Littérature scientifique sur le sujet « Nanotechnology - Biomedical Application »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nanotechnology - Biomedical Application ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Nanotechnology - Biomedical Application"

1

Tang, Hailing, Mengjie Rui, Chuang Yu, Tao Chu, Chao Li, Zhenzhen Zhan, Hao Cao, Hangwen Li, Zhongmin Liu et Haifa Shen. « Nanotechnology in Generation and Biomedical Application of Induced Pluripotent Stem Cells ». Nano LIFE 08, no 04 (30 novembre 2018) : 1841002. http://dx.doi.org/10.1142/s1793984418410027.

Texte intégral
Résumé :
Induced pluripotent stem cells (iPSCs) have a tremendous potential in biomedical applications. Nanotechnology has played an essential role on reprogramming iPSCs. In the current review, we will summarize recent progress on application of nanoparticles and other nanotechnology-based platforms in iPSC generation and in study of iPSC biology. We will also highlight the importance of nanotechnology on biomedical application of iPSCs.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yoon, Hee-Jae, et Woo-Dong Jang. « Nanotechnology-based photodynamic therapy ». Journal of Porphyrins and Phthalocyanines 17, no 01n02 (janvier 2013) : 16–26. http://dx.doi.org/10.1142/s108842461230011x.

Texte intégral
Résumé :
According to recent advances in nanotechnology, various nano-sized formulations have been designed for the application in biomedical fields, including diagnosis, drug delivery, and therapeutics. The nanotechnology-based formulations have a great merit in the design of multifunctional platform for the biomedical applications. Therefore, recent trends in nanotechnology are moving onto the combination of nanotechnology and conventional therapeutic. Typically, photodynamic therapy (PDT) is one of promising techniques for the combination with nanotechnology owing to its less invasiveness. In this paper, we are going to briefly review recent advances in nanotechnology-based PDT, including selective delivery and excitation of photosensitizers, combination therapy, and multifunctional PDT.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Adam, Tijjani, et U. Hashim. « COMSOL Multiphysics Simulation in Biomedical Engineering ». Advanced Materials Research 832 (novembre 2013) : 511–16. http://dx.doi.org/10.4028/www.scientific.net/amr.832.511.

Texte intégral
Résumé :
In the past two decades, COMSOL Multiphysics Software Package have emerged as a powerful tool for simulation, particularly in Nanotechnology and most importantly in biomedical application and various application involving fluid and solid interactions. Compared with conventional component or system design, distinctive advantages of using COMSOL software for design include easy assessing to the significant parameters in various levels of design, higher throughput, process monitoring with lower cost and less time consuming [1,. This review aims to summarize the recent advancements in various approaches in major types of micro fluidic systems simulations, design application of various COMSOL models especially in biomedical applications. The state-of-the-art of past and current approaches of fluid manipulation as well as solid structure design fabrication was also elaborated. Future trends of using COMSOL in nanotechnology, especially in biomedical engineering perspective.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Frenzilli, Giada. « Nanotechnology for Environmental and Biomedical Research ». Nanomaterials 10, no 11 (8 novembre 2020) : 2220. http://dx.doi.org/10.3390/nano10112220.

Texte intégral
Résumé :
Given the high production and broad feasibility of nanomaterials, the application of nanotechnology includes the use of engineered nanomaterials (ENMs) to clean-up polluted media such as soils, water, air, groundwater and wastewaters, and is known as nanoremediation [...]
Styles APA, Harvard, Vancouver, ISO, etc.
5

YANCONG, ZHANG, DOU LINBO, MA NING, WU FUHUA et NIU JINCHENG. « BIOMEDICAL APPLICATIONS OF ELECTROSPUN NANOFIBERS ». Surface Review and Letters 27, no 11 (27 juillet 2020) : 2030001. http://dx.doi.org/10.1142/s0218625x20300014.

Texte intégral
Résumé :
Electrospun technology is a simple and flexible method for preparation of nanofiber materials with unique physical and chemical properties. The nanofiber diameter is adjustable from several nanometers to few microns during the preparation. Electrospun nanofiber materials are easy to be assembled into different shapes of three-dimensional structures. These materials exhibit high porosity and surface area and can simulate the network structures of collagen fibers in a natural extracellular matrix, thereby providing a growth microenvironment for tissue cells. Electrospun nanofibers therefore have extensive application prospects in the biomedicine field, including in aerospace, filtration, biomedical applications, and biotechnology. Nanotechnology has the potential to revolutionize many fields, such as surface microscopy, silicon fabrication, biochemistry, molecular biology, physical chemistry, and computational engineering, while the advent of nanofibers has increased the understanding of nanotechnology among academia, industry, and the general public. This paper mainly introduces the application of nanofiber materials in tissue engineering, drug release, wound dressing, and other biomedicine fields.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Singh, Gurpreet, Abdul Faruk et Preet Mohinder Singh Bedi. « Technology Overview and Current Biomedical Application of Polymeric Nanoparticles ». Journal of Drug Delivery and Therapeutics 8, no 6 (15 novembre 2018) : 285–95. http://dx.doi.org/10.22270/jddt.v8i6.2015.

Texte intégral
Résumé :
Polymeric nanoparticle are of great importance in the treatment of various diseases, due to the flexibility in the modification of their structures. Recent advances in the field of nanotechnology facilitate the engineering of multifunctional polymeric nanoparticles. All the scientific efforts of the pharmaceuticals companies are mainly focusing on two basic aspects, one is to discover new molecules of potential therapeutic interest and second is to develop of a new drug delivery system. In the last few decades, research and development (R&D) scientists has directed their efforts toward formulating novel drug delivery systems that includes sustained and controlled release, modified release and targeted drug release dosage forms. Application of nanoscience and nanotechnology has opened several new possibilities in development of formulation This review compiles the different preparation methods of polymeric nanoparticles and then briefly explained their current potential applications. Keywords: Polymeric nanoparticles, PLGA, Biomedical applications, Biodegradable, Dialysis method
Styles APA, Harvard, Vancouver, ISO, etc.
7

SZYMAŃSKI, PAWEŁ, MAGDALENA MARKOWICZ et ELŻBIETA MIKICIUK-OLASIK. « NANOTECHNOLOGY IN PHARMACEUTICAL AND BIOMEDICAL APPLICATIONS : DENDRIMERS ». Nano 06, no 06 (décembre 2011) : 509–39. http://dx.doi.org/10.1142/s1793292011002871.

Texte intégral
Résumé :
Nanotechnology, a separate field of knowledge since 1980s, involves utilization of nanomaterials not only in electronics and catalysis, but also in biomedical research including drug delivery, bioimaging, biomedical-diagnostics and tissue engineering. Multidisciplinary of this science has led to the development of different areas of technology and might contribute to innovations that will, as a final consequence, help humanity. Dendrimers are large and complex molecules that are characterized by well-defined nanoscale architecture, monodispersity and structural versatility. These highly interesting polymers consist of three elements: core, branches and peripheral groups. There is a wide variety of potential applications of dendritic polymers. One of the most promising is utilization of polyamidoamine (PAMAM) dendrimers as drug delivery devices. Among pharmaceuticals that have been connected with different types of dendrimers are nonsteroidal anti-inflammatory drugs (NSAIDs), anticancer drugs and other. Dendrimers application as drug carriers improves pharmacokinetic properties of drug particles, decreases drugs' side effects and, by possibility of surface modification with different ligands, enables to target specific tissues and tumor cells. Dendrimers might be also utilized as devices for delivery of genetic material and contrast agents for magnetic resonance imaging (MRI).
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zille, Andrea, Luís Almeida, Teresa Amorim, Noémia Carneiro, Maria Fátima Esteves, Carla J. Silva et António Pedro Souto. « Application of nanotechnology in antimicrobial finishing of biomedical textiles ». Materials Research Express 1, no 3 (25 septembre 2014) : 032003. http://dx.doi.org/10.1088/2053-1591/1/3/032003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Md Dipu Ahmed, Kazi M Maraz, Shahirin Shahida, Tarannum Dihan et Ruhul A Khan. « A review on the synthesis, surface modification and drug delivery of nanoparticles ». Global Journal of Engineering and Technology Advances 8, no 2 (30 août 2021) : 032–45. http://dx.doi.org/10.30574/gjeta.2021.8.2.0114.

Texte intégral
Résumé :
Over the past few years, the evolution of nanotechnology has extended into a wide range of applications. Nanotechnology has now become a multidisciplinary science that applies to electronics, materials science, biomedical engineering, microbiology, etc. Recently, nanotechnology is being used in biomedical and pharmaceutical science. Among them drug delivery is set to spread rapidly. Application of nanotechnology in health sector also created a potential impact such as in the fields of immunology, cardiology, endocrinology, ophthalmology, and oncology. Nanoparticles are unique because of their large surface area and it has the potential to change the properties of a bulk number of materials. The surface of nanoparticles can be modified with the help of various polymers, organic and inorganic substances according to the specific application and their use. Nanoparticles are also utilized as nano shells in drug delivery systems and cancer therapy. Nano shells can recognize the cancer cells when they are injected into the cancer area. The heat generated by the light absorbing nano shells due to the application of the near infrared light successfully kills tumour cells leaving the noncarcinogenic cells intact. In this review article, nanoparticles, the health implication of nanoparticles and their synthesis are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Adhikary, Krishnendu. « An Updated Review on Nanomaterials for Biomedical Advancements : Concepts and Applications ». Bioscience Biotechnology Research Communications 14, no 4 (25 décembre 2021) : 1428–34. http://dx.doi.org/10.21786/bbrc/14.4.9.

Texte intégral
Résumé :
The sphere of Nanotechnology encompasses most of our lives and houses biomedicine and biomedical advancements. Nanoparticles owing to their minuscule sizes and due to various physicochemical and electrical properties have been exploited in pharmaceutical industries, agriculture, packaging, cosmetic, food industries. Nanomedicine is a laboratory-designed molecular-level pharmaceutical material that has revolutionized diagnostic techniques and therapeutics. Nanoscience and nanotechnology and their wide applications have become spread field worldwide because nanomaterials have novel and unique properties. Nanotechnology involves understanding and manipulating materials normally in the size range of 1 to 100 nm, where they show completely novel physicochemical properties from their bulk counterpart. The capacity to study compounds at the molecular level has aided the hunt for materials with exceptional qualities for medical applications. Nanotechnology in recent days is applied in the designing of nano biosensors. Nanobiosensors are biological molecules immobilized onto the surface of a signal transducer. The application of nano biosensors in the field of disease detection has increased in recent years which has influenced in research of cancer and biosensing. Due to the high surface area of nanoparticles, they are important in the production of nano biosensors with high levels of sensitivity and diminish the response times. However, a comprehensive review regarding the type, mode of function, and their application in various diseases is missing. Nano Deterministic lateral displacement technology that provided exosome splitting based on size differences has resulted in providing the much-needed boost to cancer research. The time taken for cancer screening has been reduced drastically. that This review aims to describe the utilization of nano deterministic lateral displacement technology, nano biosensors, and their applications in certain disease diagnoses.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Nanotechnology - Biomedical Application"

1

To, Yuk-fai. « Potential biomedical application of metallic nanoparticles ». Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B39634322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

To, Yuk-fai, et 杜鈺輝. « Potential biomedical application of metallic nanoparticles ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39634322.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lim, Yong Chae. « Development and Demonstration of Femtosecond Laser Micromachining Processes for Biomedical Applications ». The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1313505193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Shu, Yi. « Assembly of Phi29 pRNA Nanoparticles for Gene or Drug Delivery and for Application in Nanotechnology and Nanomedicine ». University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1336683831.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Moore, Christopher S. « Study of Immobilizing Cadmium Selenide Quantum Dots in Selected Polymers for Application in Peroxyoxalate Chemiluminescence Flow Injection Analysis ». Digital Commons @ East Tennessee State University, 2013. https://dc.etsu.edu/etd/1151.

Texte intégral
Résumé :
Two batches of CdSe QDs with different sizes were synthesized for immobilizing in polyisoprene (PI), polymethylmethacrylate (PMMA), and low-density polyethylene (LDPE). The combinations of QDs and polymer substrates were evaluated for their analytical fit-for-use in applicable immunoassays. Hydrogen peroxide standards were injected into the flow injection analyzer (FIA) constructed to simulate enzyme-generated hydrogen peroxide reacting with bis-(2,4,6-trichlorophenyl) oxalate. Linear correlations between hydrogen peroxide and chemilumenscent intensities yielded regression values greater than 0.9750 for hydrogen peroxide concentrations between 1.0 x 10-4 M and 1.0 x 10-1 M. The developed technique’s LOD was approximately 10 ppm. Variability of the prepared QD-polymer products was as low as 3.2% throughout all preparations.Stability of the preparations was tested during a 30-day period that displayed up to a four-fold increase in the first 10 days. The preparations were decently robust to the FIA system demonstrating up to a 15.20% intensity loss after twenty repetitive injections.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Cail, Peter James. « DNA nanotechnology and supramolecular chemistry in biomedical therapy applications ». Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8424/.

Texte intégral
Résumé :
The overall aim of this thesis is to investigate the combination of supramolecular cylinders with DNA nanotechnology and assess any effects that can occur through binding and any applications this could have in biomedical therapy applications. From this base it is hoped that insight can be gained as to whether supramolecular chemistry can be used to create DNA nano-machines, capable of triggered release of cargo. The thesis begins with a review of DNA discovery, structure and binding by small molecules, followed by a review of the field of DNA nanotechnology. By expanding on the field of DNA nanotechnology recognition, chapters 2 and 3 will highlight the advantages of supramolecular chemistry when combined with DNA nanotechnology in both nano-machines and inside cell systems with a focus on DNA tetrahedral nanostructures. Chapter 4 researches the photocleavage capabilities of a ruthenium cylinder and the possibilities of selective release and photodynamic therapy using a DNA tetrahedron. Chapter 5 illustrates a new class of anti-viral agents capable of structure recognition regardless of RNA sequence. The chapter focuses on the inhibition of binding between the TAR RNA and ADP-1 peptide found in the HIV-1 virus.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bertucci, Alessandro. « Hybrid organic-inorganic interfaces for biomedical applications ». Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF008/document.

Texte intégral
Résumé :
Le travail de recherche de cette thèse consiste en le développement de nouveaux matériaux hybrides organiques-inorganiques pour des applications en nanotechnologie, nanomédicine et diagnostic. Dans ce contexte, des cristaux poreux de zéolite-L ont été utilisé comme nano-vecteur pour faire de la transfection d’ADN et d’ANP, en combinaison avec le relargage de molécules hôtes placées dans les pores. Des nanoparticules de silice mesoporeuses multifonctionnelles ont été utilisées pour traiter le glioblastome, en combinant la thérapie génique avec l’administration durable d’un principe actif. Des nano-coquilles hybrides biodégradables ont été encore développés pour encapsuler des protéines et les relâcher dans les cellules vivantes. Dans le domaine de la détection d’acides nucléiques, des fibres optiques à cristal photonique, fonctionnalisées avec des sondes d’ANP, ont été exploitées comme plateformes optiques pour faire de la détection ultra-sensible d’oligonucléotides ou d’ADN génomique. Enfin, la squelette de l’ANP a été modifié à créer des sondes fluorescentes pour reconnaître et détecter la présence des séquences cibles spécifiques
The research work presented throughout this thesis focuses on the development of novel organic-inorganichybrid materials for applications in nanotechnology, nanomedicine and diagnostics. In such a context, porous zeolite-L crystals have been used as nanocarriers to deliver either DNA or PNA in live cells, in combination with the release of guest molecules placed into the pores. Multifunctional mesoporous silica nanoparticles have been designed to treat glioblastoma, combining gene therapy with the sustained delivery of a chemotherapy agent. Biodegradable hybrid nano-shells have been furthermore created to encapsulate proteins and release them in living cells upon degradation of the outer structure in reductive environment. In the field of nucleic acid detection, photonic crystal fibers, functionalized with specific PNA probes, have been exploited as optical sensing devices to perform ultra-sensitive detection of DNA oligonucleotides or genomic DNA. Eventually, the PNA backbone has served as scaffold to synthesize fluorescent switching probes able to recognize and to detect the presence of specific target sequences
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jin, Jiefu, et 金介夫. « Functional lanthanide-based nanoprobes for biomedical imaging applications ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B47752579.

Texte intégral
Résumé :
Lanthanide-doped upconversion nanoparticles (UCNPs) are perceived as promising novel near-infrared (NIR) bioimaging agents characterised by high contrast and high penetration depth. However, the interactions between charged UCNPs and mammalian cells have not been thoroughly studied and the corresponding intracellular uptake pathways remain unclear. Herein, my research work involved the use of hydrothermal method and ligand exchange approach to prepare UCNP-PVP, UCNP-PEI, and UCNP-PAA. These polymer-coated UCNPs demonstrated good water dispersibility, the similar size distribution as well as similar upconversion luminescence efficiency. However, the positively charged UCNP-PEI evinced greatly enhanced cellular uptake in comparison with its neutral or negative counterparts, as revealed by cellular uptake studies. Meanwhile, it was discovered that cationic UCNP-PEI could be effectively internalized mainly through the clathrin endocytic machanism. This study is the first report on the endocytic mechanism of positively charged lanthanide-doped UCNPs. Furthermore, it allows us to control the UCNP-cell interactions by tuning surface properties. Glioblastoma multiforme (GBM) is the most common and malignant form of primary brain tumors in humans. Small molecule MRI contrast agents are used for GBM diagnosis and preoperative tumor margin delineation. However, the conventional gadolinium-based contrast agents have several disadvantages, such as a relatively low T1 relaxivity, short circulation half lives and the absence of tumor targeting efficiency. Multimodality imaging probes provide a better solution to clearly delineate the localization of glioblastoma. My research work also involved the development of multimodal nanoprobes for targeted glioblastoma imaging. Two targeted paramagnetic/fluorescence nanoprobes were designed and synthesized, UCNP-Gd-RGD and AuNP-Dy680-Gd-RGD. UCNP-Gd-RGD was prepared through PEGylation, Gd3+DOTA conjugation and RGD labeling of PEI-coated UCNP-based nanoprobe core (UCNP-NH2). It adopted the cubic NaYF4 phase, had an average size of 36 nm by TEM, and possessed a relatively intense upconversion luminescence of Er3+ and Tm3+. It also exhibited improved colloidal stability and reduced cytotoxicity compared with UCNP-NH2, and a higher T1 relaxivity than Gd3+DOTA. AuNP-Dy680-Gd-RGD was synthesized through bioconjugation of amine-modified AuNP-based nanoprobe core (AuNPPEG- NH2) by a NIR dye (Dy680), Gd3+DOTA and RGD peptide. It demonstrated a size of 3–6 nm by TEM, relatively strong NIR fluorescence centered at 708 nm, longterm physiological stability, and an enhanced T1 relaxivity compared with Gd3+DOTA. Targeting abilities of both UCNP-Gd-RGD and AuNP-Dy680-Gd-RGD towards overexpressed integrin αvβ3 receptors on U87MG cell surface was confirmed by their enhanced cellular uptake visualized by confocal microscopy imaging and quantified by ICP-MS, where their corresponding control nanoprobes were used for comparison. Furthermore, targeted imaging capabilities of UCNP-Gd-RGD and AuNP-Dy680-Gd- RGD towards subcutaneous U87MG tumors were verified by in vivo and ex vivo upconversion fluorescence imaging studies and by in vivo and ex vivo NIR fluorescence imaging and in vivo MR imaging studies, respectively. These two synthesized targeted nanoprobes, with surface-bounded cyclic RGD peptide and numerous T1 contrast enhancing molecules, are applicable in targeted MR imaging glioblastoma and delineating the tumor boundary. In addition, UCNP-Gd-RGD favors the upconversion luminescence with NIR-to-visible nature, while AuNPDy680- Gd-RGD possesses NIR-to-NIR fluorescence, and both lead to their potential applications in fluorescence-guided surgical resection of gliomas.
published_or_final_version
Chemistry
Doctoral
Doctor of Philosophy
Styles APA, Harvard, Vancouver, ISO, etc.
9

Roark, Brandon Kyle. « Nucleic Acid-Driven Quantum Dot-Based Lattice Formations for Biomedical Applications ». Thesis, The University of North Carolina at Charlotte, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10619578.

Texte intégral
Résumé :

We present a versatile biosensing strategy that uses nucleic acids programmed to undergo an isothermal toehold mediated strand displacement in the presence of analyte. This rearrangement results in a double biotinylated duplex formation that induces the rapid aggregation of streptavidin decorated quantum dots (QDs). As biosensor reporters, QDs are advantageous to organic fluorophores and fluorescent proteins due to their enhanced spectral and fluorescence properties. Moreover, the nanoscale regime aids in an enhanced surface area that increase the number of binding of macromolecules, thus making cross-linking possible. The biosensing transduction response, in the current approach, is dictated by the analysis of the natural single particle phenomenon known as fluorescence intermittency, or blinking is the stochastic switching of fluorescence intensity ON (bright) and OFF (dark) states observed in single QD or other fluorophores. In contrast to binary blinking that is typical for single QDs, aggregated QDs exhibit quasi-continuous emission. This change is used as an output for the novel biosensing techniques developed by us. Analysis of blinking traces that can be measured by laser scanning confocal microscopy revealed improved detection of analytes in the picomolar ranges. Additionally, this unique biosensing approach does not require the analyte to cause any fluorescence intensity or color changes. Lastly, this biosensing method can be coupled with therapeutics, such as RNA interference inducers, that can be conditionally released and thus used as a theranostic probes.

Styles APA, Harvard, Vancouver, ISO, etc.
10

Ojha, Yagya Raj. « Selection and Characterization of ssDNA Aptamers for Salivary Peptide Histatin 3 and Their Application Towards Assay and Point-of-Care Biosensing ». University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1575992671104993.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Nanotechnology - Biomedical Application"

1

Sheikh, Faheem A., dir. Application of Nanotechnology in Biomedical Sciences. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5622-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Xueji, Zhang, et Wang Joseph 1948-, dir. NanoBiosensing : Principles, development, and application. New York : Springer, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

B, Khomutov Gennady, et SpringerLink (Online service), dir. Nanomaterials for Application in Medicine and Biology. Dordrecht : Springer Science + Business Media B.V, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Al-Ahmed, Amir, Arun M. Isloor et M. Nasiruzzaman Shaikh. Inorganic nanomedicine : Synthesis, characterization and application : special topic volume with invited peer reviewed papers only. Durnten-Zurich, Switzerland : Trans Tech Publications Ltd, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gopi, Sreerag, Preetha Balakrishnan et Nabisab Mujawar Mubarak, dir. Nanotechnology for Biomedical Applications. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7483-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Labhasetwar, Vinod, et Diandra L. Leslie-Pelecky, dir. Biomedical Applications of Nanotechnology. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470152928.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Vinod, Labhasetwar, et Leslie-Pelecky Diandra L, dir. Biomedical applications of nanotechnology. Hoboken, N.J : Wiley-Interscience, 2007.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Min, Zhang, Yin Bin-Cheng et SpringerLink (Online service), dir. Nano-Bio Probe Design and Its Application for Biochemical Analysis. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Wang, Hao, et Li-Li Li, dir. In Vivo Self-Assembly Nanotechnology for Biomedical Applications. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6913-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

1973-, King M. R., et Gee D. J. 1964-, dir. Multiscale modeling of particle interactions : Applications in biology and nanotechnology. Hoboken, N.J : Wiley, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Nanotechnology - Biomedical Application"

1

Pooresmaeil, Malihe, et Hassan Namazi. « Chitosan Based Nanocomposites for Drug Delivery Application ». Dans Nanotechnology for Biomedical Applications, 135–201. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7483-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Di Fabrizio, E., F. Perennes, F. Romanato, S. Cabrini, D. Cojoc, M. Tormen, L. Businaro, L. Vaccari, R. Z. Proietti et Rakesh Kumar. « 3D Micro- and Nanofabrication and Their Medical Application ». Dans BioMEMS and Biomedical Nanotechnology, 97–143. Boston, MA : Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-25842-3_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Singh, Pushpendra, Manish Kumar Tripathi et Dhruv Kumar. « Nanotechnology in Venom Research : Recent Trends and Its Application ». Dans Nanotechnology for Biomedical Applications, 381–89. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7483-9_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Rafiq, Zahid, Pankaj Patel, Santosh Kumar, Hasham S. Sofi, Javier Macossay et Faheem A. Sheikh. « Advancements of Nanotechnology in Diagnostic Applications ». Dans Application of Nanotechnology in Biomedical Sciences, 1–15. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5622-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Nallasamy, Lavanya, Girija Sangari Murugavelu, Santhosh Ganesh, Praveen Kumar Nandhakumar, Deepika Krishnamoorthy, Sriram Chandrasekaran et Leeba Balan. « Green Nanotechnology Revolution in Biomedical Application and Treatments ». Dans Nanovaccinology, 181–91. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-35395-6_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Jiang, Qiao, Qing Liu, Zhaoran Wang et Baoquan Ding. « Rationally Designed DNA Assemblies for Biomedical Application ». Dans Nanotechnology in Regenerative Medicine and Drug Delivery Therapy, 287–310. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5386-8_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rashid, Rumaisa, Amreen Naqash, Ghulam Nabi Bader et Faheem A. Sheikh. « Nanotechnology and Diabetes Management : Recent Advances and Future Perspectives ». Dans Application of Nanotechnology in Biomedical Sciences, 99–117. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5622-7_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rashid, Rumaisa, Hasham S. Sofi, Javier Macossay et Faheem A. Sheikh. « Polycaprolactone-Based Nanofibers and their In-Vitro and In-Vivo Applications in Bone Tissue Engineering ». Dans Application of Nanotechnology in Biomedical Sciences, 17–38. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5622-7_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Amna, Touseef, M. Shamshi Hassan et Faheem A. Sheikh. « Nanocamptothecins as New Generation Pharmaceuticals for the Treatment of Diverse Cancers : Overview on a Natural Product to Nanomedicine ». Dans Application of Nanotechnology in Biomedical Sciences, 39–49. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5622-7_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sofi, Hasham S., Nisar Ahmad Khan et Faheem A. Sheikh. « Smart Biomaterials from Electrospun Chitosan Nanofibers by Functionalization and Blending in Biomedical Applications ». Dans Application of Nanotechnology in Biomedical Sciences, 51–73. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5622-7_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Nanotechnology - Biomedical Application"

1

Yao, Peng, et An Jian. « ISCOMATRIX Application of Nanotechnology ». Dans 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB). IEEE, 2012. http://dx.doi.org/10.1109/icbeb.2012.256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Alsadi, Jamal, Ronald M. Hernandez, Sarah Haidar Hasham, Chandra Kumar Dixit, Alok Dubey et Aziz Unnisa. « Critical Review on Recent Advancement in Nanotechnology for Biomedical Application ». Dans International Conference on Recent Advancements in Biomedical Engineering. Switzerland : Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-2rg620.

Texte intégral
Résumé :
The new update in advancement in nanotechnology has engaged to develop a new nanomaterial with a different functional property. The morphology modification of nanoparticles has exhibited excellent physio-chemical properties such as high reactivity and absorption rate, photochemical and magnetic property, and larger surface area. Moreover, biomedical application of nanoparticles are yet a hard tool to use for therapeutic application owing to its limits such as Pitiable target specificity, bio-compatibility, low photostability, toxicity to organically, poor blood retention and cellular absorption. Therefore advancement in nanotechnology is required to overcome these defects. In this background, new nanomaterials are identified with suitable biological, chemical and physical properties, which suits the required demands of the application. In this mini-review, we have covered the recent focuses of nanomaterials for biomedical application.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Szabó, Zoltán, Eniko T. Enikov et Rudolf Kyselica. « Nanofacture : Senior Design Experience in Nanotechnology ». Dans ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65402.

Texte intégral
Résumé :
This paper describes the outcomes of an NSF-funded undergraduate engineering training project launched at the University of Arizona - College of Engineering. The program aims to engage senior-year students in a capstone design project focused on biomedical applications of nanotechnology. The senior design team has previously attended a micro- and nanofabrication and a mechatronics technical elective courses. Both courses have been adjusted to better suit the goals of the program. Modifications include a self-guided research component, requirement to utilize a nanotechnology based sensors or actuators in a biomedical application. Formative evaluation data has been gathered through personal interviews to assess changes of students attitudes towards nanotechnology. Data includes reports from junior-year members of the technical elective classes, along with graduate assistants serving as mentors of the undergraduate participants. Results indicate that students who enrolled in Fabrication Techniques for Micro- and Nano-devices gained formal knowledge about nanotechnology through lectures and hands-on activities, while those who joined a senior design team learned about nanotechnology by interfacing regularly with the faculty advisor who imparted his knowledge and enthusiasm about nanotechnology applications during design team meetings. Students who took the first course in the sequence, Guided Self-Studies in Mechatronics prior to the capstone design experience benefited most.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Chin, Suk, Mohamed Makha et Colin Raston. « Encapsulation of Magnetic Nanoparticles with Biopolymer for Biomedical Application ». Dans 2006 International Conference on Nanoscience and Nanotechnology. IEEE, 2006. http://dx.doi.org/10.1109/iconn.2006.340630.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Belous, A., S. Solopan, O. Yelenich, S. Osinsky, L. Bubnovskaya et L. Bovkun. « Synthesis and properties of ferromagnetic nanoparticles for potential biomedical application ». Dans 2014 IEEE 34th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2014. http://dx.doi.org/10.1109/elnano.2014.6873922.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nasalapure, Vijay Kumar Anand, Raju Krishna Chalannavar, Ramesh S. Gani et Deepak Ramesh Kasai. « Preparation and characterization of polyvinyl alcohol and carboxy methyl cellulose hydrogel film for biomedical application ». Dans PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PHYSICS OF MATERIALS AND NANOTECHNOLOGY ICPN 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0009594.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, G. J. « Applications of Nanotechnology in Biomedical Micro/Nano Devices ». Dans 2010 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2010. http://dx.doi.org/10.7567/ssdm.2010.l-3-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Urooj, Shabana, Satya P. Singh, Nidhi S. Pal et Aime Lay-Ekuakille. « Carbon-Based Nanomaterials in Biomedical Applications ». Dans 2016 Nanotechnology for Instrumentation and Measurement (NANOfIM). IEEE, 2016. http://dx.doi.org/10.1109/nanofim.2016.8521437.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Shankar, A. N., Mahmoud Murtala Farouq, Francis Kwesi Bondinuba, Vinay Kumar Singh, Daha Shehu Aliyu et V. Y. Ganvir. « Critical Review on the Impact of Nanotechnology in Concrete Materials ». Dans International Conference on Recent Advancements in Biomedical Engineering. Switzerland : Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-2o26jd.

Texte intégral
Résumé :
The present state of nanotechnology in concrete is summarised in this study. The terms "nanotechnology," "nanoscience," and "nanoengineering" all have concrete definitions. Instrumentation and computational materials science advancements, as well as their practical applications, are reviewed in this article. nanoengineering and nanocomposites alteration of cement-based material was focus of this research, which examines current developments in this field.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Suk Fun Chin, K. Swaminatha Iyer et Colin L. Raston. « Superparamagnetic core-shell nanoparticles for biomedical applications ». Dans 2010 International Conference on Enabling Science and Nanotechnology (ESciNano). IEEE, 2010. http://dx.doi.org/10.1109/escinano.2010.5700936.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie