Littérature scientifique sur le sujet « Nanoscale metal organic frameworks (nanoMOFs) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nanoscale metal organic frameworks (nanoMOFs) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Nanoscale metal organic frameworks (nanoMOFs)"
Oggianu, Mariangela, Valentina Mameli, Noemi Monni, Suchithra Ashoka Sahadevan, Marco Sanna Angotzi, Carla Cannas et Maria Laura Mercuri. « Nanoscaled Metal-Organic Frameworks : Challenges Towards Biomedical Applications ». Journal of Nanoscience and Nanotechnology 21, no 5 (1 mai 2021) : 2922–29. http://dx.doi.org/10.1166/jnn.2021.19043.
Texte intégralLi, Xue, Marianna Porcino, Jingwen Qiu, Doru Constantin, Charlotte Martineau-Corcos et Ruxandra Gref. « Doxorubicin-Loaded Metal-Organic Frameworks Nanoparticles with Engineered Cyclodextrin Coatings : Insights on Drug Location by Solid State NMR Spectroscopy ». Nanomaterials 11, no 4 (8 avril 2021) : 945. http://dx.doi.org/10.3390/nano11040945.
Texte intégralChristodoulou, Ioanna, Pengbo Lyu, Carla Vieira Soares, Gilles Patriarche, Christian Serre, Guillaume Maurin et Ruxandra Gref. « Nanoscale Iron-Based Metal–Organic Frameworks : Incorporation of Functionalized Drugs and Degradation in Biological Media ». International Journal of Molecular Sciences 24, no 4 (8 février 2023) : 3362. http://dx.doi.org/10.3390/ijms24043362.
Texte intégralOggianu, Mariangela, Noemi Monni, Valentina Mameli, Carla Cannas, Suchithra Ashoka Sahadevan et Maria Laura Mercuri. « Designing Magnetic NanoMOFs for Biomedicine : Current Trends and Applications ». Magnetochemistry 6, no 3 (1 septembre 2020) : 39. http://dx.doi.org/10.3390/magnetochemistry6030039.
Texte intégralLuo, Jia, Michael Florian Peter Wagner, Nils Ulrich, Peter Kopold, Christina Trautmann et Maria Eugenia Toimil Molares. « (Digital Presentation) Electrochemical Conversion of Cu Nanowires Synthesized By Electrodeposition in Track-Etched Templates to HKUST-1 ». ECS Meeting Abstracts MA2022-02, no 23 (9 octobre 2022) : 977. http://dx.doi.org/10.1149/ma2022-0223977mtgabs.
Texte intégralHidalgo, T., M. Alonso-Nocelo, B. L. Bouzo, S. Reimondez-Troitiño, C. Abuin-Redondo, M. de la Fuente et P. Horcajada. « Biocompatible iron(iii) carboxylate metal–organic frameworks as promising RNA nanocarriers ». Nanoscale 12, no 8 (2020) : 4839–45. http://dx.doi.org/10.1039/c9nr08127e.
Texte intégralPorcino, Marianna, Ioanna Christodoulou, Mai Dang Le Vuong, Ruxandra Gref et Charlotte Martineau-Corcos. « New insights on the supramolecular structure of highly porous core–shell drug nanocarriers using solid-state NMR spectroscopy ». RSC Advances 9, no 56 (2019) : 32472–75. http://dx.doi.org/10.1039/c9ra07383c.
Texte intégralCutrone, Li, Casas-Solvas, Menendez-Miranda, Qiu, Benkovics, Constantin et al. « Design of Engineered Cyclodextrin Derivatives for Spontaneous Coating of Highly Porous Metal-Organic Framework Nanoparticles in Aqueous Media ». Nanomaterials 9, no 8 (1 août 2019) : 1103. http://dx.doi.org/10.3390/nano9081103.
Texte intégralMarshall, Checkers R., Emma E. Timmel, Sara A. Staudhammer et Carl K. Brozek. « Experimental evidence for a general model of modulated MOF nanoparticle growth ». Chemical Science 11, no 42 (2020) : 11539–47. http://dx.doi.org/10.1039/d0sc04845c.
Texte intégralZhang, Xuanjun, Mohamed Ali Ballem, Zhang-Jun Hu, Peder Bergman et Kajsa Uvdal. « Nanoscale Light-Harvesting Metal-Organic Frameworks ». Angewandte Chemie International Edition 50, no 25 (9 mai 2011) : 5729–33. http://dx.doi.org/10.1002/anie.201007277.
Texte intégralThèses sur le sujet "Nanoscale metal organic frameworks (nanoMOFs)"
Ding, Mengli. « Synthesis and drug delivery applications of iron(III) trimesate nanoMOFs ». Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF095.
Texte intégralNanoscale metal-organic frameworks (nanoMOFs) have shown significant promise as drug delivery systems (DDS) due to their advantageous properties, including tunable compositions, uniform porosity, large surface areas, biocompatibility, and degradability. Among these, MIL-100(Fe) (MIL stands for Materials of the Lavoisier Institute) nanoMOFs, constructed from trimesate organic linkers and iron trimers, have been extensively studied. We reviewed here in detail their well-documented in vivo toxicity and biocompatibility data, making them highly attractive candidates for drug delivery applications. We highlighted several challenges which remain in the biomedical application and large-scale production of MIL-100(Fe) nanoMOFs. First, improving the storage stability of MIL-100(Fe) is essential for further use. Additionally, the synthesis methods for MIL-100(Fe) nanoMOFs need optimization to meet the demands of green (organic solvent free) large-scale production. To address these issues, we propose the surface modification of MIL-100(Fe) nanoMOFs with biocompatible copolymers or oligomers to enhance their stability and biocompatibility. Furthermore, we have investigated novel synthesis strategies for MIL-100(Fe) nanoMOFs to enable simple, green, environmentally friendly, and low-energy production. We designed and synthesized a family of comb-like copolymers, comprising grafted: i) “x” (0-6) alendronate (Ale) anchoring units; ii) “y” (up to 45) poly(ethylene glycol) (PEG) side chains with molecular weight of zK (z=0.5, 2, 5), and iii) fluorescent Alexa Fluor (F) moieties. The resulting FAlexPEGzKy copolymers spontaneoulsy adsorbed onto the nanoMOF's surface in aqueous media, reaching ~100% efficiency. We highlighted the cooperative effects of each component of the FAlexPEGzKy copolymers in the association process. The coating occurred in the top layers without affecting the nanoMOF's crystallinity. The composition of the FAlexPEGzKy copolymers was optimized to ensure a good stability in biological media, despite the non covalent nature of the coating. In addition, the copolymer-coated MIL-100(Fe) nanoMOFs not only exhibited excellent storage stability but also demonstrated a “stealth effect” in macrophage J774 cells, as shown by confocal studies and iron quantification in the cells. In these studies, MIL-100(Fe) nanoMOFs were prepared by a conventional microwave hydrothermal procedure at high temperature (130 °C). To optimize the process, we investigated the possibilities to obtain MIL-100(Fe) nanoMOFs at room temperature. We used modulators in an attempt to control the size of the nanoMOFs. By varying the molar ratio (R) of acetic acid (modulator) to trimesic acid (organic linker), we obtained MIL-100(Fe) nanoMOFs with hydrodynamic diameters ranging from 40 to 200 nm. However, the resulting MIL-100(Fe) nanoMOFs needed also to be coated to avoid their aggregation. The coatings based on crosslinked cyclodextrins did not compromise the drug-loading capacity of the nanoMOFs. In a nutshell, this work presents novel strategies to construct nanoMOFs in a lego-type manner, using materials prepared mostly using “green” chemistry
Taylor, Kathryn Michelle Louise Lin Wenbin. « Development of nanoscale metal-organic frameworks and hybrid silica nanoparticles for biomedical applications ». Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2009. http://dc.lib.unc.edu/u?/etd,2291.
Texte intégralTitle from electronic title page (viewed Jun. 26, 2009). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." Discipline: Chemistry; Department/School: Chemistry.
Carné, Sánchez Arnau. « A new synthetic method for nanoscale metal-organic frameworks and their application as contrast agents for magnetic resonance imaging ». Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/283409.
Texte intégralThe present Thesis has been dedicated to the synthesis of nanoscale Metal-Organic Frameworks (NMOFs) and the study of their potential application as Contrast Agents (CAs). Accordingly, two main lines of work can be distinguished through the lecture of this Thesis: i) the development of a novel synthetic methodology to synthesise NMOFs; and ii) the synthesis of new NMOFs that meet the specific requirements for their use as CAs. In the first Chapter, we review the evolution of the field of MOFs, from their antecedents that made their discovery possible to their current applications and prospects. We pay special attention to the current methodologies to synthesise MOFs at the nanoscale, and the advent of new applications resulting from their small size. Chapter 3 describes the validation of the Spray-Drying (SD) technique as a new methodology to synthesise NMOFs and their related hollow superstructures. The impact of the main experimental parameters on the synthesis of NMOFs is given as well as the different modes of operations that the SD technique offers for their synthesis. The versatility of the technique has allowed us to synthesise a wide panel of NMOFs belonging to the most representative subfamilies. In Chapter 4 the possibilities of combining NMOFs with other functional species using the SD technique to synthesise MOF-based composites is explained. We show how the MOF-based hollow superstructures can be used to encapsulate different materials, including NaCl crystals, dyes and FeOx inorganic nanoparticles (INPs). Furthermore, we also prove that NMOFs can also be easily encapsulated within functional matrices, such as polymers, by SD. Finally, we demonstrate that the unique capabilities of the SD to create MOF-based composites can be exploited to further expand the applications of NMOFs. In the second axis of this Thesis, Chapter 5 describes the synthesis of a new generation of NMOFs with CA properties. The strategy consists on using heterocyclic ligands currently employed in the synthesis of molecular CAs, which possess high chelating capabilities towards Gd(III) ions. The macrocyclic ligand DOTP is used to assemble a porous, heterometallic MOF. This MOF is miniaturizable down to the nanoscale to form stable colloids; is stable in physiological saline solution and cell culture media; and is not cytotoxic. It shows interesting relaxometric properties with a r1 at high field (500 MHz) of 5 mM-1·s-1 and a maximum in r1 of 15 mM-1·s-1 at 40 MHz, which remains constant over a wide pH range and increases with temperature.
Pham, Minh-Hao. « Nanoscale Metal—Organic Frameworks : Synthesis and Application of Bimodal Micro/Meso-Structure and Nanocrystals with Controlled Size and Shape ». Thesis, Université Laval, 2013. http://www.theses.ulaval.ca/2013/30124/30124.pdf.
Texte intégralMetal-organic frameworks (MOFs) have emerged as an important new class of porous inorganic-organic hybrid solids with the potential for a significant impact on separation, gas storage, catalysis and biomedicine. These materials are formed by assembly process in which metal ions are linked together by rigid organic ligands, which creates enormous surface areas (up to 6500 m2g−1) and high pore volumes (up to 4.3 cm3g−1). In this thesis, three different synthetic approaches have been developed to achieve bimodal micro/mesoporous MOF nanocrystals as well as nanosized MOFs with controlled size and shape. In addition, using the synthesized MOF nanocrystals as templates, a new hollow hybrid metal-oxide-TiO2-PtOx nanocomposite has also been prepared, and used as the visible-light driven photocatalyst for the hydrogen production from water. In this work, (i) the first approach involves nonionic surfactant-templated solvothermal synthesis in the presence of acetic acid toward hierarchically micro-mesoporous MOF nanocrystals. The use of a nonionic surfactant such as F127 (EO97PO69EO97) as mesostructure template induces the ability to crystallize a MOF structure of pore wall, while the presence of acetic acid allows control of the crystallization rate of the framework to form well-defined mesostructures within the crystalline MOF nanocrystals. Using this approach, [Cu3(BTC)2] and [Cu2(HBTB)2]-based MOF nanocrystals containing mesopores with diameter around 4.0 nm and intrinsic micropores have been successfully synthesized. (ii) Secondly, the coordination modulation methodology has been developed to control shape and size of MOF crystals at the nanoscale. Nanocubes and nanosheets of [Cu2(ndc)2(dabco)]n MOF have been rationally synthesized by using simultaneously acetic acid and pyridine or only pyridine, respectively, as selective modulators. These MOF nanocrystals exhibit high crystallinity and high CO2 sorption capacity. Their morphology-dependent CO2 sorption property has also been demonstrated. (iii) Thirdly, the size-controlled hydrothermal synthesis of uniform carboxylate-based MOF nanocrystals using simultaneously stabilizing reagent and deprotonation-controlled reagent has been demonstrated. In case of Fe-MIL-88B-NH2, the molecular triblock copolymers as stabilizing reagents coordinate with the metal ions and thus stabilize nuclei, which suppress the crystal growth to form nanocrystals. Acetic acid as deprotonation-controlled reagent adjusts the deprotonation of the carboxylic linker via varying its concentration in the reaction mixture, and thus regulates the rate of nucleation, leading to tailoring the size and aspect ratio (length/width) of the nanocrystals. (iv) Finally, a new hollow hybrid metal-oxide-TiO2-PtOx nanocomposite as an efficient photocatalyst has been developed by using iron-based MIL-88B nanocrystals consisting of coordinatively unsaturated Fe3(μ3-O) clusters as template. The hollow nanocomposite not only absorbs visible light, but also enhances the separation between photogenerated electrons and holes because of its thin wall and the surface separation of two distinct functional cocatalysts (Fe2O3 and PtOx) on two different surface sides of the hollow. As a result, the efficient photoactivity of the nanocomposite photocatalysts has been found for the H2 production from water under visible light irradiation.
Chapitres de livres sur le sujet "Nanoscale metal organic frameworks (nanoMOFs)"
Zhang, Zhonghao, et Zhiping Zheng. « Nanostructured and/or Nanoscale Lanthanide Metal-Organic Frameworks ». Dans Lanthanide Metal-Organic Frameworks, 297–367. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/430_2014_167.
Texte intégralPant, Parul, Aadya Jaipuria et Chetna Gupta. « Spectroscopic and Microscopic Techniques : Tools for Characterizing Nanoscale Metal–Organic Frameworks (NMOFs) ». Dans Metal-Organic Frameworks (MOFs) as Catalysts, 127–64. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7959-9_5.
Texte intégralLian, Xiang, Chuxiao Xiong et Jian Tian. « Chapter 7. Nanoscale Porphyrinic Metal–Organic Frameworks for Photodynamic Therapy ». Dans Porphyrin-based Supramolecular Architectures, 256–83. Cambridge : Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164934-00256.
Texte intégralSchukraft, Giulia, et Camille Petit. « Green Synthesis and Engineering Applications of Metal–Organic Frameworks ». Dans Sustainable Nanoscale Engineering, 139–62. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814681-1.00006-0.
Texte intégralHoang, Tran, et Shengqian Ma. « Biomedical Applications of Nanoscale Metal- Organic Frameworks ». Dans Hybrid Nanomaterials, 334–54. CRC Press, 2017. http://dx.doi.org/10.1201/9781315370934-13.
Texte intégralSharma, Bhagwati, Tridib K. Sarma et Anish Khan. « Application of Nanoscale Metal-Organic Frameworks for Phototherapy of Cancer ». Dans Metal-Organic Framework Nanocomposites, 213–36. CRC Press, 2020. http://dx.doi.org/10.1201/9780429346262-8.
Texte intégralSajid, Muhammad, et Ihsanullah. « Toxicity of nanoscale metal-organic frameworks in biological systems ». Dans Metal-Organic Frameworks for Biomedical Applications, 383–95. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-816984-1.00019-6.
Texte intégralSafari, Meysam. « Application of Metal-Organic Frameworks for the Extraction ». Dans Recent Trends in the Application of Metal-Organic Frameworks [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.114193.
Texte intégralAbbasi, Zahra, Levente Cseri, Xiwang Zhang, Bradley P. Ladewig et Huanting Wang. « Metal–Organic Frameworks (MOFs) and MOF-Derived Porous Carbon Materials for Sustainable Adsorptive Wastewater Treatment ». Dans Sustainable Nanoscale Engineering, 163–94. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814681-1.00007-2.
Texte intégralMittal, Ashi, Indrajit Roy et Sona Gandhi. « Drug Delivery Applications of Metal-Organic Frameworks (MOFs) ». Dans Drug Carriers [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103684.
Texte intégralActes de conférences sur le sujet "Nanoscale metal organic frameworks (nanoMOFs)"
Bediaga, Harbil, Maitane Urgoiti, Arantzazu Letona et Celia Elicegui. « On Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications ». Dans MOL2NET'21, Conference on Molecular, Biomedical & Computational Sciences and Engineering, 7th ed. Basel, Switzerland : MDPI, 2021. http://dx.doi.org/10.3390/mol2net-07-09259.
Texte intégralLin, Wenbin. « Nanoscale metal-organic frameworks for photodynamic therapy and cancer immunotherapy (Conference Presentation) ». Dans Optical Methods for Tumor Treatment and Detection : Mechanisms and Techniques in Photodynamic Therapy XXVI, sous la direction de David H. Kessel et Tayyaba Hasan. SPIE, 2017. http://dx.doi.org/10.1117/12.2261217.
Texte intégralGupta, Vandana, A. K. Paul et Sachin Tyagi. « Synthesis & ; characterization of iron-carboxylate nanoscale metal organic frameworks for drug delivery ». Dans 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS). IEEE, 2015. http://dx.doi.org/10.1109/ispts.2015.7220125.
Texte intégralYu, Pei, Zehang Zhuang, Guihua Qiu, Haolin Chen, Yuying Zhao, Jinxiang Chen et Xiqiang Liu. « Abstract 2190 : Theranostical nanoscale metal-organic frameworks-mediated rapid multiplexed microRNA detection and highly therapeutic efficacy in living oral cancer cells ». Dans Proceedings : AACR Annual Meeting 2017 ; April 1-5, 2017 ; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-2190.
Texte intégral