Littérature scientifique sur le sujet « Nanomaterials - Bio-medical Applications »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Nanomaterials - Bio-medical Applications ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Nanomaterials - Bio-medical Applications"

1

Gisbert-Garzarán, Miguel, et María Vallet-Regí. « Nanoparticles for Bio-Medical Applications ». Nanomaterials 12, no 7 (2 avril 2022) : 1189. http://dx.doi.org/10.3390/nano12071189.

Texte intégral
Résumé :
The Special Issue of Nanomaterials “Nanoparticles for Biomedical Applications” highlights the use of different types of nanoparticles for biomedical applications, including magnetic nanoparticles, mesoporous carbon nanoparticles, mesoporous bioactive glass nanoparticles, and mesoporous silica nanoparticles [...]
Styles APA, Harvard, Vancouver, ISO, etc.
2

Gupta, Tejendra Kumar, Pattabhi Ramaiah Budarapu, Sivakumar Reddy Chappidi, Sudhir Sastry Y.B., Marco Paggi et Stephane P. Bordas. « Advances in Carbon Based Nanomaterials for Bio-Medical Applications ». Current Medicinal Chemistry 26, no 38 (3 janvier 2019) : 6851–77. http://dx.doi.org/10.2174/0929867326666181126113605.

Texte intégral
Résumé :
: The unique mechanical, electrical, thermal, chemical and optical properties of carbon based nanomaterials (CBNs) like: Fullerenes, Graphene, Carbon nanotubes, and their derivatives made them widely used materials for various applications including biomedicine. Few recent applications of the CBNs in biomedicine include: cancer therapy, targeted drug delivery, bio-sensing, cell and tissue imaging and regenerative medicine. However, functionalization renders the toxicity of CBNs and makes them soluble in several solvents including water, which is required for biomedical applications. Hence, this review represents the complete study of development in nanomaterials of carbon for biomedical uses. Especially, CBNs as the vehicles for delivering the drug in carbon nanomaterials is described in particular. The computational modeling approaches of various CBNs are also addressed. Furthermore, prospectus, issues and possible challenges of this rapidly developing field are highlighted.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Turel, Matejka, Tinkara Mastnak et Aleksandra Lobnik. « Optical Chemical Nanosensors in Clinical Applications ». Defect and Diffusion Forum 334-335 (février 2013) : 387–96. http://dx.doi.org/10.4028/www.scientific.net/ddf.334-335.387.

Texte intégral
Résumé :
Because of their size and versatile chemistry, nanomaterials represent today powerful tools for (bio) sensing applications. Various types of nanomaterials have proven to be practical, not only for the determination of clinically relevant parameters, but also for diagnostics, drug delivery and treatment of diseases (e.g. cancer). In this short review, types of nanomaterials used in medical applications are briefly described along with some of their applications where the nanomaterials optical properties can be exploited. The question of the toxicity of nanomaterials and the issue of future trends are also raised.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kumar, Neeraj, Pankaj Chamoli, Mrinmoy Misra, M. K. Manoj et Ashutosh Sharma. « Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications ». Nanoscale 14, no 11 (2022) : 3987–4017. http://dx.doi.org/10.1039/d1nr07643d.

Texte intégral
Résumé :
This article overviews the recent trends of various types of metallic, noble, magnetic and carbon nanomaterials (carbon nanotubes, graphene, nanodiamonds, fullerene and their derivatives) specific to the drug delivery and bio-imaging fields.
Styles APA, Harvard, Vancouver, ISO, etc.
5

García-Álvarez, Rafaela, et María Vallet-Regí. « Hard and Soft Protein Corona of Nanomaterials : Analysis and Relevance ». Nanomaterials 11, no 4 (31 mars 2021) : 888. http://dx.doi.org/10.3390/nano11040888.

Texte intégral
Résumé :
Upon contact with a biological milieu, nanomaterials tend to interact with biomolecules present in the media, especially proteins, leading to the formation of the so-called “protein corona”. As a result of these nanomaterial–protein interactions, the bio-identity of the nanomaterial is altered, which is translated into modifications of its behavior, fate, and pharmacological profile. For biomedical applications, it is fundamental to understand the biological behavior of nanomaterials prior to any clinical translation. For these reasons, during the last decade, numerous publications have been focused on the investigation of the protein corona of many different types of nanomaterials. Interestingly, it has been demonstrated that the structure of the protein corona can be divided into hard and soft corona, depending on the affinity of the proteins for the nanoparticle surface. In the present document, we explore the differences between these two protein coronas, review the analysis techniques used for their assessment, and reflect on their relevance for medical purposes.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gandhi, Mansi, et Khairunnisa Amreen. « Emerging Trends in Nanomaterial-Based Biomedical Aspects ». Electrochem 4, no 3 (4 août 2023) : 365–88. http://dx.doi.org/10.3390/electrochem4030024.

Texte intégral
Résumé :
Comprehending the interfacial interaction of nanomaterials (NMs) and biological systems is a significant research interest. NMs comprise various nanoparticles (NPs) like carbon nanotubes, graphene oxides, carbon dots, graphite nanopowders, etc. These NPs show a variety of interactions with biological interfaces via organic layers, therapeutic molecules, proteins, DNA, and cellular matrices. A number of biophysical and colloidal forces act at the morphological surface to regulate the biological responses of bio-nanoconjugates, imparting distinct physical properties to the NMs. The design of future-generation nano-tools is primarily based on the basic properties of NMs, such as shape, size, compositional, functionality, etc., with studies being carried out extensively. Understanding their properties promotes research in the medical and biological sciences and improves their applicability in the health management sector. In this review article, in-depth and critical analysis of the theoretical and experimental aspects involving nanoscale material, which have inspired various biological systems, is the area of focus. The main analysis involves different self-assembled synthetic materials, bio-functionalized NMs, and their probing techniques. The present review article focuses on recent emerging trends in the synthesis and applications of nanomaterials with respect to various biomedical applications. This article provides value to the literature as it summarizes the state-of-the-art nanomaterials reported, especially within the health sector. It has been observed that nanomaterial applications in drug design, diagnosis, testing, and in the research arena, as well as many fatal disease conditions like cancer and sepsis, have explored alongwith drug therapies and other options for the delivery of nanomaterials. Even the day-to-day life of the synthesis and purification of these materials is changing to provide us with a simplified process. This review article can be useful in the research sector as a single platform wherein all types of nanomaterials for biomedical aspects can be understood in detail.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Trivedi, Rashmi, Tarun Kumar Upadhyay, Mohd Hasan Mujahid, Fahad Khan, Pratibha Pandey, Amit Baran Sharangi, Khursheed Muzammil et al. « Recent Advancements in Plant-Derived Nanomaterials Research for Biomedical Applications ». Processes 10, no 2 (10 février 2022) : 338. http://dx.doi.org/10.3390/pr10020338.

Texte intégral
Résumé :
Engineering, physics, chemistry, and biology are all involved in nanotechnology, which comprises a wide variety of multidisciplinary scientific field devices. The holistic utilization of metallic nanoparticles in the disciplines of bio-engineering and bio-medicine has attracted a great deal of attention. Medical nanotechnology research can offer immense health benefits for humans. While the advantages of developing nanomaterials have been well documented, it is precisely apparent that there are still some major issues that remain unattended to those need to be resolved immediately so as to ensure that they do not adversely affect living organisms in any manner. The existence of nanoparticles gives them particular value in biology and materials science, as an emerging scientific field, with multiple applications in science and technology, especially with numerous frontiers in the development of new materials. Presented here is a review of recent noteworthy developments regarding plant-derived nanomaterials and their use in the development of medicine and biomedical applications around the world.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rahman, Ashiqur, Julia Lin, Francisco E. Jaramillo, Dennis A. Bazylinski, Clayton Jeffryes et Si Amar Dahoumane. « In Vivo Biosynthesis of Inorganic Nanomaterials Using Eukaryotes—A Review ». Molecules 25, no 14 (16 juillet 2020) : 3246. http://dx.doi.org/10.3390/molecules25143246.

Texte intégral
Résumé :
Bionanotechnology, the use of biological resources to produce novel, valuable nanomaterials, has witnessed tremendous developments over the past two decades. This eco-friendly and sustainable approach enables the synthesis of numerous, diverse types of useful nanomaterials for many medical, commercial, and scientific applications. Countless reviews describing the biosynthesis of nanomaterials have been published. However, to the best of our knowledge, no review has been exclusively focused on the in vivo biosynthesis of inorganic nanomaterials. Therefore, the present review is dedicated to filling this gap by describing the many different facets of the in vivo biosynthesis of nanoparticles (NPs) using living eukaryotic cells and organisms—more specifically, live plants and living biomass of several species of microalgae, yeast, fungus, mammalian cells, and animals. It also highlights the strengths and weaknesses of the synthesis methodologies and the NP characteristics, bio-applications, and proposed synthesis mechanisms. This comprehensive review also brings attention to enabling a better understanding between the living organisms themselves and the synthesis conditions that allow their exploitation as nanobiotechnological production platforms as these might serve as a robust resource to boost and expand the bio-production and use of desirable, functional inorganic nanomaterials.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Sindhu, Rakesh K., Agnieszka Najda, Prabhjot Kaur, Muddaser Shah, Harmanpreet Singh, Parneet Kaur, Simona Cavalu, Monika Jaroszuk-Sierocińska et Md Habibur Rahman. « Potentiality of Nanoenzymes for Cancer Treatment and Other Diseases : Current Status and Future Challenges ». Materials 14, no 20 (11 octobre 2021) : 5965. http://dx.doi.org/10.3390/ma14205965.

Texte intégral
Résumé :
Studies from past years have observed various enzymes that are artificial, which are issued to mimic naturally occurring enzymes based on their function and structure. The nanozymes possess nanomaterials that resemble natural enzymes and are considered an innovative class. This innovative class has achieved a brilliant response from various developments and researchers owing to this unique property. In this regard, numerous nanomaterials are inspected as natural enzyme mimics for multiple types of applications, such as imaging, water treatment, therapeutics, and sensing. Nanozymes have nanomaterial properties occurring with an inheritance that provides a single substitute and multiple platforms. Nanozymes can be controlled remotely via stimuli including heat, light, magnetic field, and ultrasound. Collectively, these all can be used to increase the therapeutic as well as diagnostic efficacies. These nanozymes have major biomedical applications including cancer therapy and diagnosis, medical diagnostics, and bio sensing. We summarized and emphasized the latest progress of nanozymes, including their biomedical mechanisms and applications involving synergistic and remote control nanozymes. Finally, we cover the challenges and limitations of further improving therapeutic applications and provide a future direction for using engineered nanozymes with enhanced biomedical and diagnostic applications.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Omurzak, E., Z. Abdullaeva, A. Satyvaldiev, Z. Zhasnakunov, Z. Kelgenbaeva, R. Adil Akai Tegin, D. Syrgakbek kyzy, T. Doolotkeldieva, S. Bobusheva et T. Mashimo. « Synthesis of Nanomaterials by the Pulsed Plasma in Liquid and their Bio-medical Applications ». IOP Conference Series : Materials Science and Engineering 302 (janvier 2018) : 012076. http://dx.doi.org/10.1088/1757-899x/302/1/012076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Nanomaterials - Bio-medical Applications"

1

John, Sween. « A Study of the Synthesis and Surface Modification of UV Emitting Zinc Oxide for Bio-Medical Applications ». Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc10990/.

Texte intégral
Résumé :
This thesis presents a novel ZnO-hydrogel based fluorescent colloidal semiconductor nanomaterial system for potential bio-medical applications such as bio-imaging, cancer detection and therapy. The preparation of ZnO nanoparticles and their surface modification to make a biocompatible material with enhanced optical properties is discussed. High quality ZnO nanoparticles with UV band edge emission are prepared using gas evaporation method. Semiconductor materials including ZnO are insoluble in water. Since biological applications require water soluble nanomaterials, ZnO nanoparticles are first dispersed in water by ball milling method, and their aqueous stability and fluorescence properties are enhanced by incorporating them in bio-compatible poly N-isopropylacrylamide (PNIPAM) based hydrogel polymer matrix. The optical properties of ZnO-hydrogel colloidal dispersion versus ZnO-Water dispersion were analyzed. The optical characterization using photoluminescence spectroscopy indicates approximately 10 times enhancement of fluorescence in ZnO-hydrogel colloidal system compared to ZnO-water system. Ultrafast time resolved measurement demonstrates dominant exciton recombination process in ZnO-hydrogel system compared to ZnO-water system, confirming the surface modification of ZnO nanoparticles by hydrogel polymer matrix. The surface modification of ZnO nanoparticles by hydrogel induce more scattering centers per unit area of cross-section, and hence increase the luminescence from the ZnO-gel samples due to multiple path excitations. Furthermore, surface modification of ZnO by hydrogel increases the radiative efficiency of this hybrid colloidal material system thereby contributing to enhanced emission.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Nanomaterials - Bio-medical Applications"

1

Nanomaterials in Bio-Medical Applications. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291739.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nanomaterials in Bio-Medical Applications : A Novel Approach. Materials Research Forum LLC, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Shi, Donglu. Bio-Inspired Nanomaterials and Applications : Nano Detection, Drug/Gene Delivery, Medical Diagnosis and Therapy. World Scientific Publishing Co Pte Ltd, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Nanomaterials - Bio-medical Applications"

1

Sadiku, Emmanuel Rotimi, O. Agboola, Idowu David Ibrahim, Abbavaram Babu Reddy, M. Bandla, P. N. Mabalane, Williams Kehinde Kupolati et al. « Synthesis of Bio-Based and Eco-Friendly Nanomaterials for Medical and BioMedical Applications ». Dans Materials Horizons : From Nature to Nanomaterials, 283–312. Singapore : Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8063-1_13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

« Applications of Nanoparticles in Biomedicine ». Dans Nanomaterials in Bio-Medical Applications, 179–96. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291739-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

« Introduction to Nano-Materials in Bio-Medical Applications : A Novel Approach ». Dans Nanomaterials in Bio-Medical Applications, 1–16. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291739-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

« Quantum Dots, Synthesis Properties and Biology Application ». Dans Nanomaterials in Bio-Medical Applications, 19–49. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291739-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

« Synthesis of Nanoparticles through Thermal Decomposition of Organometallic Materials and Application for Biological Environment ». Dans Nanomaterials in Bio-Medical Applications, 50–72. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291739-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

« Methodology and Physical Characterization of Nanoparticles using Photophysical Techniques ». Dans Nanomaterials in Bio-Medical Applications, 74–103. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291739-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

« Characterization of Nanomaterials : X-ray Diffraction Method, Electron Microscopy and Light Scattering ». Dans Nanomaterials in Bio-Medical Applications, 104–22. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291739-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

« Probing Defects by Positron Annihilation Spectroscopy ». Dans Nanomaterials in Bio-Medical Applications, 123–44. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291739-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

« Advances in the Application of Nanomaterials and Nanosacled Materials in Physiology or Medicine : Now and the Future ». Dans Nanomaterials in Bio-Medical Applications, 147–78. Materials Research Forum LLC, 2018. http://dx.doi.org/10.21741/9781945291739-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wang, Yilong, et Feng Wang. « Janus Nanostructures and Their Bio-medical Applications ». Dans Bio-Inspired Nanomaterials and Applications, 111–33. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814616928_0006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Nanomaterials - Bio-medical Applications"

1

D, Subitha, Rahul S. G, Velmurugan S et Salveru Saiteja. « Curing Free, Silver Nano Ink Based Inkjet Printed Fabrics for Bio-Medical Applications ». Dans 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO). IEEE, 2022. http://dx.doi.org/10.1109/5nano53044.2022.9828925.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ansari, Mohammad Javed, Aziz Unnisa, Anshul Singh, Devvret Verma, Rahul Kanaoujiya et Jose Luis Arias Gonzales. « Application of Porous Nanomaterials for Sustained and Targeted Drug Release ». Dans International Conference on Recent Advancements in Biomedical Engineering. Switzerland : Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-b2484c.

Texte intégral
Résumé :
Patients must take significant doses of drugs to acquire the therapeutic effects required for disease therapy due to the absence of selectivity and accessibility of medicinal molecules. Drugs contain a range of drug carriers that are available to transport therapeutic chemicals to the targeted issues in the body. Mesoporous materials are choice for overcoming the aforementioned issues and producing effects in a predictable and long-term way. Because of its chemical characteristics, thermal stability, & biocompatibility, mesophoric nanoparticles are commonly utilized as release reagents. The innovative silica mesophore technology allows for efficient drug loading and administration after the target site has been reached. The additives used to manufacture MSNs can affect the property of mesoporous materials, including pore width, porosity, drug load, and surface characteristics. The need for an active surface provides for surface treatment as well as the coupling of therapeutic substances. They are widely employed in the bio-medical industry for diagnosis, target medication administration, bio-sensing, cellular absorption, and so on. The purpose of this study is, to sum up the existing level of information about mesoporous nanomaterials and their applications in diverse healthcare sectors.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie