, etc.
21

Rao, Mengnan, Jie Fu, Xing Wen, Bing Sun, Jing Wu, Xuanhe Liu et Xueling Dong. « Near-infrared-excitable perovskite quantum dots via coupling with upconversion nanoparticles for dual-model anti-counterfeiting ». New Journal of Chemistry 42, no 15 (2018) : 12353–56. http://dx.doi.org/10.1039/c8nj02315h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Huang, Zhiyuan, Duane E. Simpson, Melika Mahboub, Xin Li et Ming L. Tang. « Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers ». Chemical Science 7, no 7 (2016) : 4101–4. http://dx.doi.org/10.1039/c6sc00257a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Yu, Hui, Wanlu Sun, Aliya Tiemuer, Yuanyuan Zhang, Hai-Yan Wang et Yi Liu. « Mitochondria targeted near-infrared chemodosimeter for upconversion luminescence bioimaging of hypoxia ». Chemical Communications 57, no 42 (2021) : 5207–10. http://dx.doi.org/10.1039/d1cc01338f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Chen, Xu, Wen Xu, Yandong Jiang, Gencai Pan, Donglei Zhou, Jinyang Zhu, He Wang, Cong Chen, Dongyu Li et Hongwei Song. « A novel upconversion luminescence derived photoelectrochemical immunoassay : ultrasensitive detection to alpha-fetoprotein ». Nanoscale 9, no 42 (2017) : 16357–64. http://dx.doi.org/10.1039/c7nr05577c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Meng, Xiaoyan, Huaqiao Lu, Zhiquan Li, Chen Wang, Ren Liu, Xin Guan et Yusuf Yagci. « Near-infrared light induced cationic polymerization based on upconversion and ferrocenium photochemistry ». Polymer Chemistry 10, no 41 (2019) : 5574–77. http://dx.doi.org/10.1039/c9py01262a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ding, He, Lihui Lu, Zhao Shi, Dan Wang, Lizhu Li, Xichen Li, Yuqi Ren et al. « Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources ». Proceedings of the National Academy of Sciences 115, no 26 (11 juin 2018) : 6632–37. http://dx.doi.org/10.1073/pnas.1802064115.

Texte intégral
Résumé :
Optical upconversion that converts infrared light into visible light is of significant interest for broad applications in biomedicine, imaging, and displays. Conventional upconversion materials rely on nonlinear light-matter interactions, exhibit incidence-dependent efficiencies, and require high-power excitation. We report an infrared-to-visible upconversion strategy based on fully integrated microscale optoelectronic devices. These thin-film, ultraminiaturized devices realize near-infrared (∼810 nm) to visible [630 nm (red) or 590 nm (yellow)] upconversion that is linearly dependent on incoherent, low-power excitation, with a quantum yield of ∼1.5%. Additional features of this upconversion design include broadband absorption, wide-emission spectral tunability, and fast dynamics. Encapsulated, freestanding devices are transferred onto heterogeneous substrates and show desirable biocompatibilities within biological fluids and tissues. These microscale devices are implanted in behaving animals, with in vitro and in vivo experiments demonstrating their utility for optogenetic neuromodulation. This approach provides a versatile route to achieve upconversion throughout the entire visible spectral range at lower power and higher efficiency than has previously been possible.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Qiu, Shanshan, Jianfeng Zeng, Yi Hou, Lei Chen, Jianxian Ge, Ling Wen, Chunyan Liu, Youjiu Zhang, Ran Zhu et Mingyuan Gao. « Detection of lymph node metastasis with near-infrared upconversion luminescent nanoprobes ». Nanoscale 10, no 46 (2018) : 21772–81. http://dx.doi.org/10.1039/c8nr05811c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Ding, Binbin, Shuai Shao, Haihua Xiao, Chunqiang Sun, Xuechao Cai, Fan Jiang, Xueyan Zhao, Ping'an Ma et Jun Lin. « MnFe2O4-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O2 self-sufficient photodynamic therapy ». Nanoscale 11, no 31 (2019) : 14654–67. http://dx.doi.org/10.1039/c9nr04858h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Wang, Fang, Zhen Li, Xiaobo Zhang, Rengan Luo, Hanlin Hou et Jianping Lei. « Transformable upconversion metal–organic frameworks for near-infrared light-programmed chemotherapy ». Chemical Communications 57, no 63 (2021) : 7826–29. http://dx.doi.org/10.1039/d1cc02670d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Pan, Er, Gongxun Bai, Jun Zhou, Lei Lei et Shiqing Xu. « Exceptional modulation of upconversion and downconversion near-infrared luminescence in Tm/Yb-codoped ferroelectric nanocomposite by nanoscale engineering ». Nanoscale 11, no 24 (2019) : 11642–48. http://dx.doi.org/10.1039/c9nr02532d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Chen, Wansong, Min Chen, Qiguang Zang, Liqiang Wang, Feiying Tang, Yajing Han, Cejun Yang, Liu Deng et You-Nian Liu. « NIR light controlled release of caged hydrogen sulfide based on upconversion nanoparticles ». Chemical Communications 51, no 44 (2015) : 9193–96. http://dx.doi.org/10.1039/c5cc02508g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Xia, Wanying, Bo Ling, Lun Wang, Feng Gao et Hongqi Chen. « A near-infrared upconversion luminescence total internal reflection platform for quantitative image analysis ». Chemical Communications 56, no 60 (2020) : 8440–43. http://dx.doi.org/10.1039/d0cc03119d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Bartusik-Aebisher, Dorota, Mateusz Mielnik, Grzegorz Cieślar, Ewa Chodurek, Aleksandra Kawczyk-Krupka et David Aebisher. « Photon Upconversion in Small Molecules ». Molecules 27, no 18 (10 septembre 2022) : 5874. http://dx.doi.org/10.3390/molecules27185874.

Texte intégral
Résumé :
Upconversion (UC) is a process that describes the emission of shorter-wavelength light compared to that of the excitation source. Thus, UC is also referred to as anti-Stokes emission because the excitation wavelength is longer than the emission wavelength. UC materials are used in many fields, from electronics to medicine. The objective of using UC in medical research is to synthesize upconversion nanoparticles (UCNPs) composed of a lanthanide core with a coating of adsorbed dye that will generate fluorescence after excitation with near-infrared light to illuminate deep tissue. Emission occurs in the visible and UV range, and excitation mainly in the near-infrared spectrum. UC is observed for lanthanide ions due to the arrangement of their energy levels resulting from f-f electronic transitions. Organic compounds and transition metal ions are also able to form the UC process. Biocompatible UCNPs are designed to absorb infrared light and emit visible light in the UC process. Fluorescent dyes are adsorbed to UCNPs and employed in PDT to achieve deeper tissue effects upon irradiation with infrared light. Fluorescent UCNPs afford selectivity as they may be activated only by illumination of an area of diseased tissue, such as a tumor, with infrared light and are by themselves atoxic in the absence of infrared light. UCNP constructs can be monitored as to their location in the body and uptake by cancer cells, aiding in evaluation of exact doses required to treat the targeted cancer. In this paper, we review current research in UC studies and UCNP development.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhu, Yuxiang, Xianlin Zheng, Yiqing Lu, Xiaoxia Yang, Amanj Kheradmand et Yijiao Jiang. « Efficient upconverting carbon nitride nanotubes for near-infrared-driven photocatalytic hydrogen production ». Nanoscale 11, no 42 (2019) : 20274–83. http://dx.doi.org/10.1039/c9nr05276c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Chen, Guanying, Tymish Y. Ohulchanskyy, Rajiv Kumar, Hans Ågren et Prasas N. Prasad. « Ultrasmall Monodisperse NaYF4:Yb3+/Tm3+ Nanocrystals with Enhanced Near-Infrared to Near-Infrared Upconversion Photoluminescence ». ACS Nano 4, no 6 (28 mai 2010) : 3163–68. http://dx.doi.org/10.1021/nn100457j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Idris, Niagara Muhammad, Muthu Kumara Gnanasammandhan Jayakumar, Akshaya Bansal et Yong Zhang. « Upconversion nanoparticles as versatile light nanotransducers for photoactivation applications ». Chemical Society Reviews 44, no 6 (2015) : 1449–78. http://dx.doi.org/10.1039/c4cs00158c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Zheng, Shuhong, Weibo Chen, Dezhi Tan, Jiajia Zhou, Qiangbing Guo, Wei Jiang, Cheng Xu, Xiaofeng Liu et Jianrong Qiu. « Lanthanide-doped NaGdF4 core–shell nanoparticles for non-contact self-referencing temperature sensors ». Nanoscale 6, no 11 (2014) : 5675–79. http://dx.doi.org/10.1039/c4nr00432a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Pedersen, Rasmus L., Dina Hot et Zongshan Li. « Comparison of an InSb Detector and Upconversion Detector for Infrared Polarization Spectroscopy ». Applied Spectroscopy 72, no 5 (27 décembre 2017) : 793–97. http://dx.doi.org/10.1177/0003702817746635.

Texte intégral
Résumé :
This paper compares the signal-to-noise ratio obtained using an InSb photodiode for infrared (IR) polarization spectroscopy to that obtained using an upconversion detector, and shows a factor 64 improvement by the change. Upconversion detection is based on using sum frequency generation to move the IR optical signal to near-visible wavelengths to improve the sensitivity.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Liu, Ping, et Wei Miu. « Hydrothermal synthesis of BaYbF5:Tm3+ nanoparticles for dual-modal upconversion near-infrared luminescence and magnetic resonance imaging ». Functional Materials Letters 09, no 03 (juin 2016) : 1650038. http://dx.doi.org/10.1142/s1793604716500387.

Texte intégral
Résumé :
In this paper, we demonstrate multifunctional upconversion nanoparticles with intense near-infrared emission and unique magnetic properties for dual-modal upconversion luminescent bioimaging and T2-weighted magnetic resonance imaging. High-quality BaYbF5:Tm3+ nanoparticles are synthesized via a hydrophobic method and then converted to be hydrophilic via a hydrochloric acid treatment. The as-synthesized nanoparticles are cubic phase and about 6 nm in diameter with narrow size distribution. The intense near-infrared emission makes these nanoparticles can be acted as bio-probes in upconversion luminescent bioimaging with deep tissue penetration. Besides, these nanoparticles can also be used as T2-weighted contrast agents in magnetic resonance imaging due to the high value of relaxation rate (r2 = 4.05) in 0.55 T. This finding may have further bio-applications in the future due to the high performance of these BaYbF5:Tm3+ nanoparticles in dual-modal bioimaging.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Tripathi, Neeti, Masanori Ando, Tomoko Akai et Kenji Kamada. « Near-infrared-to-visible upconversion from 980 nm excitation band by binary solid of PbS quantum dot with directly attached emitter ». Journal of Materials Chemistry C 10, no 12 (2022) : 4563–67. http://dx.doi.org/10.1039/d1tc05058c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Bian, Wenjuan, Ting Wang, Yanmei Guo, Xue Yu, Xuhui Xu et Jianbei Qiu. « Visible and near-infrared upconversion photoluminescence in lanthanide-doped KLu3F10 nanoparticles ». CrystEngComm 17, no 38 (2015) : 7332–38. http://dx.doi.org/10.1039/c5ce01040c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Amemori, Shogo, Nobuhiro Yanai et Nobuo Kimizuka. « Metallonaphthalocyanines as triplet sensitizers for near-infrared photon upconversion beyond 850 nm ». Physical Chemistry Chemical Physics 17, no 35 (2015) : 22557–60. http://dx.doi.org/10.1039/c5cp02733k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Bharmoria, Pankaj, Hakan Bildirir et Kasper Moth-Poulsen. « Triplet–triplet annihilation based near infrared to visible molecular photon upconversion ». Chemical Society Reviews 49, no 18 (2020) : 6529–54. http://dx.doi.org/10.1039/d0cs00257g.

Texte intégral
Résumé :
This review delineates the developments in triplet–triplet annihilation based NIR to Vis molecular photon upconversion including recent progress in conceptual design, applications, existing challenges, possible future directions and opportunities.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Wei Yanchun, 魏言春, 吴宝艳 Wu Baoyan, 杨利勇 Yang Liyong et 邢达 Xing Da. « Upconversion Fluorescence Monitoring Near-Infrared During Tumor Photothermal Therapy ». Chinese Journal of Lasers 37, no 11 (2010) : 2719–24. http://dx.doi.org/10.3788/cjl20103711.2719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Rocheva, V. V., D. A. Khochenkov, A. N. Generalova, A. V. Nechaev, V. A. Semchishen, E. V. Stepanova, V. I. Sokolov, E. V. Khaydukov et V. Ya Panchenko. « Upconversion nanoparticles for tumor imaging with near-infrared radiation ». Bulletin of the Russian Academy of Sciences : Physics 80, no 4 (avril 2016) : 467–70. http://dx.doi.org/10.3103/s1062873816040274.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Singh-Rachford, Tanya N., Animesh Nayak, Maria L. Muro-Small, Sèbastian Goeb, Michael J. Therien et Felix N. Castellano. « Supermolecular-Chromophore-Sensitized Near-Infrared-to-Visible Photon Upconversion ». Journal of the American Chemical Society 132, no 40 (13 octobre 2010) : 14203–11. http://dx.doi.org/10.1021/ja105510k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Chen, Daqin, Lei Lei, Anping Yang, Zhaoxing Wang et Yuansheng Wang. « Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals ». Chemical Communications 48, no 47 (2012) : 5898. http://dx.doi.org/10.1039/c2cc32102e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Sun, Jing, Ping Zhang, Yong Fan, Jie Zhao, Shichao Niu, Lingjie Song, Li Ma, Luquan Ren et Weihua Ming. « Near-infrared triggered antibacterial nanocomposite membrane containing upconversion nanoparticles ». Materials Science and Engineering : C 103 (octobre 2019) : 109797. http://dx.doi.org/10.1016/j.msec.2019.109797.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Singh-Rachford, Tanya N., Animesh Nayak, Maria L. Muro-Small, Sèbastian Goeb, Michael J. Therien et Felix N. Castellano. « Supermolecular-Chromophore-Sensitized Near-Infrared-to-Visible Photon Upconversion ». Journal of the American Chemical Society 133, no 8 (2 mars 2011) : 2791. http://dx.doi.org/10.1021/ja200045y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Ge, Wen, Zhiang Li, Tong Chen, Min Liu et Yalin Lu. « Extended Near-Infrared Photoactivity of Bi6Fe1.9Co0.1Ti3O18 by Upconversion Nanoparticles ». Nanomaterials 8, no 7 (16 juillet 2018) : 534. http://dx.doi.org/10.3390/nano8070534.

Texte intégral
Résumé :
Bi6Fe1.9Co0.1Ti3O18 (BFCTO)/NaGdF4:Yb3+, Er3+ (NGF) nanohybrids were successively synthesized by the hydrothermal process followed by anassembly method, and BFCTO-1.0/NGF nanosheets, BFCTO-1.5/NGF nanoplates and BFCTO-2.0/NGF truncated tetragonal bipyramids were obtained when 1.0, 1.5 and 2.0 M NaOH were adopted, respectively. Under the irradiation of 980 nm light, all the BFCTO samples exhibited no activity in degrading Rhodamine B (RhB). In contrast, with the loading of NGF upconversion nanoparticles, all the BFCTO/NGF samples exhibited extended near-infrared photoactivity, with BFCTO-1.5/NGF showing the best photocatalytic activity, which could be attributed to the effect of {001} and {117} crystal facets with the optimal ratio. In addition, the ferromagnetic properties of the BFCTO/NGF samples indicated their potential as novel, recyclable and efficient near-infrared (NIR) light-driven photocatalysts.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie