Littérature scientifique sur le sujet « NANOWIRE RECONFIGURABLE »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « NANOWIRE RECONFIGURABLE ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "NANOWIRE RECONFIGURABLE"

1

Heinzig, André, Stefan Slesazeck, Franz Kreupl, Thomas Mikolajick et Walter M. Weber. « Reconfigurable Silicon Nanowire Transistors ». Nano Letters 12, no 1 (décembre 2011) : 119–24. http://dx.doi.org/10.1021/nl203094h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Weber, W. M., A. Heinzig, J. Trommer, D. Martin, M. Grube et T. Mikolajick. « Reconfigurable nanowire electronics – A review ». Solid-State Electronics 102 (décembre 2014) : 12–24. http://dx.doi.org/10.1016/j.sse.2014.06.010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Baldauf, Tim, Andre Heinzig, Thomas Mikolajick et Walter M. Weber. « Vertically Integrated Reconfigurable Nanowire Arrays ». IEEE Electron Device Letters 39, no 8 (août 2018) : 1242–45. http://dx.doi.org/10.1109/led.2018.2847902.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Park, So Jeong, Dae-Young Jeon, Sabrina Piontek, Matthias Grube, Johannes Ocker, Violetta Sessi, André Heinzig et al. « Reconfigurable Si Nanowire Nonvolatile Transistors ». Advanced Electronic Materials 4, no 1 (11 décembre 2017) : 1700399. http://dx.doi.org/10.1002/aelm.201700399.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Trommer, Jens, André Heinzig, Anett Heinrich, Paul Jordan, Matthias Grube, Stefan Slesazeck, Thomas Mikolajick et Walter M. Weber. « Material Prospects of Reconfigurable Transistor (RFETs) – From Silicon to Germanium Nanowires ». MRS Proceedings 1659 (2014) : 225–30. http://dx.doi.org/10.1557/opl.2014.110.

Texte intégral
Résumé :
ABSTRACTReconfigurable nanowire transistors provide the operation of unipolar p-type and n-type FETs freely selectable within a single device. The enhanced functionality is enabled by controlling the currents through two individually gated Schottky junctions. Here we analyze the impact of the Schottky barrier height on the symmetry of Silicon nanowire RFET transfer characteristics and their performance within circuits. Prospective simulations are carried out, indicating that germanium nanowire based RFETs of the same dimensions will show a distinctly increased performance, making them a promising material solution for future reconfigurable electronics.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hashim, Uda, Tijjani Adam, M. N. Afnan Uda et M. N. A. Uda. « Determination of Silicon Electrical Properties Using First Principles Approach ». Journal of Physics : Conference Series 2129, no 1 (1 décembre 2021) : 012056. http://dx.doi.org/10.1088/1742-6596/2129/1/012056.

Texte intégral
Résumé :
Abstract Silicon nanowires have attracted attention as basis for reconfigurable electronics. However, as the size decreases, the electronic properties of the nanowires vary as a result of confinement, strain and crystal topology effects. Thus, at the thin diameter regime the band gap of Silicon nanowires can no longer be derived from a simple extrapolation of the isotropic bulk behaviour. This study compares band gap parameters in sub 10nm nanowires obtained from first-principles density-functional band structure calculations with extrapolations using continuum theory in order to rationalize the changes of the overall conductance, resistance and band gap. The device consists of silicon nanowire of size between 1 nm to 6nm. The results indicate an increase of, both the energy gap and the resistance along with reduced conductivity for the thinnest wires and a dependence on the crystal orientation with gaps reaching up to 4.3 eV along <111>, 4.0 eV along <110>, and 3.7 along <100>.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Xianglong, Xiaoqiao Yang, Zhe Zhang, Teng Wang, Yabin Sun, Ziyu Liu, Xiaojin Li, Yanling Shi et Jun Xu. « Impact of Process Fluctuations on Reconfigurable Silicon Nanowire Transistor ». IEEE Transactions on Electron Devices 68, no 2 (février 2021) : 885–91. http://dx.doi.org/10.1109/ted.2020.3045689.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Weber, Walter M., Andre Heinzig, Jens Trommer, Matthias Grube, Franz Kreupl et Thomas Mikolajick. « Reconfigurable Nanowire Electronics-Enabling a Single CMOS Circuit Technology ». IEEE Transactions on Nanotechnology 13, no 6 (novembre 2014) : 1020–28. http://dx.doi.org/10.1109/tnano.2014.2362112.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Betz, A. C., M. L. V. Tagliaferri, M. Vinet, M. Broström, M. Sanquer, A. J. Ferguson et M. F. Gonzalez-Zalba. « Reconfigurable quadruple quantum dots in a silicon nanowire transistor ». Applied Physics Letters 108, no 20 (16 mai 2016) : 203108. http://dx.doi.org/10.1063/1.4950976.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Trommer, Jens, Andre Heinzig, Stefan Slesazeck, Thomas Mikolajick et Walter Michael Weber. « Elementary Aspects for Circuit Implementation of Reconfigurable Nanowire Transistors ». IEEE Electron Device Letters 35, no 1 (janvier 2014) : 141–43. http://dx.doi.org/10.1109/led.2013.2290555.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "NANOWIRE RECONFIGURABLE"

1

Bukovsky, Sayanti [Verfasser], Thomas [Gutachter] Mikolajick, Gianaurelio [Gutachter] Cuniberti et Hans-Georg [Gutachter] Braun. « Nanoscale Material Characterization of Silicon Nanowires for Application in Reconfigurable Nanowire Transistors / Sayanti Bukovsky ; Gutachter : Thomas Mikolajick, Gianaurelio Cuniberti, Hans-Georg Braun ». Dresden : Technische Universität Dresden, 2021. http://d-nb.info/1237748305/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Pregl, Sebastian. « Fabrication and characterization of a silicon nanowire based Schottky-barrier field effect transistor platform for functional electronics and biosensor applications ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-171112.

Texte intégral
Résumé :
This work focuses on the evaluation of the feasibility to employ silicon (Si) nanowire based parallel arrays of Schottky-barrier field effect transistors (SB-FETs) as transducers for potentiometric biosensors and their overall performance as building blocks for novel functional electronics. Nanowire parallel arrays of SB-FETs were produced and electrically characterized during this work. Nominally undoped Si nanowires with mean diameter of 20nm were synthesized by chemical vapor deposition (CVD) driven bottom-up growth and subsequently transferred via a printing process to Si/SiO2 chip substrates. Thereby, dense parallel aligned nanowire arrays are created. After dry oxidation of the nanowires, standard photolithography and deposition methods are employed to contact several hundred nanowires with interdigitated Ni electrodes in parallel. A silicidation step is used to produce axially intruded Ni-silicide (metallic) phases with a very abrupt interface to the Si (semiconducting) segment. Acting as front gate dielectric, the chip surface is entirely covered by an Al2O3 layer. For sensor applications, this layer further serves as electrical isolation of the electrodes and protects them from corrosion in electrolytes. Fabricated devices are part of the SOI (Si on insulator) transistor family with top (front) and back gate and exhibit ambipolar rectifying behavior. The top gate exhibits omega geometry with a 20nm thin Al2O3 dielectric, the back gate planar geometry with a 400nm thick SiO2 dielectric. The influence of both gates on the charge transport is summarized in the statistical analysis of transfer and output characteristic for 7 different lengths (for each 20 devices) of the Si conduction channel. A nonlinear scaling of on-currents and transconductance with channel length is revealed. Off-currents are influenced from both p- and n-type conduction at the same time. Increasing lateral electric fields (LEF) lead to a decline of suppression capability of both p- and n-currents by a single gate. This is reflected in a deteriorated swing and higher off-current towards decreasing channel lengths (increasing LEF). However, by individual gating of Schottky junction and channel, p- and n-type currents can be controlled individually. Both charge carrier types, p and n, can be suppressed efficiently at the same time leading to low off-currents and high on/off current ratio for all investigated channel lengths. This is achieved by a combined top and back double gate architecture, for which the back gate controls the Schottky junction resistance. It is demonstrated that a fixed high Schottky junction serial resistance, severely impairs the transconductance. However, the transconductance can be significantly increased by lowering this resistance via the back gate, enhancing the transducer performance significantly. Al2O3 covered SB-FETs were employed as pH sensors to evaluate their performance and signal to noise ratio (SNR). Current modulation per pH was observed to be directly proportional to the transconductance. The transistor related signal to noise ratio (SNR) is thus proportional to the transconductance to current noise ratio. Device noise was characterized and found to limit the SNR already below the peak transconductance regime. Statistical analysis showed that the nanowire SB-FET transconductance and noise both scale proportional with the current. Therefore, the SNR was found to be independent on the nanowire channel lengths under investigation. The high process yield of nanowire SB-FET parallel array fabrication close to hundred percent enables this platform to be used for simple logic and biosensor elements. Because of the low fabrication temperatures needed, the foundation is laid to produce complementary logic with undoped Si on flexible substrates. For previously reported results, the presence of Schottky junctions severely impaired the transconductance, restricting the applicability of SB-FETs as transducers. This work shows, that an electric decoupling of the Schottky junction can reduce these restrictions, making SB-FETs feasible for sensor applications
Diese Dissertation ist der Bewertung von Silizium (Si) Nanodraht basierten Parallelschaltungen von Schottky-Barrieren-Feld-Effekt-Transistoren (SB-FETs) als Wandler für potentiometrische Biosensoren und deren generelle Leistungsfähigkeit als Bauelement neuartiger funktioneller Elektronik gewidmet. In dieser Arbeit wurden Parallelschaltungen von Nanodraht SB-FETs hergestellt und elektrisch charakterisiert. Nominell undotierte Si Nanodrähte mit durchschnittlichem Durchmesser von 20nm wurden mittels chemischer Dampfphasenabscheidung (CVD) synthetisiert und anschließend durch einen Druckprozess auf ein Si/SiO2 Chip-Substrat transferiert. Damit wurden dicht gepackte, parallel ausgerichtete Nanodraht Schichten erzeugt. Nach Trockenoxidation der Nanodrähte wurden diese mit Standard Lithographie und Abscheidungsmethoden mit interdigitalen Nickel (Ni) Elektroden als Parallelschaltung kontaktiert. Durch einen Temperprozess bilden sich axial eindiffundierte metallische Ni-Silizid-Phasen, mit einer sehr abrupten Grenzfläche zum halbleitenden Si Segments des Nanodrahts. Die Chipoberfläche wird vollständig mit einer Al2O3-Schicht bedeckt, welche als Frontgate-Dielektrikum oder als elektrische Isolation und Korrosionsschutzschicht für Elektroden in Elektrolytlösungen im Falle der Sensoranwendungen dient. Die hier gezeigten Bauelemente sind Teil der SOI (Si on insulator) Transistoren-Familie mit Top- (Front) und Backgate und zeigen ein ambipolares Schaltverhalten. Die Topgates besitzen eine Omega-Geometrie mit 20nm dickem Al2O3 Dielektrikum, das Backgate eine planare Geometrie mit 400nm dickem SiO2 Dielektrikum. Der Einfluss beider Gates auf den Ladungstransport ist in einer statistischen Analyse der Transfer- und Output-Charaktersitiken für 7 unterschiedliche Si-Leitungskanallängen zusammengefasst. Eine nichtlineare Skalierung von Strom und Transkonduktanz mit Leitungskanallänge wurde aufgedeckt. Die Ströme im Aus-Zustand des Transistors sind durch das Vorhandensein gleichzeitiger p- als auch n-Typ Leitung bestimmt. Die Zunahme lateraler elektrischer Felder (LEF) führt zu einem Verlust des gleichzeitigen Ausschaltvermögens von p- und n-Strömen bei Ansteuerung mit einem einzelnen Gate. Dies äußert sich durch einen graduell verschlechterten Swing und höheren Strom im Aus-Zustand bei verringerter Leitungskanallänge (gleichbedeutend mit erhöhten LEF). Durch eine getrennte Ansteuerung von Schottky-Kontakt und Leitungskanal lassen sich p- and n-Leitung jedoch unabhängig voneinander kontrollieren. Beide Ladungsträgertypen können so simultan effizient unterdrückt werden, was zu einem geringen Strom im Aus-Zustand und einem hohen An/Aus- Stromverhältnis für alle untersuchten Kanallängen führt. Dies wird durch eine Gatearchitektur mit kombiniertem Top- und Backgate erreicht, bei der das Backgate den Ladungstransport durch den Schottky-Kontakt und dessen Serienwiderstand kontrolliert. Es wird gezeigt, dass ein konstant hoher Schottky-Kontakt bedingter Serienwiderstand die Transkonduktanz erheblich vermindert. Jedoch kann die Transkonduktanz im höchsten Maße durch eine Herabsetzung des Serienwiderstandes durch das Backgate gesteigert werden. Dies erhöht die Leistungsfähigkeit des SB-FET als Wandler deutlich. Al2O3 oberflächenbeschichtete SB-FETs wurden als pH-Sensoren erprobt, um deren Tauglichkeit und Signal-zu-Rausch-Verhältnis (SNR) zu evaluieren. Die Strommodulation pro pH-Wert konnte als direkt proportional zur Transkonduktanz bestätigt werden. Das Transistor bedingte SNR ist daher proportional zum Verhältnis von Transkonduktanz und Stromrauschen. Bei der Analyse des Transistorrauschens wurde festgestellt, dass dieses das SNR bereits bei einer niedrigeren Transkonduktanz als der maximal Möglichen limitiert. Eine statistische Auswertung zeigte, dass sowohl SB-FET Transkonduktanz als auch Stromrauschen proportional zu dem Transistorstrom skalieren. Somit ist deren Verhältnis unabhängig von der Nanodraht-Leitungskanallänge, im hier untersuchten Rahmen. Die geringe Ausschuss bei der Fabrikation der Nanodraht SB-FET-Parallelschaltungen ermöglicht eine Nutzung dieser Plattform für simple Logik und Biosensorelemente. Durch die geringen Prozesstemperaturen wurde die Grundlage geschaffen, komplementäre Logik mit undotiertem Si auf flexiblen Substraten zu fertigen. Vorangegangene Resultate zeigte eine verminderte Transkonduktanz durch die Präsenz von Schottky-Barrieren, was die Anwendbarkeit von SB-FETs als Wandler einschränkt. Diese Arbeit zeigt, dass eine elekrtische Entkopplung der Schottky-Kontakte zu einer Aufhebung dieser Beschränkung führen kann und somit den Einsatz von SB-FETs als praktikable Wandler für Sensoranwendungen zulässt
Styles APA, Harvard, Vancouver, ISO, etc.
3

Heinzig, André. « Entwicklung und Herstellung rekonfigurierbarer Nanodraht-Transistoren und Schaltungen ». Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-202082.

Texte intégral
Résumé :
Die enorme Steigerung der Leistungsfähigkeit integrierter Schaltkreise wird seit über 50 Jahren im Wesentlichen durch eine Verkleinerung der Bauelementdimensionen erzielt. Aufgrund des Erreichens physikalischer Grenzen kann dieser Trend, unabhängig von der Lösung technologischer Probleme, langfristig nicht fortgesetzt werden. Diese Arbeit beschäftigt sich mit der Entwicklung und Herstellung neuartiger Transistoren und Schaltungen, welche im Vergleich zu konventionellen Bauelementen funktionserweitert sind, wodurch ein zur Skalierung alternativer Ansatz vorgestellt wird. Ausgehend von gewachsenen und nominell undotierten Silizium-Nanodrähten wird die Herstellung von Schottky-Barrieren-Feldeffekttransistoren (SBFETs) mit Hilfe etablierter und selbst entwickelter Methoden beschrieben und die Ladungsträgerinjektion unter dem Einfluss elektrischer Felder an den dabei erzeugten abrupten Metall–Halbleiter-Grenzflächen analysiert. Zur Optimierung der Injektionsvorgänge dienen strukturelle Modifikationen, welche zu erhöhten ambipolaren Strömen und einer vernachlässigbaren Hysterese der SBFETs führen. Mit dem rekonfigurierbaren Feldeffekttransistor (RFET) konnte ein Bauelement erzeugt werden, bei dem sich Elektronen- und Löcherinjektion unabhängig und bis zu neun Größenordnungen modulieren lassen. Getrennte Topgate-Elektroden über den Schottkybarrieren ermöglichen dabei die reversible Konfiguration von unipolarer Elektronenleitung (n-Typ) zu Löcherleitung (p-Typ) durch eine Programmierspannung, wodurch die Funktionen konventioneller FETs in einem universellen Bauelement vereint werden. Messungen und 3D-FEM-Simulationen geben einen detaillierten Einblick in den elektrischen Transport und dienen der anschaulichen Beschreibung der Funktionsweise. Systematische Untersuchungen zu Änderungen im Transistoraufbau, den Abmessungen und der Materialzusammensetzung verdeutlichen, dass zusätzliche Strukturverkleinerungen sowie die Verwendung von Halbleitern mit niedrigem Bandabstand die elektrische Charakteristik dieser Transistoren weiter verbessern. Im Hinblick auf die Realisierung neuartiger Schaltungen wird ein Konzept beschrieben, die funktionserweiterten Transistoren in einer energieeffizienten Komplementärtechnologie (CMOS) nutzbar zu machen. Die dafür notwendigen gleichen Elektronen- und Löcherstromdichten konnten durch einen modifizierten Ladungsträgertunnelprozess infolge mechanischer Verspannungen an den Schottkyübergängen erzielt und weltweit erstmalig an einem Transistor gezeigt werden. Der aus einem <110>-Nanodraht mit 12 nm Si-Kerndurchmesser erzeugte elektrisch symmetrische RFET weist dabei eine bisher einzigartige Kennliniensymmetrie auf.Die technische Umsetzung des Schaltungskonzepts erfolgt durch die Integration zweier RFETs innerhalb eines Nanodrahts zum dotierstofffreien CMOS-Inverter, der flexibel programmiert werden kann. Die rekonfigurierbare NAND/NOR- Schaltung verdeutlicht, dass durch die RFET-Technologie die Bauelementanzahl reduziert und die Funktionalität des Systems im Vergleich zu herkömmlichen Schaltungen erhöht werden kann. Ferner werden weitere Schaltungsbeispiele sowie die technologischen Herausforderungen einer industriellen Umsetzung des Konzeptes diskutiert. Mit der funktionserweiterten, dotierstofffreien RFET-Technologie wird ein neuartiger Ansatz beschrieben, den technischen Fortschritt der Elektronik nach dem erwarteten Ende der klassischen Skalierung zu ermöglichen
The enormous increase in performance of integrated circuits has been driven for more than 50 years, mainly by reducing the device dimensions. This trend cannot continue in the long term due to physical limits being reached. The scope of this thesis is the development and fabrication of novel kinds of transistors and circuits that provide higher functionality compared to the classical devices, thus introducing an alternative approach to scaling. The fabrication of Schottky barrier field effect transistors (SBFETs) based on nominally undoped grown silicon nanowires using established and developed techniques is described. Further the charge carrier injection in the fabricated metal to semiconductor interfaces is analyzed under the influence of electrical fields. Structural modifications are used to optimize the charge injection resulting in increased ambipolar currents and negligible hysteresis of the SBFETs. Moreover, a device has been developed called the reconfigurable field-effect transistor (RFET), in which the electron and hole injection can be independently controlled by up to nine orders of magnitude. This device can be reversibly configured from unipolar electron conducting (ntype) to hole conducting (p-type) by the application of a program voltage to the two individual top gate electrodes at the Schottky junctions. So the RFET merges the functionality of classical FETs into one universal device. Measurements and 3D finite element method simulations are used to analyze the electrical transport and to describe the operation principle. Systematic investigations of changes in the device structure, dimensions and material composition show enhanced characteristics in scaled and low bandgap semiconductor RFET devices. For the realization of novel circuits, a concept is described to use the enhanced functionality of the transistors in order to realize energy efficient complementary circuits (CMOS). The required equal electron and hole current densities are achieved by the modification of charge carrier tunneling due to mechanical stress and are shown for the first time ever on a transistor. An electrically symmetric RFET based on a compressive strained nanowire in <110> crystal direction and 12 nm silicon core diameter exhibits unique electrical symmetry. The circuit concept is demonstrated by the integration of two RFETs on a single nanowire, thus realizing a dopant free CMOS inverter which can be programmed flexibly. The reconfigurable NAND/NOR shows that the RFET technology can lead to a reduction of the transistor count and can increase the system functionality. Additionally, further circuit examples and the challenges of an industrial implementation of the concept are discussed.The enhanced functionality and dopant free RFET technology describes a novel approach to maintain the technological progress in electronics after the expected end of classical device scaling
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bukovsky, Sayanti. « Nanoscale Material Characterization of Silicon Nanowires for Application in Reconfigurable Nanowire Transistors ». 2020. https://tud.qucosa.de/id/qucosa%3A75531.

Texte intégral
Résumé :
Silicon Nanowire based Reconfigurable Field Effect Transistor (SiNW RFET) presents a solution to increase the system functionality beyond the limits of classical CMOS scaling in More-than-Moore era of semiconductor technology. They are not only spatially reconfigurable, i.e., the source and the drain can be interchangeable in design, but in such devices one can also control the primary charge carrier by controlling the voltage in the control gate. The two key morphological factors controlling reconfigurability are the structure and composition of the Schottky junctions, which serve as the location for Program and Control gates and radial strain induced by the self-limiting oxidation, which influences the carrier mobility resulting in symmetric p and n characteristic curves of an RFET. Despite its potential, in-depth nanoscale studies on the structural and compositional characterization of the key features controlling the reconfigurability are limited and thereby presents as a novel area of research. In this study, the composition and morphology of the Schottky junction and the radial strain profile due to self-limiting oxidation were studied using advanced imaging and sample preparation techniques like Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM) imaging alongside with precise sample preparation methods like Focused Ion Beam (FIB) liftout techniques. For analysis of radial strain in nanowires that underwent self-limiting oxidation, a TEM lamella was taken of a cross-section of the NW. The lamella was kept at 200 nm thickness to preserve the strain state of the nanowire cross-section. It was observed that nanowires undergoing such oxidation have an omega (Ω) shaped oxide shell where the shell was discontinued at the spot where the nanowire was touching the substrate. Fast Fourier transform of the high-resolution image of such a NW crossection was used to calculate the strain profile. The strain is also found to be not radially uniform for such Ω shaped oxide shells. The strain profile shows a local maxima near the nanowire base where it touches the substrate then a minima approximately at the geometric center followed by the maximum strain at the area adjacent to the oxide shell thereby showing a sinusoidal profile. Theoretical simulations performed by Dr. Tim Baldauf further verified the nature of the sinusoidal strain that was observed experimentally. Similar simulations were done for different omega shell shapes, which yielded strain plots of similar sinusoidal strain plots, with the local maxima depending on the level of encapsulation of the NW by the shell. In the characterization of the Schottky junction, a TEM lamella was taken along the longitudinal direction of a nanowire, which was silicidized from both ends, similar to ones used in SiNW RFET devices. High resolution TEM micrographs and EDX (Energy dispersive X-Ray Spectroscopy) in the TEM along the Schottky junction showed a Ni rich phase and pure Si on either side of the junction. This participating phase was identified as NiSi2. However, the transition between the phases shows a gradient and in-situ experiments were designed to verify the sharpness of the junction. In in-situ silicidation experiments, Si nanowires with a thin native oxide shell were distributed on an electron transparent surface and were partially covered with Ni islands by shadow sputtering. The whole setup was then heated in a heating stage of a TEM and the Ni was allowed to disperse within the Si nanowires forming NiSi2. HRTEM (High Resolution TEM), EDX and EELS (Electron Energy Loss Spectroscopy) studies were performed on the silicidized samples for further ex-situ analysis. During the in-situ experiment, it was observed that Ni-phase interface is atomistically sharp and seldom progresses perpendicularly to the nanowire’s direction but through the closed packed planes of the NW. The interface velocity at different temperatures was used to calculate the activation energy of the silicidation process. The value of the activation energy indicates the Ni undergoing volume diffusion through the Ni-rich phase. The velocity of the interface was observed to be much higher in nanowires with smaller diameters than those with higher diameters, further proving the hypothesis. During the in-situ experiments, in around 10% of nanowires that underwent complete silicidation and held isothermally, the crystalline silicide phase was observed to partially or fully diffuse out of the nanowire core, leaving only a thin shell of Silicon oxide forming ultra-thin walled SiO2 nanotubes (NT). The onset and the time required for completion of the process varies in the nanowires depending on size of the nanowire, the distance and contact to the nearest Ni islands and presence of defects such as kinks and twists within the nanowire. In order to study the dynamics of the process, the velocity of the receding front was calculated for nanowires of two different diameters. They are found to be identical, indicating the volume flow rate of the process is directly proportional to the cross-sectional area. The voids were formed by the reduced diffusivity of Ni in Ni2Si phase in comparison to phases with lower percent of Ni. This indicates that the reason behind the phenomenon is coalition of Kirkendall voids and thus dependent on volume diffusion. From this study, it can be concluded that the extent of self-limiting oxidation and shape of the shell can influence the radial strain state. This can be used to manipulate the strain to tailor the electron and hole transfer characteristics within the RFET. A variety of factors including temperature, time, orientation and radius of the nanowires has been studied with respect to silicidation of a SiNW. The calculated activation energy can be used for precise process control over the location and morphology of Schottky junction. Although not directly related to SiNW RFET devices, the self-assembly of ultra-thin-walled SiO2 NT is a novel research area in itself, the findings of which can be applied in to design novel electronics and sensors.:TABLE OF CONTENTS Preface List of Abbreviations CHAPTER 1: Introduction and Motivation 1.1 Definition and History 1.2 Synthesis Routes 1.3 Properties and Applications 1.4 Nanoscale Electronics and Role of Si Nws 1.4.1 1.4.2 SiNW Reconfigurable Field Effect Transistor 1.5 Introduction to The Topic of The Thesis 1.6 Outline of The Thesis CHAPTER 2: Physical Basics and Previous Research: A Short Summary 2.1 Strain Measurement and Effects of Strain on on Nanoelectronics 2.1.1 Strain Analysis in Planar CMOS Structures 2.2 Silicidation and Schottky Junction 2.2.1 In-situ Silicidation 2.2.2 Silicon oxide nanotubes CHAPTER 3: Background of Instruments and Experimental Set-up 3.1 Scanning Electron Microscope 3.2 Transmission Electron Microscope 3.2.1 Imaging Techniques 3.2.2 TEM sample preparation 3.3 Focused Ion Beam CHAPTER 4: Strain in Nanowire 4.1 Goal of This Study 4.2 Strain in SiNW RFET Devices 4.3 Strain Analysis in SiNW Cross-section 4.3.1 Sample Preparation 4.3.2 Experimental Process 4.3.3 Results and Discussion 4.4 Conclusions CHAPTER 5: Schottky Junction 5.1 Crystallographic Data on Nickel Silicides 5.2 Formation of Silicides in 2-D Structures 5.2.1 Sample History 5.2.2 Sample Preparation 5.2.3 Results and Discussion 5.3 Formation of Silicides in 1-D Structures: Schottky Junction in NWs 5.3.1 Sample History 5.3.2 Sample Preparation 5.3.3 Results and Discussion 5.3.4 Shortcomings of The Lift-out Technique 5.4 In-situ Silicidation 5.4.1 Motivation 5.4.2 Sample Preparation 5.4.3 Experimental Procedure 5.4.4 Results and Discussions 5.4.5 Shortcoming of The Experiment 5.5 Self-assembling SiO2 Nanotubes 5.5.1 Sample Preparation 5.5.2 Experimental Process 5.5.3 Results and Discussion . 5.5.4 Post In-situ Experiment TEM Analysis 5.5.5 Conclusions CHAPTER 6: Conclusions and Outlook 6.1 Strain Analysis 6.2 Schottky Junction Studies Bibliography Acknowledgements
Styles APA, Harvard, Vancouver, ISO, etc.
5

SINGH, DIVYANSH. « IMPLEMENTATION OF NANOWIRE RECONFIGURABLE FET AS A BIOSENSOR WITH IMPROVED SENSITIVITY ». Thesis, 2023. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19878.

Texte intégral
Résumé :
Reconfigurable FET can be used as both p type and n type as per the requirement by applying voltage to the electrodes accordingly. Nanowire RFET has got a structure with two gates, one acting for the biasing and the other for current control (that is ON or OFF). The structure is like Nanowire heterostructure. The technique used here is dielectric modulation and based on that the variation in threshold voltage related sensitivity. These find major applications in Programmable Logic Arrays since can be programmed as p type or n type. The RFET used in this project has been developed as a biosensor by creating a cavity and then filling it with neutral biomolecules, whose permittivity is varied. The simulated of the structure has been done and the sensitivity has been calculated using Silvaco TCAD tool.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pregl, Sebastian. « Fabrication and characterization of a silicon nanowire based Schottky-barrier field effect transistor platform for functional electronics and biosensor applications ». Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A28755.

Texte intégral
Résumé :
This work focuses on the evaluation of the feasibility to employ silicon (Si) nanowire based parallel arrays of Schottky-barrier field effect transistors (SB-FETs) as transducers for potentiometric biosensors and their overall performance as building blocks for novel functional electronics. Nanowire parallel arrays of SB-FETs were produced and electrically characterized during this work. Nominally undoped Si nanowires with mean diameter of 20nm were synthesized by chemical vapor deposition (CVD) driven bottom-up growth and subsequently transferred via a printing process to Si/SiO2 chip substrates. Thereby, dense parallel aligned nanowire arrays are created. After dry oxidation of the nanowires, standard photolithography and deposition methods are employed to contact several hundred nanowires with interdigitated Ni electrodes in parallel. A silicidation step is used to produce axially intruded Ni-silicide (metallic) phases with a very abrupt interface to the Si (semiconducting) segment. Acting as front gate dielectric, the chip surface is entirely covered by an Al2O3 layer. For sensor applications, this layer further serves as electrical isolation of the electrodes and protects them from corrosion in electrolytes. Fabricated devices are part of the SOI (Si on insulator) transistor family with top (front) and back gate and exhibit ambipolar rectifying behavior. The top gate exhibits omega geometry with a 20nm thin Al2O3 dielectric, the back gate planar geometry with a 400nm thick SiO2 dielectric. The influence of both gates on the charge transport is summarized in the statistical analysis of transfer and output characteristic for 7 different lengths (for each 20 devices) of the Si conduction channel. A nonlinear scaling of on-currents and transconductance with channel length is revealed. Off-currents are influenced from both p- and n-type conduction at the same time. Increasing lateral electric fields (LEF) lead to a decline of suppression capability of both p- and n-currents by a single gate. This is reflected in a deteriorated swing and higher off-current towards decreasing channel lengths (increasing LEF). However, by individual gating of Schottky junction and channel, p- and n-type currents can be controlled individually. Both charge carrier types, p and n, can be suppressed efficiently at the same time leading to low off-currents and high on/off current ratio for all investigated channel lengths. This is achieved by a combined top and back double gate architecture, for which the back gate controls the Schottky junction resistance. It is demonstrated that a fixed high Schottky junction serial resistance, severely impairs the transconductance. However, the transconductance can be significantly increased by lowering this resistance via the back gate, enhancing the transducer performance significantly. Al2O3 covered SB-FETs were employed as pH sensors to evaluate their performance and signal to noise ratio (SNR). Current modulation per pH was observed to be directly proportional to the transconductance. The transistor related signal to noise ratio (SNR) is thus proportional to the transconductance to current noise ratio. Device noise was characterized and found to limit the SNR already below the peak transconductance regime. Statistical analysis showed that the nanowire SB-FET transconductance and noise both scale proportional with the current. Therefore, the SNR was found to be independent on the nanowire channel lengths under investigation. The high process yield of nanowire SB-FET parallel array fabrication close to hundred percent enables this platform to be used for simple logic and biosensor elements. Because of the low fabrication temperatures needed, the foundation is laid to produce complementary logic with undoped Si on flexible substrates. For previously reported results, the presence of Schottky junctions severely impaired the transconductance, restricting the applicability of SB-FETs as transducers. This work shows, that an electric decoupling of the Schottky junction can reduce these restrictions, making SB-FETs feasible for sensor applications.:Table of contents 11 List of figures 14 Abbreviations 15 Introduction 17 1 Fundamentals 23 1.1 Bottom up growth of Si nanowires 23 1.2 MOS and Schottky barrier transistor theory 25 1.2.1 MOSFET: Metal Oxide Semiconductor Field Effect Transistor 25 1.2.2 Gate coupling 27 1.2.3 Oxide charges and flatband voltage 29 1.2.4 Charge trapping and charge-voltage hysteresis 30 1.2.5 Schottky barrier 32 1.2.6 SB-FETs 34 1.3 ISFET and BioFET technology 36 1.3.1 ISFET and BioFET working principle 37 1.3.2 Noise in ISFETs 41 2 Fabrication of Schottky barrier FET parallel arrays 43 2.1 Starting point of device fabrication 43 2.2 Parallel array transistor and sensor devices 44 2.2.1 Gold nano particle deposition 45 2.2.2 Bottom-up growth of Si nanowires 46 2.2.3 Nanowire deposition methods 48 Langmuir-Blodgett 48 Adhesion tape transfer 49 Contact printing/ smearing transfer 49 2.2.4 Nanowire oxidation 50 2.2.5 Chip design 51 2.2.6 UV lithography 53 2.2.7 Oxide removal and metal deposition 54 2.2.8 Nanowire silicidation 54 2.2.9 Ionsensitive, top gate dielectric and contact passivation 56 2.2.10 On chip reference electrode 57 3 Electrical characterization 59 3.1 Electrical characterization methods 59 3.2 Transfer characteristics 60 3.2.1 Silicidation: intruded silicide contacts 62 3.2.2 Scaling of the conduction channel length 63 3.2.3 Flatband voltage, built-in potentials, fixed and trapped oxide charge 71 3.2.4 Surface effects on the channel potential of back gated SB-FETs 72 3.3 Charge traps, hysteresis and Vth drifts 73 3.3.1 Screening of back gate fields by water molecules 74 3.3.2 Native oxides: unipolarity by water promoted charge trapping 76 3.3.3 Hysteresis for thermally grown oxide back and top gate devices 78 3.3.4 Hysteresis reduction by post anneal 79 3.4 Output characteristics 80 3.4.1 Unipolar output characteristics of nanowires with native oxide shell 80 3.4.2 Ambipolar output characteristics of nanowires with dry oxidized shell 82 3.5 Temperature dependence 84 3.6 Transistor noise 86 4 pH measurements 91 4.1 Experimental setup and data analysis method 91 4.2 Transfer function in electrolyte with liquid gate 92 4.3 Sensor response on pH 92 4.4 Sensor signal drifts 96 5 Schottky junction impact on sensitivity 97 5.1 Schottky junction electrostatic decoupling in solution 97 5.1.1 Experimental setup in solution 98 5.1.2 SU8/Al2O3 passivated junctions in electrolyte 98 5.2 Meander shaped gates without Schottky junction overlap 101 5.2.1 Separated gating of Schottky junctions and channel 102 5.2.2 Enhanced transducer performance by reduced Schottky junction resistance 104 6 Summary and Outlook 107 List of publications 111 Bibliography 126 Acknowledgements 127
Diese Dissertation ist der Bewertung von Silizium (Si) Nanodraht basierten Parallelschaltungen von Schottky-Barrieren-Feld-Effekt-Transistoren (SB-FETs) als Wandler für potentiometrische Biosensoren und deren generelle Leistungsfähigkeit als Bauelement neuartiger funktioneller Elektronik gewidmet. In dieser Arbeit wurden Parallelschaltungen von Nanodraht SB-FETs hergestellt und elektrisch charakterisiert. Nominell undotierte Si Nanodrähte mit durchschnittlichem Durchmesser von 20nm wurden mittels chemischer Dampfphasenabscheidung (CVD) synthetisiert und anschließend durch einen Druckprozess auf ein Si/SiO2 Chip-Substrat transferiert. Damit wurden dicht gepackte, parallel ausgerichtete Nanodraht Schichten erzeugt. Nach Trockenoxidation der Nanodrähte wurden diese mit Standard Lithographie und Abscheidungsmethoden mit interdigitalen Nickel (Ni) Elektroden als Parallelschaltung kontaktiert. Durch einen Temperprozess bilden sich axial eindiffundierte metallische Ni-Silizid-Phasen, mit einer sehr abrupten Grenzfläche zum halbleitenden Si Segments des Nanodrahts. Die Chipoberfläche wird vollständig mit einer Al2O3-Schicht bedeckt, welche als Frontgate-Dielektrikum oder als elektrische Isolation und Korrosionsschutzschicht für Elektroden in Elektrolytlösungen im Falle der Sensoranwendungen dient. Die hier gezeigten Bauelemente sind Teil der SOI (Si on insulator) Transistoren-Familie mit Top- (Front) und Backgate und zeigen ein ambipolares Schaltverhalten. Die Topgates besitzen eine Omega-Geometrie mit 20nm dickem Al2O3 Dielektrikum, das Backgate eine planare Geometrie mit 400nm dickem SiO2 Dielektrikum. Der Einfluss beider Gates auf den Ladungstransport ist in einer statistischen Analyse der Transfer- und Output-Charaktersitiken für 7 unterschiedliche Si-Leitungskanallängen zusammengefasst. Eine nichtlineare Skalierung von Strom und Transkonduktanz mit Leitungskanallänge wurde aufgedeckt. Die Ströme im Aus-Zustand des Transistors sind durch das Vorhandensein gleichzeitiger p- als auch n-Typ Leitung bestimmt. Die Zunahme lateraler elektrischer Felder (LEF) führt zu einem Verlust des gleichzeitigen Ausschaltvermögens von p- und n-Strömen bei Ansteuerung mit einem einzelnen Gate. Dies äußert sich durch einen graduell verschlechterten Swing und höheren Strom im Aus-Zustand bei verringerter Leitungskanallänge (gleichbedeutend mit erhöhten LEF). Durch eine getrennte Ansteuerung von Schottky-Kontakt und Leitungskanal lassen sich p- and n-Leitung jedoch unabhängig voneinander kontrollieren. Beide Ladungsträgertypen können so simultan effizient unterdrückt werden, was zu einem geringen Strom im Aus-Zustand und einem hohen An/Aus- Stromverhältnis für alle untersuchten Kanallängen führt. Dies wird durch eine Gatearchitektur mit kombiniertem Top- und Backgate erreicht, bei der das Backgate den Ladungstransport durch den Schottky-Kontakt und dessen Serienwiderstand kontrolliert. Es wird gezeigt, dass ein konstant hoher Schottky-Kontakt bedingter Serienwiderstand die Transkonduktanz erheblich vermindert. Jedoch kann die Transkonduktanz im höchsten Maße durch eine Herabsetzung des Serienwiderstandes durch das Backgate gesteigert werden. Dies erhöht die Leistungsfähigkeit des SB-FET als Wandler deutlich. Al2O3 oberflächenbeschichtete SB-FETs wurden als pH-Sensoren erprobt, um deren Tauglichkeit und Signal-zu-Rausch-Verhältnis (SNR) zu evaluieren. Die Strommodulation pro pH-Wert konnte als direkt proportional zur Transkonduktanz bestätigt werden. Das Transistor bedingte SNR ist daher proportional zum Verhältnis von Transkonduktanz und Stromrauschen. Bei der Analyse des Transistorrauschens wurde festgestellt, dass dieses das SNR bereits bei einer niedrigeren Transkonduktanz als der maximal Möglichen limitiert. Eine statistische Auswertung zeigte, dass sowohl SB-FET Transkonduktanz als auch Stromrauschen proportional zu dem Transistorstrom skalieren. Somit ist deren Verhältnis unabhängig von der Nanodraht-Leitungskanallänge, im hier untersuchten Rahmen. Die geringe Ausschuss bei der Fabrikation der Nanodraht SB-FET-Parallelschaltungen ermöglicht eine Nutzung dieser Plattform für simple Logik und Biosensorelemente. Durch die geringen Prozesstemperaturen wurde die Grundlage geschaffen, komplementäre Logik mit undotiertem Si auf flexiblen Substraten zu fertigen. Vorangegangene Resultate zeigte eine verminderte Transkonduktanz durch die Präsenz von Schottky-Barrieren, was die Anwendbarkeit von SB-FETs als Wandler einschränkt. Diese Arbeit zeigt, dass eine elekrtische Entkopplung der Schottky-Kontakte zu einer Aufhebung dieser Beschränkung führen kann und somit den Einsatz von SB-FETs als praktikable Wandler für Sensoranwendungen zulässt.:Table of contents 11 List of figures 14 Abbreviations 15 Introduction 17 1 Fundamentals 23 1.1 Bottom up growth of Si nanowires 23 1.2 MOS and Schottky barrier transistor theory 25 1.2.1 MOSFET: Metal Oxide Semiconductor Field Effect Transistor 25 1.2.2 Gate coupling 27 1.2.3 Oxide charges and flatband voltage 29 1.2.4 Charge trapping and charge-voltage hysteresis 30 1.2.5 Schottky barrier 32 1.2.6 SB-FETs 34 1.3 ISFET and BioFET technology 36 1.3.1 ISFET and BioFET working principle 37 1.3.2 Noise in ISFETs 41 2 Fabrication of Schottky barrier FET parallel arrays 43 2.1 Starting point of device fabrication 43 2.2 Parallel array transistor and sensor devices 44 2.2.1 Gold nano particle deposition 45 2.2.2 Bottom-up growth of Si nanowires 46 2.2.3 Nanowire deposition methods 48 Langmuir-Blodgett 48 Adhesion tape transfer 49 Contact printing/ smearing transfer 49 2.2.4 Nanowire oxidation 50 2.2.5 Chip design 51 2.2.6 UV lithography 53 2.2.7 Oxide removal and metal deposition 54 2.2.8 Nanowire silicidation 54 2.2.9 Ionsensitive, top gate dielectric and contact passivation 56 2.2.10 On chip reference electrode 57 3 Electrical characterization 59 3.1 Electrical characterization methods 59 3.2 Transfer characteristics 60 3.2.1 Silicidation: intruded silicide contacts 62 3.2.2 Scaling of the conduction channel length 63 3.2.3 Flatband voltage, built-in potentials, fixed and trapped oxide charge 71 3.2.4 Surface effects on the channel potential of back gated SB-FETs 72 3.3 Charge traps, hysteresis and Vth drifts 73 3.3.1 Screening of back gate fields by water molecules 74 3.3.2 Native oxides: unipolarity by water promoted charge trapping 76 3.3.3 Hysteresis for thermally grown oxide back and top gate devices 78 3.3.4 Hysteresis reduction by post anneal 79 3.4 Output characteristics 80 3.4.1 Unipolar output characteristics of nanowires with native oxide shell 80 3.4.2 Ambipolar output characteristics of nanowires with dry oxidized shell 82 3.5 Temperature dependence 84 3.6 Transistor noise 86 4 pH measurements 91 4.1 Experimental setup and data analysis method 91 4.2 Transfer function in electrolyte with liquid gate 92 4.3 Sensor response on pH 92 4.4 Sensor signal drifts 96 5 Schottky junction impact on sensitivity 97 5.1 Schottky junction electrostatic decoupling in solution 97 5.1.1 Experimental setup in solution 98 5.1.2 SU8/Al2O3 passivated junctions in electrolyte 98 5.2 Meander shaped gates without Schottky junction overlap 101 5.2.1 Separated gating of Schottky junctions and channel 102 5.2.2 Enhanced transducer performance by reduced Schottky junction resistance 104 6 Summary and Outlook 107 List of publications 111 Bibliography 126 Acknowledgements 127
Styles APA, Harvard, Vancouver, ISO, etc.
7

Heinzig, André. « Entwicklung und Herstellung rekonfigurierbarer Nanodraht-Transistoren und Schaltungen ». Doctoral thesis, 2014. https://tud.qucosa.de/id/qucosa%3A29458.

Texte intégral
Résumé :
Die enorme Steigerung der Leistungsfähigkeit integrierter Schaltkreise wird seit über 50 Jahren im Wesentlichen durch eine Verkleinerung der Bauelementdimensionen erzielt. Aufgrund des Erreichens physikalischer Grenzen kann dieser Trend, unabhängig von der Lösung technologischer Probleme, langfristig nicht fortgesetzt werden. Diese Arbeit beschäftigt sich mit der Entwicklung und Herstellung neuartiger Transistoren und Schaltungen, welche im Vergleich zu konventionellen Bauelementen funktionserweitert sind, wodurch ein zur Skalierung alternativer Ansatz vorgestellt wird. Ausgehend von gewachsenen und nominell undotierten Silizium-Nanodrähten wird die Herstellung von Schottky-Barrieren-Feldeffekttransistoren (SBFETs) mit Hilfe etablierter und selbst entwickelter Methoden beschrieben und die Ladungsträgerinjektion unter dem Einfluss elektrischer Felder an den dabei erzeugten abrupten Metall–Halbleiter-Grenzflächen analysiert. Zur Optimierung der Injektionsvorgänge dienen strukturelle Modifikationen, welche zu erhöhten ambipolaren Strömen und einer vernachlässigbaren Hysterese der SBFETs führen. Mit dem rekonfigurierbaren Feldeffekttransistor (RFET) konnte ein Bauelement erzeugt werden, bei dem sich Elektronen- und Löcherinjektion unabhängig und bis zu neun Größenordnungen modulieren lassen. Getrennte Topgate-Elektroden über den Schottkybarrieren ermöglichen dabei die reversible Konfiguration von unipolarer Elektronenleitung (n-Typ) zu Löcherleitung (p-Typ) durch eine Programmierspannung, wodurch die Funktionen konventioneller FETs in einem universellen Bauelement vereint werden. Messungen und 3D-FEM-Simulationen geben einen detaillierten Einblick in den elektrischen Transport und dienen der anschaulichen Beschreibung der Funktionsweise. Systematische Untersuchungen zu Änderungen im Transistoraufbau, den Abmessungen und der Materialzusammensetzung verdeutlichen, dass zusätzliche Strukturverkleinerungen sowie die Verwendung von Halbleitern mit niedrigem Bandabstand die elektrische Charakteristik dieser Transistoren weiter verbessern. Im Hinblick auf die Realisierung neuartiger Schaltungen wird ein Konzept beschrieben, die funktionserweiterten Transistoren in einer energieeffizienten Komplementärtechnologie (CMOS) nutzbar zu machen. Die dafür notwendigen gleichen Elektronen- und Löcherstromdichten konnten durch einen modifizierten Ladungsträgertunnelprozess infolge mechanischer Verspannungen an den Schottkyübergängen erzielt und weltweit erstmalig an einem Transistor gezeigt werden. Der aus einem <110>-Nanodraht mit 12 nm Si-Kerndurchmesser erzeugte elektrisch symmetrische RFET weist dabei eine bisher einzigartige Kennliniensymmetrie auf.Die technische Umsetzung des Schaltungskonzepts erfolgt durch die Integration zweier RFETs innerhalb eines Nanodrahts zum dotierstofffreien CMOS-Inverter, der flexibel programmiert werden kann. Die rekonfigurierbare NAND/NOR- Schaltung verdeutlicht, dass durch die RFET-Technologie die Bauelementanzahl reduziert und die Funktionalität des Systems im Vergleich zu herkömmlichen Schaltungen erhöht werden kann. Ferner werden weitere Schaltungsbeispiele sowie die technologischen Herausforderungen einer industriellen Umsetzung des Konzeptes diskutiert. Mit der funktionserweiterten, dotierstofffreien RFET-Technologie wird ein neuartiger Ansatz beschrieben, den technischen Fortschritt der Elektronik nach dem erwarteten Ende der klassischen Skalierung zu ermöglichen.:Kurzzusammenfassung Abstract 1 Einleitung 2 Nanodrähte als aktivesGebiet fürFeldeffekttransistoren 2.1 Elektrisches Potential und Ladungsträgertransport in Transistoren 2.1.1 Potentialverlauf 2.1.2 Ladungsträgerfluss und Steuerung 2.2 Der Metall-Halbleiter-Kontakt 2.2.1 Ladungsträgertransport über den Schottky-Kontakt 2.2.2 Thermionische Emission 2.2.3 Ladungsträgertunneln 2.2.4 Methoden zur Beschreibung der Gesamtinjektion 2.3 Der Schottkybarrieren-Feldeffekttransistor 2.4 Stand der Technik 2.4.1 Elektronische Bauelemente auf Basis von Nanoröhren und Nanodrähten 2.4.2 Rekonfigurierbare Transistoren und Schaltungen 2.5 Zusammenfassung 3 TechnologienzurHerstellung vonNanodraht-Transistoren 3.1 Herstellung von SB-Nanodraht-Transistoren mit Rückseitengatelektrode 3.1.1 Nanodraht-Strukturbildung durch VLS-Wachstum 3.1.2 Drahttransfer 3.1.3 Herstellung von Kontaktelektroden 3.1.4 Herstellung von Schottky-Kontakten innerhalb eines Nanodrahtes 3.2 Strukturerzeugung mittels Elektronenstrahllithographie 3.2.1 Schichtstrukturierung mittels Elektronenstrahllithographie 3.2.2 Strukturierung mittels ungerichteter Elektronenstrahllithographie 3.2.3 Justierte Strukturierung mittels Elektronenstrahllithographie 3.2.4 Justierte Strukturierung mittels feinangepasster Elektronenstrahllithographie 3.2.5 Justierte Strukturierung mittels kombinierter optischer und Elektronenstrahllithographie 3.3 Zusammenfassung 4 Realisierung und Optimierung siliziumbasierter Schottkybarrieren- Nanodraht-Transistoren 4.1 Nanodraht-Transistor mit einlegierten Silizidkontakten 4.1.1 Transistoren auf Basis von Nanodrähten in <112>-Richtung 4.1.2 Transistoren mit veränderten Abmessungen 4.2 Analyse und Optimierung der Gatepotentialverteilung im Drahtquerschnitt in Kontaktnähe 4.3 Si/SiO2 - Core/Shell Nanodrähte als Basis für elektrisch optimierte Transistoren 4.3.1 Si-Oxidation im Volumenmaterial 4.3.2 Si-Oxidation am Draht 4.3.3 Silizidierung innerhalb der Oxidhülle 4.3.4 Core/Shell-Nanodraht-Transistoren mit Rückseitengate 4.4 Analyse der Gatepotentialwirkung in Abhängigkeit des Abstands zur Barriere 4.5 Zusammenfassung 5 RFET - Der Rekonfigurierbare Feldeffekttransistor 5.1 Realisierung des RFET 5.2 Elektrische Charakteristik 5.2.1 Elektrische Beschaltung und Funktionsprinzip 5.2.2 Elektrische Messungen 5.2.3 Auswertung 5.3 Transporteigenschaften des rekonfigurierbaren Transistors 5.3.1 Tunnel- und thermionische Ströme im RFET 5.3.2 Analyse der Transportvorgänge mit Hilfe der numerischen Simulation 5.3.3 Schaltzustände des RFET 5.3.4 On-zu-Off Verhältnisse des RFET 5.3.5 Einfluss der Bandlücke auf das On- zu Off-Verhältnis 5.3.6 Abhängigkeiten von geometrischen, materialspezifischen und physikalischen Parametern 5.3.7 Skalierung des RFET 5.3.8 Längenskalierung des aktiven Gebietes 5.4 Vergleich verschiedener Konzepte zur Rekonfigurierbarkeit 5.5 Zusammenfassung 6 Schaltungen aus rekonfigurierbaren Bauelementen 6.1 Komplementäre Schaltkreise 6.1.1 Inverter 6.1.2 Universelle Gatter 6.1.3 Anforderungen an komplementäre Bauelemente 6.1.4 Individuelle Symmetrieanpassung statischer Transistoren 6.2 Rekonfigurierbare Transistoren als Bauelemente für komplementäre Elektronik 6.2.1 Analyse des RFET als komplementäres Bauelement 6.2.2 Bauelementbedingungen für eine rekonfigurierbare komplementäre Elektronik 6.3 Erzeugung eines RFETs für rekonfigurierbare komplementäre Schaltkreise 6.3.1 Möglichkeiten der Symmetrieanpassung 6.3.2 Erzeugung eines RFET mit elektrischer Symmetrie 6.3.3 Erzeugung und Aufbau des symmetrischen RFET 6.3.4 Elektrische Eigenschaften des symmetrischen RFET 6.4 Realisierung von komplementären rekonfigurierbaren Schaltungen 6.4.1 Integration identischer RFETs 6.4.2 RFET-basierter komplementärer Inverter 6.4.3 Rekonfigurierbarer CMOS-Inverter 6.4.4 PMOS/NMOS-Inverter 6.4.5 Zusammenfassung zur RFET-Inverterschaltung 6.4.6 Rekonfigurierbarer NAND/NOR-Schaltkreis 6.5 Zusammenfassung und Diskussion 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick Anhang Symbol- und Abkürzungsverzeichnis Literaturverzeichnis Publikations- und Vortragsliste Danksagung Eidesstattliche Erklärung
The enormous increase in performance of integrated circuits has been driven for more than 50 years, mainly by reducing the device dimensions. This trend cannot continue in the long term due to physical limits being reached. The scope of this thesis is the development and fabrication of novel kinds of transistors and circuits that provide higher functionality compared to the classical devices, thus introducing an alternative approach to scaling. The fabrication of Schottky barrier field effect transistors (SBFETs) based on nominally undoped grown silicon nanowires using established and developed techniques is described. Further the charge carrier injection in the fabricated metal to semiconductor interfaces is analyzed under the influence of electrical fields. Structural modifications are used to optimize the charge injection resulting in increased ambipolar currents and negligible hysteresis of the SBFETs. Moreover, a device has been developed called the reconfigurable field-effect transistor (RFET), in which the electron and hole injection can be independently controlled by up to nine orders of magnitude. This device can be reversibly configured from unipolar electron conducting (ntype) to hole conducting (p-type) by the application of a program voltage to the two individual top gate electrodes at the Schottky junctions. So the RFET merges the functionality of classical FETs into one universal device. Measurements and 3D finite element method simulations are used to analyze the electrical transport and to describe the operation principle. Systematic investigations of changes in the device structure, dimensions and material composition show enhanced characteristics in scaled and low bandgap semiconductor RFET devices. For the realization of novel circuits, a concept is described to use the enhanced functionality of the transistors in order to realize energy efficient complementary circuits (CMOS). The required equal electron and hole current densities are achieved by the modification of charge carrier tunneling due to mechanical stress and are shown for the first time ever on a transistor. An electrically symmetric RFET based on a compressive strained nanowire in <110> crystal direction and 12 nm silicon core diameter exhibits unique electrical symmetry. The circuit concept is demonstrated by the integration of two RFETs on a single nanowire, thus realizing a dopant free CMOS inverter which can be programmed flexibly. The reconfigurable NAND/NOR shows that the RFET technology can lead to a reduction of the transistor count and can increase the system functionality. Additionally, further circuit examples and the challenges of an industrial implementation of the concept are discussed.The enhanced functionality and dopant free RFET technology describes a novel approach to maintain the technological progress in electronics after the expected end of classical device scaling.:Kurzzusammenfassung Abstract 1 Einleitung 2 Nanodrähte als aktivesGebiet fürFeldeffekttransistoren 2.1 Elektrisches Potential und Ladungsträgertransport in Transistoren 2.1.1 Potentialverlauf 2.1.2 Ladungsträgerfluss und Steuerung 2.2 Der Metall-Halbleiter-Kontakt 2.2.1 Ladungsträgertransport über den Schottky-Kontakt 2.2.2 Thermionische Emission 2.2.3 Ladungsträgertunneln 2.2.4 Methoden zur Beschreibung der Gesamtinjektion 2.3 Der Schottkybarrieren-Feldeffekttransistor 2.4 Stand der Technik 2.4.1 Elektronische Bauelemente auf Basis von Nanoröhren und Nanodrähten 2.4.2 Rekonfigurierbare Transistoren und Schaltungen 2.5 Zusammenfassung 3 TechnologienzurHerstellung vonNanodraht-Transistoren 3.1 Herstellung von SB-Nanodraht-Transistoren mit Rückseitengatelektrode 3.1.1 Nanodraht-Strukturbildung durch VLS-Wachstum 3.1.2 Drahttransfer 3.1.3 Herstellung von Kontaktelektroden 3.1.4 Herstellung von Schottky-Kontakten innerhalb eines Nanodrahtes 3.2 Strukturerzeugung mittels Elektronenstrahllithographie 3.2.1 Schichtstrukturierung mittels Elektronenstrahllithographie 3.2.2 Strukturierung mittels ungerichteter Elektronenstrahllithographie 3.2.3 Justierte Strukturierung mittels Elektronenstrahllithographie 3.2.4 Justierte Strukturierung mittels feinangepasster Elektronenstrahllithographie 3.2.5 Justierte Strukturierung mittels kombinierter optischer und Elektronenstrahllithographie 3.3 Zusammenfassung 4 Realisierung und Optimierung siliziumbasierter Schottkybarrieren- Nanodraht-Transistoren 4.1 Nanodraht-Transistor mit einlegierten Silizidkontakten 4.1.1 Transistoren auf Basis von Nanodrähten in <112>-Richtung 4.1.2 Transistoren mit veränderten Abmessungen 4.2 Analyse und Optimierung der Gatepotentialverteilung im Drahtquerschnitt in Kontaktnähe 4.3 Si/SiO2 - Core/Shell Nanodrähte als Basis für elektrisch optimierte Transistoren 4.3.1 Si-Oxidation im Volumenmaterial 4.3.2 Si-Oxidation am Draht 4.3.3 Silizidierung innerhalb der Oxidhülle 4.3.4 Core/Shell-Nanodraht-Transistoren mit Rückseitengate 4.4 Analyse der Gatepotentialwirkung in Abhängigkeit des Abstands zur Barriere 4.5 Zusammenfassung 5 RFET - Der Rekonfigurierbare Feldeffekttransistor 5.1 Realisierung des RFET 5.2 Elektrische Charakteristik 5.2.1 Elektrische Beschaltung und Funktionsprinzip 5.2.2 Elektrische Messungen 5.2.3 Auswertung 5.3 Transporteigenschaften des rekonfigurierbaren Transistors 5.3.1 Tunnel- und thermionische Ströme im RFET 5.3.2 Analyse der Transportvorgänge mit Hilfe der numerischen Simulation 5.3.3 Schaltzustände des RFET 5.3.4 On-zu-Off Verhältnisse des RFET 5.3.5 Einfluss der Bandlücke auf das On- zu Off-Verhältnis 5.3.6 Abhängigkeiten von geometrischen, materialspezifischen und physikalischen Parametern 5.3.7 Skalierung des RFET 5.3.8 Längenskalierung des aktiven Gebietes 5.4 Vergleich verschiedener Konzepte zur Rekonfigurierbarkeit 5.5 Zusammenfassung 6 Schaltungen aus rekonfigurierbaren Bauelementen 6.1 Komplementäre Schaltkreise 6.1.1 Inverter 6.1.2 Universelle Gatter 6.1.3 Anforderungen an komplementäre Bauelemente 6.1.4 Individuelle Symmetrieanpassung statischer Transistoren 6.2 Rekonfigurierbare Transistoren als Bauelemente für komplementäre Elektronik 6.2.1 Analyse des RFET als komplementäres Bauelement 6.2.2 Bauelementbedingungen für eine rekonfigurierbare komplementäre Elektronik 6.3 Erzeugung eines RFETs für rekonfigurierbare komplementäre Schaltkreise 6.3.1 Möglichkeiten der Symmetrieanpassung 6.3.2 Erzeugung eines RFET mit elektrischer Symmetrie 6.3.3 Erzeugung und Aufbau des symmetrischen RFET 6.3.4 Elektrische Eigenschaften des symmetrischen RFET 6.4 Realisierung von komplementären rekonfigurierbaren Schaltungen 6.4.1 Integration identischer RFETs 6.4.2 RFET-basierter komplementärer Inverter 6.4.3 Rekonfigurierbarer CMOS-Inverter 6.4.4 PMOS/NMOS-Inverter 6.4.5 Zusammenfassung zur RFET-Inverterschaltung 6.4.6 Rekonfigurierbarer NAND/NOR-Schaltkreis 6.5 Zusammenfassung und Diskussion 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick Anhang Symbol- und Abkürzungsverzeichnis Literaturverzeichnis Publikations- und Vortragsliste Danksagung Eidesstattliche Erklärung
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "NANOWIRE RECONFIGURABLE"

1

Lei Kang, Liu Liu, Sarah J. Boehm, Lan Lin, Theresa S. Mayer, Christine D. Keating et Douglas H. Werner. « Active photonics based on phase-change materials and reconfigurable nanowire systems ». Dans Nanoantennas and Plasmonics : Modelling, design and fabrication, 343–79. Institution of Engineering and Technology, 2020. http://dx.doi.org/10.1049/sbew540e_ch10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "NANOWIRE RECONFIGURABLE"

1

Beckett, Paul. « A Nanowire Array for Reconfigurable Computing ». Dans TENCON 2005 - 2005 IEEE Region 10 Conference. IEEE, 2005. http://dx.doi.org/10.1109/tencon.2005.301252.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kang, Lei, Taiwei Yue, Qiang Ren, Douglas H. Werner, Sarah J. Boehm et Christine D. Keating. « Reconfigurable nanowire assembly enabled field-switchable broadband polarizers ». Dans 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2017. http://dx.doi.org/10.1109/apusncursinrsm.2017.8072481.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Weber, Walter M., Jens Trommer, Dominik Martin, Matthias Grube, Andre Heinzig et Thomas Mikolajick. « Reconfigurable nanowire electronics — ; Device principles and circuit prospects ». Dans ESSDERC 2013 - 43rd European Solid State Device Research Conference. IEEE, 2013. http://dx.doi.org/10.1109/essderc.2013.6818865.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rai, Shubham, Michael Raitza et Akash Kumar. « Technology mapping flow for emerging reconfigurable silicon nanowire transistors ». Dans 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2018. http://dx.doi.org/10.23919/date.2018.8342110.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Weber, Walter M., Jens Trommer, Matthias Grube, Andre Heinzig, Markus Konig et Thomas Mikolajick. « Reconfigurable silicon nanowire devices and circuits : Opportunities and challenges ». Dans Design Automation and Test in Europe. New Jersey : IEEE Conference Publications, 2014. http://dx.doi.org/10.7873/date.2014.249.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Weber, Walter M., Jens Trommer, Matthias Grube, Andre Heinzig, Markus Konig et Thomas Mikolajick. « Reconfigurable silicon nanowire devices and circuits : Opportunities and challenges ». Dans Design Automation and Test in Europe. New Jersey : IEEE Conference Publications, 2014. http://dx.doi.org/10.7873/date2014.249.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Juncheng, Gang Du, Zhiyuan Lun, Kangliang Wei, Lang Zeng et Xiaoyan Liu. « Performance investigation on the reconfigurable Si nanowire schottky barrier transistors ». Dans 2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2012. http://dx.doi.org/10.1109/icsict.2012.6467586.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Baldauf, Tim, Andre Heinzig, Thomas Mikolajick, Walter Michael Weber et Jens Trommer. « Strain-engineering for improved tunneling in reconfigurable silicon nanowire transistors ». Dans 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). IEEE, 2016. http://dx.doi.org/10.1109/ulis.2016.7440037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Baldauf, Tim, Andre Heinzig, Thomas Mikolajick et Walter Michael Weber. « Scaling Aspects of Nanowire Schottky Junction based Reconfigurable Field Effect Transistors ». Dans 2019 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS). IEEE, 2019. http://dx.doi.org/10.1109/eurosoi-ulis45800.2019.9041905.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Simon, M., A. Heinzig, J. Trommer, T. Baldauf, T. Mikolajick et W. M. Weber. « Bringing reconfigurable nanowire FETs to a logic circuits compatible process platform ». Dans 2016 IEEE Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2016. http://dx.doi.org/10.1109/nmdc.2016.7777085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie