Articles de revues sur le sujet « Nanoscintillators »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 48 meilleurs articles de revues pour votre recherche sur le sujet « Nanoscintillators ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Jacobsohn, Luiz G., Kevin B. Sprinkle, Steven A. Roberts, et al. "Fluoride Nanoscintillators." Journal of Nanomaterials 2011 (2011): 1–6. http://dx.doi.org/10.1155/2011/523638.
Texte intégralProcházková, Lenka, Tomáš Gbur, Václav Čuba, Vítězslav Jarý, and Martin Nikl. "Fabrication of highly efficient ZnO nanoscintillators." Optical Materials 47 (September 2015): 67–71. http://dx.doi.org/10.1016/j.optmat.2015.07.001.
Texte intégralMeng, Zhu, Benoit Mahler, Julien Houel, et al. "Perspectives for CdSe/CdS spherical quantum wells as rapid-response nano-scintillators." Nanoscale 13, no. 46 (2021): 19578–86. http://dx.doi.org/10.1039/d1nr04781g.
Texte intégralBulin, Anne-Laure, Andrey Vasil'ev, Andrei Belsky, David Amans, Gilles Ledoux, and Christophe Dujardin. "Modelling energy deposition in nanoscintillators to predict the efficiency of the X-ray-induced photodynamic effect." Nanoscale 7, no. 13 (2015): 5744–51. http://dx.doi.org/10.1039/c4nr07444k.
Texte intégralSecchi, Valeria, Angelo Monguzzi, and Irene Villa. "Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy." International Journal of Molecular Sciences 23, no. 15 (2022): 8736. http://dx.doi.org/10.3390/ijms23158736.
Texte intégralJung, J. Y., G. A. Hirata, G. Gundiah, et al. "Identification and development of nanoscintillators for biotechnology applications." Journal of Luminescence 154 (October 2014): 569–77. http://dx.doi.org/10.1016/j.jlumin.2014.05.040.
Texte intégralGupta, Santosh K., and Yuanbing Mao. "Recent advances, challenges, and opportunities of inorganic nanoscintillators." Frontiers of Optoelectronics 13, no. 2 (2020): 156–87. http://dx.doi.org/10.1007/s12200-020-1003-5.
Texte intégralMekki, H., L. Guerbous, H. Bousbia-salah, A. Boukerika, and K. Lebbou. "Scintillation properties of (Lu1-x Y x )3Al5O12:Ce3+ nanoscintillator solid solution garnet materials." Journal of Instrumentation 18, no. 02 (2023): P02007. http://dx.doi.org/10.1088/1748-0221/18/02/p02007.
Texte intégralChen, Xiaofeng, Xiaokun Li, Xiaoling Chen, et al. "Flexible X-ray luminescence imaging enabled by cerium-sensitized nanoscintillators." Journal of Luminescence 242 (February 2022): 118589. http://dx.doi.org/10.1016/j.jlumin.2021.118589.
Texte intégralKlassen, N. V., V. V. Kedrov, Y. A. Ossipyan, et al. "Nanoscintillators for Microscopic Diagnostics of Biological and Medical Objects and Medical Therapy." IEEE Transactions on NanoBioscience 8, no. 1 (2009): 20–32. http://dx.doi.org/10.1109/tnb.2009.2016551.
Texte intégralScaffidi, Jonathan P., Molly K. Gregas, Benoit Lauly, Yan Zhang, and Tuan Vo-Dinh. "Activity of Psoralen-Functionalized Nanoscintillators against Cancer Cells upon X-ray Excitation." ACS Nano 5, no. 6 (2011): 4679–87. http://dx.doi.org/10.1021/nn200511m.
Texte intégralProcházková, Lenka, Václav Čuba, Alena Beitlerová, Vítězslav Jarý, Sergey Omelkov, and Martin Nikl. "Ultrafast Zn(Cd,Mg)O:Ga nanoscintillators with luminescence tunable by band gap modulation." Optics Express 26, no. 22 (2018): 29482. http://dx.doi.org/10.1364/oe.26.029482.
Texte intégralDinakaran, Deepak, Jayeeta Sengupta, Desmond Pink, et al. "PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy." Acta Biomaterialia 117 (November 2020): 335–48. http://dx.doi.org/10.1016/j.actbio.2020.09.029.
Texte intégralSahin, O., Y. Mackeyev, G. Vijay, et al. "X-Ray Triggered Nanoscintillators Photosensitize Pancreatic Cancer and Stimulate a Robust Systemic Immune Response." International Journal of Radiation Oncology*Biology*Physics 114, no. 3 (2022): e524. http://dx.doi.org/10.1016/j.ijrobp.2022.07.2118.
Texte intégralKlassen, N. V., V. N. Kurlov, S. N. Rossolenko, O. A. Krivko, A. D. Orlov, and S. Z. Shmurak. "Scintillation fibers and nanoscintillators for improving the spatial, spectrometric, and time resolution of radiation detectors." Bulletin of the Russian Academy of Sciences: Physics 73, no. 10 (2009): 1369–73. http://dx.doi.org/10.3103/s1062873809100141.
Texte intégralHong, Zhongzhu, Shuai He, Qinxia Wu, et al. "One-pot synthesis of lanthanide-activated NaBiF4 nanoscintillators for high-resolution X-ray luminescence imaging." Journal of Luminescence 254 (February 2023): 119492. http://dx.doi.org/10.1016/j.jlumin.2022.119492.
Texte intégralChuang, Yao-Chen, Chia-Hui Chu, Shih-Hsun Cheng, et al. "Annealing-modulated nanoscintillators for nonconventional X-ray activation of comprehensive photodynamic effects in deep cancer theranostics." Theranostics 10, no. 15 (2020): 6758–73. http://dx.doi.org/10.7150/thno.41752.
Texte intégralAlves, Luiz Anastacio, Leonardo Braga Ferreira, Paulo Furtado Pacheco, Edith Alejandra Carreño Mendivelso, Pedro Celso Nogueira Teixeira, and Robson Xavier Faria. "Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators." Oncotarget 9, no. 38 (2018): 25342–54. http://dx.doi.org/10.18632/oncotarget.25150.
Texte intégralAhmad, Farooq, Xiaoyan Wang, Zhao Jiang, et al. "Codoping Enhanced Radioluminescence of Nanoscintillators for X-ray-Activated Synergistic Cancer Therapy and Prognosis Using Metabolomics." ACS Nano 13, no. 9 (2019): 10419–33. http://dx.doi.org/10.1021/acsnano.9b04213.
Texte intégralYu, Xujiang, Xinyi Liu, Weijie Wu, et al. "CT/MRI-Guided Synergistic Radiotherapy and X-ray Inducible Photodynamic Therapy Using Tb-Doped Gd-W-Nanoscintillators." Angewandte Chemie 131, no. 7 (2019): 2039–44. http://dx.doi.org/10.1002/ange.201812272.
Texte intégralYu, Xujiang, Xinyi Liu, Weijie Wu, et al. "CT/MRI-Guided Synergistic Radiotherapy and X-ray Inducible Photodynamic Therapy Using Tb-Doped Gd-W-Nanoscintillators." Angewandte Chemie International Edition 58, no. 7 (2019): 2017–22. http://dx.doi.org/10.1002/anie.201812272.
Texte intégralBulin, Anne‐Laure, Mans Broekgaarden, Frédéric Chaput, et al. "Radiation Dose‐Enhancement Is a Potent Radiotherapeutic Effect of Rare‐Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma." Advanced Science 7, no. 20 (2020): 2001675. http://dx.doi.org/10.1002/advs.202001675.
Texte intégralKirakci, Kaplan, Pavel Kubát, Karla Fejfarová, Jiří Martinčík, Martin Nikl, and Kamil Lang. "X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators." Inorganic Chemistry 55, no. 2 (2015): 803–9. http://dx.doi.org/10.1021/acs.inorgchem.5b02282.
Texte intégralCooper, Daniel R., Konstantin Kudinov, Pooja Tyagi, Colin K. Hill, Stephen E. Bradforth, and Jay L. Nadeau. "Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules." Phys. Chem. Chem. Phys. 16, no. 24 (2014): 12441–53. http://dx.doi.org/10.1039/c4cp01044b.
Texte intégralDaouk, Joël, Mathilde Iltis, Batoul Dhaini, et al. "Terbium-Based AGuIX-Design Nanoparticle to Mediate X-ray-Induced Photodynamic Therapy." Pharmaceuticals 14, no. 5 (2021): 396. http://dx.doi.org/10.3390/ph14050396.
Texte intégralSchneller, Perrine, Charlotte Collet, Quentin Been, et al. "Added Value of Scintillating Element in Cerenkov-Induced Photodynamic Therapy." Pharmaceuticals 16, no. 2 (2023): 143. http://dx.doi.org/10.3390/ph16020143.
Texte intégralBulin, Anne-Laure, Charles Truillet, Rima Chouikrat, et al. "X-ray-Induced Singlet Oxygen Activation with Nanoscintillator-Coupled Porphyrins." Journal of Physical Chemistry C 117, no. 41 (2013): 21583–89. http://dx.doi.org/10.1021/jp4077189.
Texte intégralChen, Hongmin, Geoffrey D. Wang, Yen-Jun Chuang, et al. "Nanoscintillator-Mediated X-ray Inducible Photodynamic Therapy for In Vivo Cancer Treatment." Nano Letters 15, no. 4 (2015): 2249–56. http://dx.doi.org/10.1021/nl504044p.
Texte intégralMorgan, Nicole Y., Gabriela Kramer-Marek, Paul D. Smith, Kevin Camphausen, and Jacek Capala. "Nanoscintillator Conjugates as Photodynamic Therapy-Based Radiosensitizers: Calculation of Required Physical Parameters." Radiation Research 171, no. 2 (2009): 236–44. http://dx.doi.org/10.1667/rr1470.1.
Texte intégralLiu, Li Sha, Hao Hong Chen, Bi Qiu Liu, Bin Tang, Zhi Jia Sun та Jing Tai Zhao. "Microscintillator of Ce Doped β-NaLuF4 in Uniform Hexagonal Prism Morphology by a Facile Hydrothermal Method". Applied Mechanics and Materials 541-542 (березень 2014): 220–24. http://dx.doi.org/10.4028/www.scientific.net/amm.541-542.220.
Texte intégralRivera, J., J. Dooley, M. Belley, et al. "WE-AB-BRB-12: Nanoscintillator Fiber-Optic Detector System for Microbeam Radiation Therapy Dosimetry." Medical Physics 42, no. 6Part36 (2015): 3652. http://dx.doi.org/10.1118/1.4925853.
Texte intégralKyung Cha, Bo, Seung Jun Lee, P. Muralidharan, Jon Yul Kim, Do Kyung Kim, and Gyuseong Cho. "Characterization and imaging performance of nanoscintillator screen for high resolution X-ray imaging detectors." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 633 (May 2011): S294—S296. http://dx.doi.org/10.1016/j.nima.2010.06.193.
Texte intégralSun, Wenjing, Zijian Zhou, Guillem Pratx, Xiaoyuan Chen, and Hongmin Chen. "Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications." Theranostics 10, no. 3 (2020): 1296–318. http://dx.doi.org/10.7150/thno.41578.
Texte intégralSengar, Prakhar, G. A. Hirata, Mario H. Farias, and Felipe Castillón. "Morphological optimization and (3-aminopropyl) trimethoxy silane surface modification of Y3Al5O12:Pr nanoscintillator for biomedical applications." Materials Research Bulletin 77 (May 2016): 236–42. http://dx.doi.org/10.1016/j.materresbull.2016.01.045.
Texte intégralDaouk, Joël, Batoul Dhaini, Jérôme Petit, Céline Frochot, Muriel Barberi-Heyob, and Hervé Schohn. "Can Cerenkov Light Really Induce an Effective Photodynamic Therapy?" Radiation 1, no. 1 (2020): 5–17. http://dx.doi.org/10.3390/radiation1010002.
Texte intégralSengar, Prakhar, Karelid Garcia-Tapia, Kanchan Chauhan, et al. "Dual-photosensitizer coupled nanoscintillator capable of producing type I and type II ROS for next generation photodynamic therapy." Journal of Colloid and Interface Science 536 (February 2019): 586–97. http://dx.doi.org/10.1016/j.jcis.2018.10.090.
Texte intégralBünzli, Jean-Claude Georges. "Lanthanide-doped nanoscintillators." Light: Science & Applications 11, no. 1 (2022). http://dx.doi.org/10.1038/s41377-022-00987-2.
Texte intégralCrapanzano, Roberta, Irene Villa, Silvia Mostoni, et al. "Photo- and Radio-luminescence of Porphyrin Functionalized ZnO/SiO2 Nanoparticles." Physical Chemistry Chemical Physics, 2022. http://dx.doi.org/10.1039/d2cp00884j.
Texte intégralWang, Xiao, Wenjing Sun, Huifang Shi, et al. "Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-32054-0.
Texte intégralLei, Lei, Yubin Wang, Andrey Kuzmin, et al. "Next generation lanthanide doped nanoscintillators and photon converters." eLight 2, no. 1 (2022). http://dx.doi.org/10.1186/s43593-022-00024-0.
Texte intégralzhang, yue, Qun LI, Zekun JING, et al. "Luminescent Properties of Caf2: Eu2+ Nanoscintillators Synthesized Via Hydrothermal." SSRN Electronic Journal, 2023. http://dx.doi.org/10.2139/ssrn.4362585.
Texte intégralChen, Dongxun, Yanjie Liang, Shihai Miao, et al. "Self-surfactant room-temperature synthesis of morphology-controlled K0.3Bi0.7F2.4 nanoscintillators." Journal of Materials Chemistry C, 2022. http://dx.doi.org/10.1039/d2tc03079a.
Texte intégralDěcká, Kateřina, Fiammetta Pagano, Isabel Frank, et al. "Timing performance of lead halide perovskite nanoscintillators embedded in a polystyrene matrix." Journal of Materials Chemistry C, 2022. http://dx.doi.org/10.1039/d2tc02060b.
Texte intégralLiu, Shikai, Wenting Li, Yangyang Zhang, et al. "Tailoring Silica-Based Nanoscintillators for Peroxynitrite-Potentiated Nitrosative Stress in Postoperative Radiotherapy of Colon Cancer." Nano Letters, July 22, 2022. http://dx.doi.org/10.1021/acs.nanolett.2c02472.
Texte intégralCarulli, Francesco, Francesca Cova, Luca Gironi, Francesco Meinardi, Anna Vedda, and Sergio Brovelli. "Stokes Shift Engineered Mn:CdZnS/ZnS Nanocrystals as Reabsorption‐Free Nanoscintillators in High Loading Polymer Composites." Advanced Optical Materials, May 11, 2022, 2200419. http://dx.doi.org/10.1002/adom.202200419.
Texte intégralWang, Mingwei, Yangqi Meng, Yaqi Zhu, et al. "Afterglow-Suppressed Lu2O3:Eu3+ Nanoscintillators for High-Resolution and Dynamic Digital Radiographic Imaging." Inorganic Chemistry, July 12, 2022. http://dx.doi.org/10.1021/acs.inorgchem.2c01417.
Texte intégralMa, Jinjing, Wenjuan Zhu, Lei Lei, et al. "Highly Efficient NaGdF4:Ce/Tb Nanoscintillator with Reduced Afterglow and Light Scattering for High-Resolution X-ray Imaging." ACS Applied Materials & Interfaces, September 13, 2021. http://dx.doi.org/10.1021/acsami.1c14503.
Texte intégralCheng, Yi, Lei Lei, Wenjuan Zhu, Yubin Wang, Hai Guo, and Shiqing Xu. "Enhancing light yield of Tb3+-doped fluoride nanoscintillator with restricted positive hysteresis for low-dose high-resolution X-ray imaging." Nano Research, October 22, 2022. http://dx.doi.org/10.1007/s12274-022-4998-7.
Texte intégral