Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Nanoscintillators.

Articles de revues sur le sujet « Nanoscintillators »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Nanoscintillators ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Jacobsohn, Luiz G., Kevin B. Sprinkle, Steven A. Roberts, et al. "Fluoride Nanoscintillators." Journal of Nanomaterials 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/523638.

Texte intégral
Résumé :
A preliminary investigation of the scintillation response of rare earth-doped fluoride nanoparticles is reported. Nanoparticles of CaF2 : Eu, BaF2 : Ce, and LaF3 : Eu were produced by precipitation methods using ammonium di-n-octadecyldithiophosphate (ADDP) as a ligand that controls growth and lessens agglomeration. The structure and morphology were characterized by means of X-ray diffraction and transmission electron microscopy, while the scintillation properties of the nanoparticles were determined by means of X-ray and241Am irradiation. The unique aspect of scintillation of nanoparticles is
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhao, Jian, Kunyang Wang, Wenhui Chen, Deyang Li, and Lei Lei. "Controlled Synthesis of Cs2NaYF6: Tb Nanoparticles for High-Resolution X-Ray Imaging and Molecular Detection." Nanomaterials 15, no. 10 (2025): 728. https://doi.org/10.3390/nano15100728.

Texte intégral
Résumé :
Rare-earth-doped fluoride nanoparticles (NPs), known for their tunable luminescence and high chemical stability, hold significant potential for applications in X-ray imaging and radiation dose monitoring. However, most research has primarily focused on lanthanide-doped NaLuF4 or NaYF4 nanosystems. In this work, Cs2NaYF6:Tb NPs with enhanced X-ray excited optical luminescence (XEOL) intensity were developed. Our results indicate that low oleic acid (OA) content and a high [Cs+]/[Na+] ratio favor the formation of pure cubic-phase Cs2NaYF6:Tb NPs. Cs2NaYF6:Tb NPs were successfully fabricated into
Styles APA, Harvard, Vancouver, ISO, etc.
3

Procházková, Lenka, Tomáš Gbur, Václav Čuba, Vítězslav Jarý, and Martin Nikl. "Fabrication of highly efficient ZnO nanoscintillators." Optical Materials 47 (September 2015): 67–71. http://dx.doi.org/10.1016/j.optmat.2015.07.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Meng, Zhu, Benoit Mahler, Julien Houel, et al. "Perspectives for CdSe/CdS spherical quantum wells as rapid-response nano-scintillators." Nanoscale 13, no. 46 (2021): 19578–86. http://dx.doi.org/10.1039/d1nr04781g.

Texte intégral
Résumé :
We explore the effect of shell thickness on the scintillation dynamics of CdS/CdSe/CdS spherical-quantum-well nanoscintillators under X-ray excitation, as compared to optical excitation at low and high powers.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chen, Baoliu, Junduan Dai, Sijie Song, et al. "An Activatable Nanoscintillator Probe for Detecting Telomerase Activity and Screening Inhibitors In Vivo." Targets 1, no. 1 (2023): 34–47. http://dx.doi.org/10.3390/targets1010004.

Texte intégral
Résumé :
Telomerase represents an essential molecular machinery for tumor occurrence and progression and a potential therapeutic target for cancer treatment. Sensitive and reliable analysis of telomerase activity is of significant importance for the diagnosis and treatment of cancer. In this study, we developed a telomerase-activated nanoscintillator probe for deep-tissue and background-free imaging of telomerase activity and screening telomerase inhibitors in tumor-bearing living mice models. The probe was constructed by modifying lanthanide-doped nanoscintillators with aptamer-containing DNA anchor s
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bulin, Anne-Laure, Andrey Vasil'ev, Andrei Belsky, David Amans, Gilles Ledoux, and Christophe Dujardin. "Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect." Nanoscale 7, no. 13 (2015): 5744–51. http://dx.doi.org/10.1039/c4nr07444k.

Texte intégral
Résumé :
To evaluate the efficiency of the photodynamic effect induced by X-rays, we quantified the fraction of energy deposited in nanoscintillators after interactions with X or γ-rays, introducing η<sub>nano</sub> as a new loss parameter.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Secchi, Valeria, Angelo Monguzzi, and Irene Villa. "Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy." International Journal of Molecular Sciences 23, no. 15 (2022): 8736. http://dx.doi.org/10.3390/ijms23158736.

Texte intégral
Résumé :
Radiation (RT) remains the most frequently used treatment against cancer. The main limitation of RT is its lack of specificity for cancer tissues and the limited maximum radiation dose that can be safely delivered without damaging the surrounding healthy tissues. A step forward in the development of better RT is achieved by coupling it with other treatments, such as photodynamic therapy (PDT). PDT is an anti-cancer therapy that relies on the light activation of non-toxic molecules—called photosensitizers—to generate ROS such as singlet oxygen. By conjugating photosensitizers to dense nanoscint
Styles APA, Harvard, Vancouver, ISO, etc.
8

Jung, J. Y., G. A. Hirata, G. Gundiah, et al. "Identification and development of nanoscintillators for biotechnology applications." Journal of Luminescence 154 (October 2014): 569–77. http://dx.doi.org/10.1016/j.jlumin.2014.05.040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gupta, Santosh K., and Yuanbing Mao. "Recent advances, challenges, and opportunities of inorganic nanoscintillators." Frontiers of Optoelectronics 13, no. 2 (2020): 156–87. http://dx.doi.org/10.1007/s12200-020-1003-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kornienko, Anastasia I., Maria A. Teplonogova, Marina P. Shevelyova, et al. "Novel Flavin Mononucleotide-Functionalized Cerium Fluoride Nanoparticles for Selective Enhanced X-Ray-Induced Photodynamic Therapy." Journal of Functional Biomaterials 15, no. 12 (2024): 373. https://doi.org/10.3390/jfb15120373.

Texte intégral
Résumé :
X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF3) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF3-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.42. It has been demonstrated that CeF3-FMN NPs exhibit pH-dependent radiation-induced redox activity when exposed to X-rays. This activity res
Styles APA, Harvard, Vancouver, ISO, etc.
11

Mekki, H., L. Guerbous, H. Bousbia-salah, A. Boukerika, and K. Lebbou. "Scintillation properties of (Lu1-x Y x )3Al5O12:Ce3+ nanoscintillator solid solution garnet materials." Journal of Instrumentation 18, no. 02 (2023): P02007. http://dx.doi.org/10.1088/1748-0221/18/02/p02007.

Texte intégral
Résumé :
Abstract In this study, the scintillation properties of the (Lu1-x Y x )3Al5O12: 0.1 at.%Ce3+ mixed nanopowder scintillators synthesized by the sol-gel method were investigated. The light yield, energy resolution and scintillation decay kinetics for different substitutions of Lu3+ by Y3+ ion, namely 0 at.%, 5 at.%, 10 at.%, 15 at.% and 20 at.% were evaluated. The relative light yields of all LuYAG mixed samples were determined by the comparison method and the LuAG:0.1 at.%Ce3+ single crystal grown by the Czochralski technique was used as a reference detector. The scintillation decay kinetics w
Styles APA, Harvard, Vancouver, ISO, etc.
12

Chen, Xiaofeng, Xiaokun Li, Xiaoling Chen, et al. "Flexible X-ray luminescence imaging enabled by cerium-sensitized nanoscintillators." Journal of Luminescence 242 (February 2022): 118589. http://dx.doi.org/10.1016/j.jlumin.2021.118589.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

FULBERT, Clémentine, Sarah STELSE-MASSON, Frédéric CHAPUT, et al. "Using rare-earth based nanoscintillators for X-ray induced photodynamic therapy." Photodiagnosis and Photodynamic Therapy 41 (March 2023): 103421. http://dx.doi.org/10.1016/j.pdpdt.2023.103421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

FULBERT, Clémentine, Sarah STELSE-MASSON, Hélène ELLEAUME, and Anne-Laure BULIN. "Nanoscintillators for X-ray induced PDT: unravelling the complex mechanisms involved." Photodiagnosis and Photodynamic Therapy 41 (March 2023): 103426. http://dx.doi.org/10.1016/j.pdpdt.2023.103426.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Klassen, N. V., V. V. Kedrov, Y. A. Ossipyan, et al. "Nanoscintillators for Microscopic Diagnostics of Biological and Medical Objects and Medical Therapy." IEEE Transactions on NanoBioscience 8, no. 1 (2009): 20–32. http://dx.doi.org/10.1109/tnb.2009.2016551.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Wei, Aoqing, Jingtao Zhao, Danyang Shen, and Lei Lei. "Controlled synthesis of SrFCl: Tb nanoscintillators with improved X-ray detection limit." Journal of Luminescence 277 (January 2025): 120972. http://dx.doi.org/10.1016/j.jlumin.2024.120972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Scaffidi, Jonathan P., Molly K. Gregas, Benoit Lauly, Yan Zhang, and Tuan Vo-Dinh. "Activity of Psoralen-Functionalized Nanoscintillators against Cancer Cells upon X-ray Excitation." ACS Nano 5, no. 6 (2011): 4679–87. http://dx.doi.org/10.1021/nn200511m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Procházková, Lenka, Václav Čuba, Alena Beitlerová, Vítězslav Jarý, Sergey Omelkov, and Martin Nikl. "Ultrafast Zn(Cd,Mg)O:Ga nanoscintillators with luminescence tunable by band gap modulation." Optics Express 26, no. 22 (2018): 29482. http://dx.doi.org/10.1364/oe.26.029482.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Dinakaran, Deepak, Jayeeta Sengupta, Desmond Pink, et al. "PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy." Acta Biomaterialia 117 (November 2020): 335–48. http://dx.doi.org/10.1016/j.actbio.2020.09.029.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Sahin, O., Y. Mackeyev, G. Vijay, et al. "X-Ray Triggered Nanoscintillators Photosensitize Pancreatic Cancer and Stimulate a Robust Systemic Immune Response." International Journal of Radiation Oncology*Biology*Physics 114, no. 3 (2022): e524. http://dx.doi.org/10.1016/j.ijrobp.2022.07.2118.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Klassen, N. V., V. N. Kurlov, S. N. Rossolenko, O. A. Krivko, A. D. Orlov, and S. Z. Shmurak. "Scintillation fibers and nanoscintillators for improving the spatial, spectrometric, and time resolution of radiation detectors." Bulletin of the Russian Academy of Sciences: Physics 73, no. 10 (2009): 1369–73. http://dx.doi.org/10.3103/s1062873809100141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hong, Zhongzhu, Shuai He, Qinxia Wu, et al. "One-pot synthesis of lanthanide-activated NaBiF4 nanoscintillators for high-resolution X-ray luminescence imaging." Journal of Luminescence 254 (February 2023): 119492. http://dx.doi.org/10.1016/j.jlumin.2022.119492.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Chuang, Yao-Chen, Chia-Hui Chu, Shih-Hsun Cheng, et al. "Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics." Theranostics 10, no. 15 (2020): 6758–73. http://dx.doi.org/10.7150/thno.41752.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Alves, Luiz Anastacio, Leonardo Braga Ferreira, Paulo Furtado Pacheco, Edith Alejandra Carreño Mendivelso, Pedro Celso Nogueira Teixeira, and Robson Xavier Faria. "Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators." Oncotarget 9, no. 38 (2018): 25342–54. http://dx.doi.org/10.18632/oncotarget.25150.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ahmad, Farooq, Xiaoyan Wang, Zhao Jiang, et al. "Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics." ACS Nano 13, no. 9 (2019): 10419–33. http://dx.doi.org/10.1021/acsnano.9b04213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Stelse-Masson, Sarah, Xenie Lytvynenko, Kristel Bedregal-Portugal, et al. "Combined physical and biological contributions to radiotherapy enhancement by Lu-based nanoscintillators in pancreatic cancer models." Nanotheranostics 9, no. 3 (2025): 199–215. https://doi.org/10.7150/ntno.115120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Yu, Xujiang, Xinyi Liu, Weijie Wu, et al. "CT/MRI-Guided Synergistic Radiotherapy and X-ray Inducible Photodynamic Therapy Using Tb-Doped Gd-W-Nanoscintillators." Angewandte Chemie 131, no. 7 (2019): 2039–44. http://dx.doi.org/10.1002/ange.201812272.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Yu, Xujiang, Xinyi Liu, Weijie Wu, et al. "CT/MRI-Guided Synergistic Radiotherapy and X-ray Inducible Photodynamic Therapy Using Tb-Doped Gd-W-Nanoscintillators." Angewandte Chemie International Edition 58, no. 7 (2019): 2017–22. http://dx.doi.org/10.1002/anie.201812272.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Bulin, Anne‐Laure, Mans Broekgaarden, Frédéric Chaput, et al. "Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma." Advanced Science 7, no. 20 (2020): 2001675. http://dx.doi.org/10.1002/advs.202001675.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

ZAHRA, Billel. "Characterization of alpha-induced light yield in YAG: Ce3+ nanoscintillator detector for radiation detection applications." Algerian Journal of Signals and Systems 9, no. 4 (2024): 206–11. https://doi.org/10.51485/ajss.v9i4.207.

Texte intégral
Résumé :
Abstract: In this study, we prepared four sample detectors using YAG: Ce3+ nanopowder synthesized at varying activator concentrations (0.1 atm. %, 0.5 atm. %, 1 atm. %, and 2 atm. %) via the sol-gel method. The primary objective was to assess how the Ce3+ content influences the scintillation properties of these samples when subjected to alpha particle excitation. To achieve this, a nuclear instrumentation chain was set-up to measure the pulse height spectra of the radioactive source 241Am, which emits α-particles with an energy of 5.48 MeV. Additionally, we used the GDB-4FF photomultiplier tub
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kirakci, Kaplan, Pavel Kubát, Karla Fejfarová, Jiří Martinčík, Martin Nikl, and Kamil Lang. "X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators." Inorganic Chemistry 55, no. 2 (2015): 803–9. http://dx.doi.org/10.1021/acs.inorgchem.5b02282.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Cooper, Daniel R., Konstantin Kudinov, Pooja Tyagi, Colin K. Hill, Stephen E. Bradforth, and Jay L. Nadeau. "Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules." Phys. Chem. Chem. Phys. 16, no. 24 (2014): 12441–53. http://dx.doi.org/10.1039/c4cp01044b.

Texte intégral
Résumé :
Ce<sub>x</sub>La<sub>1−x</sub>F<sub>3</sub> nanoparticles have been proposed for use in nanoscintillator–photosensitizer systems, aiming to combine the effects of radiotherapy and photodynamic therapy.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Daouk, Joël, Mathilde Iltis, Batoul Dhaini, et al. "Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy." Pharmaceuticals 14, no. 5 (2021): 396. http://dx.doi.org/10.3390/ph14050396.

Texte intégral
Résumé :
X-ray-induced photodynamic therapy is based on the energy transfer from a nanoscintillator to a photosensitizer molecule, whose activation leads to singlet oxygen and radical species generation, triggering cancer cells to cell death. Herein, we synthesized ultra-small nanoparticle chelated with Terbium (Tb) as a nanoscintillator and 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenyl porphyrin (P1) as a photosensitizer (AGuIX@Tb-P1). The synthesis was based on the AGuIX@ platform design. AGuIX@Tb-P1 was characterised for its photo-physical and physico-chemical properties. The effect of th
Styles APA, Harvard, Vancouver, ISO, etc.
34

Bulin, Anne-Laure, Charles Truillet, Rima Chouikrat, et al. "X-ray-Induced Singlet Oxygen Activation with Nanoscintillator-Coupled Porphyrins." Journal of Physical Chemistry C 117, no. 41 (2013): 21583–89. http://dx.doi.org/10.1021/jp4077189.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Schneller, Perrine, Charlotte Collet, Quentin Been, et al. "Added Value of Scintillating Element in Cerenkov-Induced Photodynamic Therapy." Pharmaceuticals 16, no. 2 (2023): 143. http://dx.doi.org/10.3390/ph16020143.

Texte intégral
Résumé :
Cerenkov-induced photodynamic therapy (CR-PDT) with the use of Gallium-68 (68Ga) as an unsealed radioactive source has been proposed as an alternative strategy to X-ray-induced photodynamic therapy (X-PDT). This new strategy still aims to produce a photodynamic effect with the use of nanoparticles, namely, AGuIX. Recently, we replaced Gd from the AGuIX@ platform with Terbium (Tb) as a nanoscintillator and added 5-(4-carboxyphenyl succinimide ester)-10,15,20-triphenylporphyrin (P1) as a photosensitizer (referred to as AGuIX@Tb-P1). Although Cerenkov luminescence from 68Ga positrons is involved
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chen, Hongmin, Geoffrey D. Wang, Yen-Jun Chuang, et al. "Nanoscintillator-Mediated X-ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment." Nano Letters 15, no. 4 (2015): 2249–56. http://dx.doi.org/10.1021/nl504044p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Morgan, Nicole Y., Gabriela Kramer-Marek, Paul D. Smith, Kevin Camphausen, and Jacek Capala. "Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters." Radiation Research 171, no. 2 (2009): 236–44. http://dx.doi.org/10.1667/rr1470.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Kurudirek, Murat, Sinem V. Kurudirek, Nolan E. Hertel, et al. "Vertically Well-Aligned ZnO Nanoscintillator Arrays with Improved Photoluminescence and Scintillation Properties." Materials 16, no. 20 (2023): 6717. http://dx.doi.org/10.3390/ma16206717.

Texte intégral
Résumé :
ZnO nanoarrays were grown via a low-temperature hydrothermal method. Solutions, each with different additive combinations, were prepared and evaluated. The effects of the additives involved in the growth procedure, i.e., ammonium hydroxide and sodium citrate, were studied in terms of the morphological, optical and scintillation properties of the ZnO nanostructures. Measurement of the nanorod (NR) length, corresponding photoluminescence (PL) and scintillation spectra and their dependence on the additives present in the solution are discussed. ZnO NRs grown on a silica substrate, whose UV transm
Styles APA, Harvard, Vancouver, ISO, etc.
39

Buryi, M., N. Neykova, M. G. Brik, et al. "Hydrothermally grown molybdenum doped ZnO nanorod arrays. The concept of novel ultrafast nanoscintillator." Optical Materials 145 (November 2023): 114445. http://dx.doi.org/10.1016/j.optmat.2023.114445.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Liu, Li Sha, Hao Hong Chen, Bi Qiu Liu, Bin Tang, Zhi Jia Sun та Jing Tai Zhao. "Microscintillator of Ce Doped β-NaLuF4 in Uniform Hexagonal Prism Morphology by a Facile Hydrothermal Method". Applied Mechanics and Materials 541-542 (березень 2014): 220–24. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.220.

Texte intégral
Résumé :
To explore micro-or nanoscintillator with a controllable architecture, a novel facile hydrothermal method easy for commercial run was used to synthesize pure and Ce doped β-NaLuF4 microcrystals at 453K. The morphology of uniform hexagonal prism with 3.3μm in diameter and 1.4 μm in thickness, respectively, is presented by the results of scanning electron microscopy (SEM). Powder X-ray diffraction (PXRD) patterns show the products are both pure hexagonal phase. Different from the undoped product without any irradiation, the Ce doped product has given strong broad band emission attributed to 5d4f
Styles APA, Harvard, Vancouver, ISO, etc.
41

Rivera, J., J. Dooley, M. Belley, et al. "WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry." Medical Physics 42, no. 6Part36 (2015): 3652. http://dx.doi.org/10.1118/1.4925853.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Kyung Cha, Bo, Seung Jun Lee, P. Muralidharan, Jon Yul Kim, Do Kyung Kim, and Gyuseong Cho. "Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 633 (May 2011): S294—S296. http://dx.doi.org/10.1016/j.nima.2010.06.193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Sun, Wenjing, Zijian Zhou, Guillem Pratx, Xiaoyuan Chen, and Hongmin Chen. "Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications." Theranostics 10, no. 3 (2020): 1296–318. http://dx.doi.org/10.7150/thno.41578.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Leghighane, B., M. Taibeche, L. Guerbous, et al. "Photoluminescence Spectroscopy and First-Principle Calculation of Electronic Structure of Ce3+-Doped GdBO3 Inorganic Nanoscintillator Material." Russian Journal of Physical Chemistry A 98, no. 7 (2024): 1540–46. http://dx.doi.org/10.1134/s0036024424700559.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Sengar, Prakhar, G. A. Hirata, Mario H. Farias, and Felipe Castillón. "Morphological optimization and (3-aminopropyl) trimethoxy silane surface modification of Y3Al5O12:Pr nanoscintillator for biomedical applications." Materials Research Bulletin 77 (May 2016): 236–42. http://dx.doi.org/10.1016/j.materresbull.2016.01.045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Daouk, Joël, Batoul Dhaini, Jérôme Petit, Céline Frochot, Muriel Barberi-Heyob, and Hervé Schohn. "Can Cerenkov Light Really Induce an Effective Photodynamic Therapy?" Radiation 1, no. 1 (2020): 5–17. http://dx.doi.org/10.3390/radiation1010002.

Texte intégral
Résumé :
Photodynamic therapy (PDT) is a promising therapeutic strategy for cancers where surgery and radiotherapy cannot be effective. PDT relies on the photoactivation of photosensitizers, most of the time by lasers to produced reactive oxygen species and notably singlet oxygen. The major drawback of this strategy is the weak light penetration in the tissues. To overcome this issue, recent studies proposed to generate visible light in situ with radioactive isotopes emitting charged particles able to produce Cerenkov radiation. In vitro and preclinical results are appealing, but the existence of a tru
Styles APA, Harvard, Vancouver, ISO, etc.
47

Sengar, Prakhar, Karelid Garcia-Tapia, Kanchan Chauhan, et al. "Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy." Journal of Colloid and Interface Science 536 (February 2019): 586–97. http://dx.doi.org/10.1016/j.jcis.2018.10.090.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Bünzli, Jean-Claude Georges. "Lanthanide-doped nanoscintillators." Light: Science & Applications 11, no. 1 (2022). http://dx.doi.org/10.1038/s41377-022-00987-2.

Texte intégral
Résumé :
AbstractLanthanide-doped nanoscintillators are taking the lead in several important fields including radiation detection, biomedicine, both at the level of diagnosis and therapy, and information encoding.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Crapanzano, Roberta, Irene Villa, Silvia Mostoni, et al. "Photo- and Radio-luminescence of Porphyrin Functionalized ZnO/SiO2 Nanoparticles." Physical Chemistry Chemical Physics, 2022. http://dx.doi.org/10.1039/d2cp00884j.

Texte intégral
Résumé :
The development of hybrid nanoscintillators is hunted for the implementation of the modern detection technologies, like in high energy physics, homeland security, radioactive gas sensing, and medical imaging, as well...
Styles APA, Harvard, Vancouver, ISO, etc.
50

Villa, Irene, Roberta Crapanzano, Silvia Mostoni, et al. "The role of energy deposition on the luminescence sensitization in porphyrin functionalized SiO2/ZnO nanoparticles under X-rays excitation." Nanoscale Advances, 2025. https://doi.org/10.1039/d4na00640b.

Texte intégral
Résumé :
Hybrid nanoscintillators, featuring a heavy inorganic nanoparticle conjugated with an organic emitter, represent a chance of progress in diverse expertise fields, from high energy physics, homeland security, to biomedicine. Many...
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!