Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Nanoscale metal organic frameworks (nanoMOFs).

Articles de revues sur le sujet « Nanoscale metal organic frameworks (nanoMOFs) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Nanoscale metal organic frameworks (nanoMOFs) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Oggianu, Mariangela, Valentina Mameli, Noemi Monni, Suchithra Ashoka Sahadevan, Marco Sanna Angotzi, Carla Cannas et Maria Laura Mercuri. « Nanoscaled Metal-Organic Frameworks : Challenges Towards Biomedical Applications ». Journal of Nanoscience and Nanotechnology 21, no 5 (1 mai 2021) : 2922–29. http://dx.doi.org/10.1166/jnn.2021.19043.

Texte intégral
Résumé :
Achieving metal-organic frameworks (MOFs) in the form of nanoparticles (NanoMOFs) represents a recent challenge due to the possibility to combine the intrinsic porosity of these materials with the nanometric dimension, a fundamental requirement for strategic biomedical applications. In this outlook we envision the current/future opportunities of the NanoMOFs in the field of biomedicine, with particular emphasis on (i) biocompatible MOFs composition; (ii) MOFs miniaturization and (iii) nanoMOFs applications.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Li, Xue, Marianna Porcino, Jingwen Qiu, Doru Constantin, Charlotte Martineau-Corcos et Ruxandra Gref. « Doxorubicin-Loaded Metal-Organic Frameworks Nanoparticles with Engineered Cyclodextrin Coatings : Insights on Drug Location by Solid State NMR Spectroscopy ». Nanomaterials 11, no 4 (8 avril 2021) : 945. http://dx.doi.org/10.3390/nano11040945.

Texte intégral
Résumé :
Recently developed, nanoscale metal-organic frameworks (nanoMOFs) functionalized with versatile coatings are drawing special attention in the nanomedicine field. Here we show the preparation of core–shell MIL-100(Al) nanoMOFs for the delivery of the anticancer drug doxorubicin (DOX). DOX was efficiently incorporated in the MOFs and was released in a progressive manner, depending on the initial loading. Besides, the coatings were made of biodegradable γ-cyclodextrin-citrate oligomers (CD-CO) with affinity for both DOX and the MOF cores. DOX was incorporated and released faster due to its affinity for the coating material. A set of complementary solid state nuclear magnetic resonance (ssNMR) experiments including 1H-1H and 13C-27Al two-dimensional NMR, was used to gain a deep understanding on the multiple interactions involved in the MIL-100(Al) core–shell system. To do so, 13C-labelled shells were synthesized. This study paves the way towards a methodology to assess the nanoMOF component localization at a molecular scale and to investigate the nanoMOF physicochemical properties, which play a main role on their biological applications.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Christodoulou, Ioanna, Pengbo Lyu, Carla Vieira Soares, Gilles Patriarche, Christian Serre, Guillaume Maurin et Ruxandra Gref. « Nanoscale Iron-Based Metal–Organic Frameworks : Incorporation of Functionalized Drugs and Degradation in Biological Media ». International Journal of Molecular Sciences 24, no 4 (8 février 2023) : 3362. http://dx.doi.org/10.3390/ijms24043362.

Texte intégral
Résumé :
Metal–organic frameworks (MOFs) attract growing interest in biomedical applications. Among thousands of MOF structures, the mesoporous iron(III) carboxylate MIL-100(Fe) (MIL stands for the Materials of Lavoisier Institute) is among the most studied MOF nanocarrier, owing to its high porosity, biodegradability, and lack of toxicity. Nanosized MIL-100(Fe) particles (nanoMOFs) readily coordinate with drugs leading to unprecedented payloads and controlled release. Here, we show how the functional groups of the challenging anticancer drug prednisolone influence their interactions with the nanoMOFs and their release in various media. Molecular modeling enabled predicting the strength of interactions between prednisolone-bearing or not phosphate or sulfate moieties (PP and PS, respectively) and the oxo-trimer of MIL-100(Fe) as well as understanding the pore filling of MIL-100(Fe). Noticeably, PP showed the strongest interactions (drug loading up to 30 wt %, encapsulation efficiency > 98%) and slowed down the nanoMOFs’ degradation in simulated body fluid. This drug was shown to bind to the iron Lewis acid sites and was not displaced by other ions in the suspension media. On the contrary, PS was entrapped with lower efficiencies and was easily displaced by phosphates in the release media. Noticeably, the nanoMOFs maintained their size and faceted structures after drug loading and even after degradation in blood or serum after losing almost the totality of the constitutive trimesate ligands. Scanning electron microscopy with high annular dark field (STEM-HAADF) in conjunction with X-Ray energy-dispersive spectrometry (XEDS) was a powerful tool enabling the unraveling of the main elements to gain insights on the MOF structural evolution after drug loading and/or upon degradation.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Oggianu, Mariangela, Noemi Monni, Valentina Mameli, Carla Cannas, Suchithra Ashoka Sahadevan et Maria Laura Mercuri. « Designing Magnetic NanoMOFs for Biomedicine : Current Trends and Applications ». Magnetochemistry 6, no 3 (1 septembre 2020) : 39. http://dx.doi.org/10.3390/magnetochemistry6030039.

Texte intégral
Résumé :
Metal–organic frameworks (MOFs) have shown a great potential in biomedicine due to their promising applications in different fields, including drug delivery, thermometry, theranostics etc. In this context, the development of magnetic sub-micrometric or nanometric MOFs through miniaturization approaches of magnetic MOFs up to the nanoscale still represents a crucial step to fabricate biomedical probes, especially in the field of theranostic nanomedicine. Miniaturization processes have to be properly designed to tailor the size and shape of particles and to retain magnetic properties and high porosity in the same material, fundamental prerequisites to develop smart nanocarriers integrating simultaneously therapeutic and contrast agents for targeted chemotherapy or other specific clinical use. An overview of current trends on the design of magnetic nanoMOFs in the field of biomedicine, with particular emphasis on theranostics and bioimaging, is herein envisioned.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Luo, Jia, Michael Florian Peter Wagner, Nils Ulrich, Peter Kopold, Christina Trautmann et Maria Eugenia Toimil Molares. « (Digital Presentation) Electrochemical Conversion of Cu Nanowires Synthesized By Electrodeposition in Track-Etched Templates to HKUST-1 ». ECS Meeting Abstracts MA2022-02, no 23 (9 octobre 2022) : 977. http://dx.doi.org/10.1149/ma2022-0223977mtgabs.

Texte intégral
Résumé :
Metal-organic frameworks (MOFs) are a novel type of nanoporous materials that have attracted widespread attention over the past two decades [1]. Cu-based metal-organic frameworks such as Cu3(BTC)2 (also known as HKUST-1) are one of the most famous MOF representatives, which exhibit a huge open porosity and thus a remarkably capacity to store and uptake different gases [2, 3]. Recently, increasing efforts are devoted toward finding synthetic routes that enable downsizing MOF crystals to the nanoscale. Achieving control over the size and shape of nanoMOFs and finding ways to assemble them is essential for their exploitation in integrated devices such as sensors, gas separation membranes or photoelectrodes. In this study we explore the conversion of free-standing arrays Cu nanowires with controlled diameter and length synthesized by electrodeposition in etched ion-track membranes into HKUST-1. In a first process step, free-standing Cu wires are produced by dissolving the ion-track polymer template. In a second step, the wires are converted into HKUST-1 structures by electrochemical oxidation. Applying 2.5 V versus a Cu counter electrode, the Cu nanowires are oxidatively dissolved and the MOF is built up as the as-formed Cu2+ ions bind to the BTC3− ligands in the electrolyte solution. The morphology and crystallinity of the samples at different transformation stages is investigated by scanning electron microscopy (Fig. 1) and transmission electron microscopy, respectively. X-ray diffraction spectra measured at different conversion times reveal the appearance of the characteristic reflections of HKUST-1. These results will be compared with previous studies of the transformation of Cu nanowires to HKUST-1 nanowires inside the polymer membrane [4]. Figure 1: SEM images of cylindrical Cu nanowires (a) before and (b) during the electrochemical conversion process, and (c) of a representative octahedral particle after complete conversion to HKUST-1. References [1] Freund R, Canossa S, Cohen SM, Yan W, Deng et al. Angewandte Chemie International Edition. (2021) 2: 23946-23974 [2] Chui SS-Y, Lo SM-F, Charmant JP, Orpen AG, Williams ID. Science. (1999) 283:1148-50. [3] Li H, Li L, Lin R-B, Zhou W, Zhang Z, Xiang S, et al. EnergyChem. (2019) 1:100006. [4] Caddeo F, Vogt R, Weil D, Sigle W, Toimil-Molares ME, Maijenburg AW. ACS applied materials & interfaces . (2019)11:25378-87. Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hidalgo, T., M. Alonso-Nocelo, B. L. Bouzo, S. Reimondez-Troitiño, C. Abuin-Redondo, M. de la Fuente et P. Horcajada. « Biocompatible iron(iii) carboxylate metal–organic frameworks as promising RNA nanocarriers ». Nanoscale 12, no 8 (2020) : 4839–45. http://dx.doi.org/10.1039/c9nr08127e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Porcino, Marianna, Ioanna Christodoulou, Mai Dang Le Vuong, Ruxandra Gref et Charlotte Martineau-Corcos. « New insights on the supramolecular structure of highly porous core–shell drug nanocarriers using solid-state NMR spectroscopy ». RSC Advances 9, no 56 (2019) : 32472–75. http://dx.doi.org/10.1039/c9ra07383c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cutrone, Li, Casas-Solvas, Menendez-Miranda, Qiu, Benkovics, Constantin et al. « Design of Engineered Cyclodextrin Derivatives for Spontaneous Coating of Highly Porous Metal-Organic Framework Nanoparticles in Aqueous Media ». Nanomaterials 9, no 8 (1 août 2019) : 1103. http://dx.doi.org/10.3390/nano9081103.

Texte intégral
Résumé :
Nanosized metal-organic frameworks (nanoMOFs) MIL-100(Fe) are highly porous and biodegradable materials that have emerged as promising drug nanocarriers. A challenging issue concerns their surface functionalization in order to evade the immune system and to provide molecular recognition ability, so that they can be used for specific targeting. A convenient method for their coating with tetraethylene glycol, polyethylene glycol, and mannose residues is reported herein. The method consists of the organic solvent-free self-assembly on the nanoMOFs of building blocks based on β-cyclodextrin facially derivatized with the referred functional moieties, and multiple phosphate groups to anchor to the nanoparticles’ surface. The coating of nanoMOFs with cyclodextrin phosphate without further functional groups led to a significant decrease of macrophage uptake, slightly improved by polyethylene glycol or mannose-containing cyclodextrin phosphate coating. More notably, nanoMOFs modified with tetraethylene glycol-containing cyclodextrin phosphate displayed the most efficient “stealth” effect. Mannose-coated nanoMOFs displayed a remarkably enhanced binding affinity towards a specific mannose receptor, such as Concanavalin A, due to the multivalent display of the monosaccharide, as well as reduced macrophage internalization. Coating with tetraethylente glycol of nanoMOFs after loading with doxorubicin is also described. Therefore, phosphorylated cyclodextrins offer a versatile platform to coat nanoMOFs in an organic solvent-free, one step manner, providing them with new biorecognition and/or “stealth” properties.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Marshall, Checkers R., Emma E. Timmel, Sara A. Staudhammer et Carl K. Brozek. « Experimental evidence for a general model of modulated MOF nanoparticle growth ». Chemical Science 11, no 42 (2020) : 11539–47. http://dx.doi.org/10.1039/d0sc04845c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhang, Xuanjun, Mohamed Ali Ballem, Zhang-Jun Hu, Peder Bergman et Kajsa Uvdal. « Nanoscale Light-Harvesting Metal-Organic Frameworks ». Angewandte Chemie International Edition 50, no 25 (9 mai 2011) : 5729–33. http://dx.doi.org/10.1002/anie.201007277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zhang, Xuanjun, Mohamed Ali Ballem, Zhang-Jun Hu, Peder Bergman et Kajsa Uvdal. « Nanoscale Light-Harvesting Metal-Organic Frameworks ». Angewandte Chemie 123, no 25 (9 mai 2011) : 5847–51. http://dx.doi.org/10.1002/ange.201007277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Huang, Xuan, Xu Sun, Weili Wang, Qing Shen, Qian Shen, Xuna Tang et Jinjun Shao. « Nanoscale metal–organic frameworks for tumor phototherapy ». Journal of Materials Chemistry B 9, no 18 (2021) : 3756–77. http://dx.doi.org/10.1039/d1tb00349f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ni, Kaiyuan, Taokun Luo, Geoffrey T. Nash et Wenbin Lin. « Nanoscale Metal–Organic Frameworks for Cancer Immunotherapy ». Accounts of Chemical Research 53, no 9 (18 août 2020) : 1739–48. http://dx.doi.org/10.1021/acs.accounts.0c00313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zhang, Xiaofei, Jianyu Han, Jun Guo et Zhiyong Tang. « Engineering Nanoscale Metal‐Organic Frameworks for Heterogeneous Catalysis ». Small Structures 2, no 6 (17 mars 2021) : 2000141. http://dx.doi.org/10.1002/sstr.202000141.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Afreen, Sadia, Zhimei He, Yan Xiao et Jun-Jie Zhu. « Nanoscale metal–organic frameworks in detecting cancer biomarkers ». Journal of Materials Chemistry B 8, no 7 (2020) : 1338–49. http://dx.doi.org/10.1039/c9tb02579k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Lan, Guangxu, Kaiyuan Ni et Wenbin Lin. « Nanoscale metal–organic frameworks for phototherapy of cancer ». Coordination Chemistry Reviews 379 (janvier 2019) : 65–81. http://dx.doi.org/10.1016/j.ccr.2017.09.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Bhakta, Raghunandan K., Julie L. Herberg, Benjamin Jacobs, Aaron Highley, Richard Behrens, Nathan W. Ockwig, Jeffery A. Greathouse et Mark D. Allendorf. « Metal−Organic Frameworks As Templates for Nanoscale NaAlH4 ». Journal of the American Chemical Society 131, no 37 (23 septembre 2009) : 13198–99. http://dx.doi.org/10.1021/ja904431x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Sajid, Muhammad. « Toxicity of nanoscale metal organic frameworks : a perspective ». Environmental Science and Pollution Research 23, no 15 (14 juin 2016) : 14805–7. http://dx.doi.org/10.1007/s11356-016-7053-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ren, Xiao-Yan, et Le-Hui Lu. « Luminescent nanoscale metal–organic frameworks for chemical sensing ». Chinese Chemical Letters 26, no 12 (décembre 2015) : 1439–45. http://dx.doi.org/10.1016/j.cclet.2015.10.014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Wang, Shunzhi, William Morris, Yangyang Liu, C. Michael McGuirk, Yu Zhou, Joseph T. Hupp, Omar K. Farha et Chad A. Mirkin. « Surface-Specific Functionalization of Nanoscale Metal-Organic Frameworks ». Angewandte Chemie International Edition 54, no 49 (23 octobre 2015) : 14738–42. http://dx.doi.org/10.1002/anie.201506888.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Wang, Shunzhi, William Morris, Yangyang Liu, C. Michael McGuirk, Yu Zhou, Joseph T. Hupp, Omar K. Farha et Chad A. Mirkin. « Surface-Specific Functionalization of Nanoscale Metal-Organic Frameworks ». Angewandte Chemie 127, no 49 (23 octobre 2015) : 14951–55. http://dx.doi.org/10.1002/ange.201506888.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Mao, Jianming, Ziwan Xu et Wenbin Lin. « Nanoscale metal–organic frameworks for photodynamic therapy and radiotherapy ». Current Opinion in Chemical Engineering 38 (décembre 2022) : 100871. http://dx.doi.org/10.1016/j.coche.2022.100871.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Wang, Weiqi, Lei Wang, Zhensheng Li et Zhigang Xie. « BODIPY-containing nanoscale metal–organic frameworks for photodynamic therapy ». Chemical Communications 52, no 31 (2016) : 5402–5. http://dx.doi.org/10.1039/c6cc01048b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Gong, Teng, Yanli Li, Bin Lv, Han Wang, Yanyan Liu, Wei Yang, Yelin Wu et al. « Full-Process Radiosensitization Based on Nanoscale Metal–Organic Frameworks ». ACS Nano 14, no 3 (9 mars 2020) : 3032–40. http://dx.doi.org/10.1021/acsnano.9b07898.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Otsubo, Kazuya, Tomoyuki Haraguchi et Hiroshi Kitagawa. « Nanoscale crystalline architectures of Hofmann-type metal–organic frameworks ». Coordination Chemistry Reviews 346 (septembre 2017) : 123–38. http://dx.doi.org/10.1016/j.ccr.2017.03.022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Yan, Peijuan, Jinjie Fan, Yalan Ji, Ruikang Zhang, Yuze Dong et Yingnan Zhu. « Photodynamic therapy strategy based on nanoscale metal-organic frameworks ». Next Materials 2 (janvier 2024) : 100111. http://dx.doi.org/10.1016/j.nxmate.2024.100111.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Hu, Xuefu, Zhiye Wang, Yuming Su, Peican Chen, Jiawei Chen, Cankun Zhang et Cheng Wang. « Nanoscale Metal–Organic Frameworks and Metal–Organic Layers with Two-Photon-Excited Fluorescence ». Inorganic Chemistry 59, no 7 (13 mars 2020) : 4181–85. http://dx.doi.org/10.1021/acs.inorgchem.0c00373.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Xiao, Heting, Hebin Jiang, Haixia Yin et Yueting Sun. « Nanofluidic Attenuation of Metal-Organic Frameworks ». INTER-NOISE and NOISE-CON Congress and Conference Proceedings 265, no 1 (1 février 2023) : 6314–21. http://dx.doi.org/10.3397/in_2022_0938.

Texte intégral
Résumé :
Porous materials with energy absorption characteristics have been used for attenuation against hazardous vibrations and noises. The intrusion of liquid water and aqueous solutions into hydrophobic nanoporous materials such as metal-organic frameworks (MOFs) present an attractive pathway to engineering new attenuation technologies. In this process, hydrostatic pressure forces water to intrude hydrophobic nanopores, thereby converting mechanical work into interfacial energy through nanoscale interfacial interactions. Once the external pressure is removed, water molecules can flow out of the nanopores spontaneously, making the system reversible. We envision that this mechanism has the potential of innovating attenuation technologies, so in this work we provided a preliminary study in this direction. We investigated a material system consisting of water and a commonly used MOF, zeolitic imidazolate framework-8 (ZIF-8), and demonstrated its reversibility and stability under cyclic pressurization, considered its performance at various peak pressures and frequencies, its tunability in terms of intrusion pressure, and its potential in hydrogel forms. These features are important for potential attenuation technologies based on this novel mechanism.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Kuyuldar, Seher, Douglas T. Genna et Clemens Burda. « On the potential for nanoscale metal–organic frameworks for energy applications ». Journal of Materials Chemistry A 7, no 38 (2019) : 21545–76. http://dx.doi.org/10.1039/c9ta09896h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Dou, Xilin, Kai Sun, Haobin Chen, Yifei Jiang, Li Wu, Jun Mei, Zhaoyang Ding et Jing Xie. « Nanoscale Metal-Organic Frameworks as Fluorescence Sensors for Food Safety ». Antibiotics 10, no 4 (28 mars 2021) : 358. http://dx.doi.org/10.3390/antibiotics10040358.

Texte intégral
Résumé :
Food safety has attracted attention worldwide, and how to detect various kinds of hazardous substances in an efficient way has always been a focus. Metal-Organic Frameworks (MOFs) are a class of hybrid porous materials formed by organic ligand and metal ions. Nanoscale MOFs (NMOFs) exhibit great potential in serving as fluorescence sensors for food safety due to their superior properties including high accuracy, great stability, fast response, etc. In this review, we focus on the recent development of NMOFs sensing for food safety. Several typical methods of NMOFs synthesis are presented. NMOFs-based fluorescence sensors for contaminants and adulterants, such as antibiotics, food additives, ions and mycotoxin etc. are summarized, and the sensing mechanisms are also presented. We explore these challenges in detail and provide suggestions about how they may be surmounted. This review could help the exploration of NMOFs sensors in food related work.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Li, Qing, Ying Liu, Yanru Zhang et Wei Jiang. « Immunogenicity-boosted cancer immunotherapy based on nanoscale metal-organic frameworks ». Journal of Controlled Release 347 (juillet 2022) : 183–98. http://dx.doi.org/10.1016/j.jconrel.2022.05.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Meng, Hong-Min, Xiao-Xiao Hu, Ge-Zhi Kong, Chan Yang, Ting Fu, Zhao-Hui Li et Xiao-Bing Zhang. « Aptamer-functionalized nanoscale metal-organic frameworks for targeted photodynamic therapy ». Theranostics 8, no 16 (2018) : 4332–44. http://dx.doi.org/10.7150/thno.26768.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Rieter, William J., Kathryn M. L. Taylor, Hongyu An, Weili Lin et Wenbin Lin. « Nanoscale Metal−Organic Frameworks as Potential Multimodal Contrast Enhancing Agents ». Journal of the American Chemical Society 128, no 28 (juillet 2006) : 9024–25. http://dx.doi.org/10.1021/ja0627444.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Taylor, Kathryn M. L., William J. Rieter et Wenbin Lin. « Manganese-Based Nanoscale Metal−Organic Frameworks for Magnetic Resonance Imaging ». Journal of the American Chemical Society 130, no 44 (5 novembre 2008) : 14358–59. http://dx.doi.org/10.1021/ja803777x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Della Rocca, Joseph, Demin Liu et Wenbin Lin. « Nanoscale Metal–Organic Frameworks for Biomedical Imaging and Drug Delivery ». Accounts of Chemical Research 44, no 10 (18 octobre 2011) : 957–68. http://dx.doi.org/10.1021/ar200028a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chen, Peican, Zeyu Tang, Zhongming Zeng, Xuefu Hu, Liangping Xiao, Yi Liu, Xudong Qian et al. « Machine-Learning-Guided Morphology Engineering of Nanoscale Metal-Organic Frameworks ». Matter 2, no 6 (juin 2020) : 1651–66. http://dx.doi.org/10.1016/j.matt.2020.04.021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Liu, Ming, Lei Wang, Xiaohua Zheng, Shi Liu et Zhigang Xie. « Hypoxia-Triggered Nanoscale Metal–Organic Frameworks for Enhanced Anticancer Activity ». ACS Applied Materials & ; Interfaces 10, no 29 (29 juin 2018) : 24638–47. http://dx.doi.org/10.1021/acsami.8b07570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Zhong, Xiao-fang, et Xun Sun. « Nanomedicines based on nanoscale metal-organic frameworks for cancer immunotherapy ». Acta Pharmacologica Sinica 41, no 7 (30 avril 2020) : 928–35. http://dx.doi.org/10.1038/s41401-020-0414-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Li, Fei-Long, Qi Shao, Xiaoqing Huang et Jian-Ping Lang. « Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis ». Angewandte Chemie 130, no 7 (13 décembre 2017) : 1906–10. http://dx.doi.org/10.1002/ange.201711376.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ren, Xiao-Yan, et Le-Hui Lu. « ChemInform Abstract : Luminescent Nanoscale Metal-Organic Frameworks for Chemical Sensing ». ChemInform 47, no 7 (janvier 2016) : no. http://dx.doi.org/10.1002/chin.201607277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Lu, Kuangda, Theint Aung, Nining Guo, Ralph Weichselbaum et Wenbin Lin. « Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications ». Advanced Materials 30, no 37 (4 juillet 2018) : 1707634. http://dx.doi.org/10.1002/adma.201707634.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Li, Fei-Long, Qi Shao, Xiaoqing Huang et Jian-Ping Lang. « Nanoscale Trimetallic Metal-Organic Frameworks Enable Efficient Oxygen Evolution Electrocatalysis ». Angewandte Chemie International Edition 57, no 7 (13 décembre 2017) : 1888–92. http://dx.doi.org/10.1002/anie.201711376.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Wang, Lei, Min Zheng et Zhigang Xie. « Nanoscale metal–organic frameworks for drug delivery : a conventional platform with new promise ». Journal of Materials Chemistry B 6, no 5 (2018) : 707–17. http://dx.doi.org/10.1039/c7tb02970e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Sharma, Shalini, Komal Sethi et Indrajit Roy. « Magnetic nanoscale metal–organic frameworks for magnetically aided drug delivery and photodynamic therapy ». New Journal of Chemistry 41, no 20 (2017) : 11860–66. http://dx.doi.org/10.1039/c7nj02032e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Xu, Longhua, Guozhen Fang, Jifeng Liu, Mingfei Pan, Ranran Wang et Shuo Wang. « One-pot synthesis of nanoscale carbon dots-embedded metal–organic frameworks at room temperature for enhanced chemical sensing ». Journal of Materials Chemistry A 4, no 41 (2016) : 15880–87. http://dx.doi.org/10.1039/c6ta06403e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Wu, Jieyun, Wanying Zhang, Ying Wang, Binghui Li, Ting Hao, Youbin Zheng, Lianzhong Jiang, Kaixin Chen et Kin Seng Chiang. « Nanoscale light–matter interactions in metal–organic frameworks cladding optical fibers ». Nanoscale 12, no 18 (2020) : 9991–10000. http://dx.doi.org/10.1039/c9nr09061d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Lu, Ye, et Bing Yan. « Luminescent lanthanide barcodes based on postsynthetic modified nanoscale metal–organic frameworks ». J. Mater. Chem. C 2, no 35 (2014) : 7411–16. http://dx.doi.org/10.1039/c4tc01077a.

Texte intégral
Résumé :
A new method for producing luminescent barcodes based on nanoscale MOFs (MOF-253) and postsynthetic method (PSM) is reported. The synthesized barcoded material is successfully applied in marking a functional ionic liquid and preparing a luminescent thin film.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Sethi, Komal, Shalini Sharma et Indrajit Roy. « Nanoscale iron carboxylate metal organic frameworks as drug carriers for magnetically aided intracellular delivery ». RSC Advances 6, no 80 (2016) : 76861–66. http://dx.doi.org/10.1039/c6ra18480d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zhang, Yang. « Advanced metal-organic frameworks materials for drug delivery ». Applied and Computational Engineering 7, no 1 (21 juillet 2023) : 412–18. http://dx.doi.org/10.54254/2755-2721/7/20230389.

Texte intégral
Résumé :
Metal-organic frameworks (MOFs) are porous crystalline polymers composed of coordination reactions between organic ligands and metal ions. They have high loading capacity, high specific surface area, high flexibility and a variety of different material preparation options. In different fields, MOFs also play different roles. It has been employed as a promising material for efficient drug delivery systems due to its unique characteristic and structures. This paper discusses the application of nanoscale MOFs (NMOFs) in the field of drug delivery and introduces its advantages and disadvantages compared with traditional DDSs materials, as well as different methods used as carriers for different therapeutic gases (CO, NO, O2), thereby achieve targeted delivery of drugs. The different biological toxicity, structural stability, morphology under physiological conditions, and control of pore channels caused by different metal linkers and organic ligands are studied and analyzed, which provides the future development of new drug-carrying systems and MOFs in other drug fields. Insights and guidance.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Gu, Yuling. « The Properties, Synthesis, and Medical Applications of Nanoscale Metal Organic Frameworks ». Journal of Physics : Conference Series 1948, no 1 (1 juin 2021) : 012175. http://dx.doi.org/10.1088/1742-6596/1948/1/012175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie