Articles de revues sur le sujet « Nanohorns de carbono »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Nanohorns de carbono.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Nanohorns de carbono ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kowalczyk, Piotr, Artur P. Terzyk, Piotr A. Gauden, Sylwester Furmaniak et Katsumi Kaneko. « Toward in silico modeling of palladium–hydrogen–carbon nanohorn nanocomposites ». Phys. Chem. Chem. Phys. 16, no 23 (2014) : 11763–69. http://dx.doi.org/10.1039/c4cp01345j.

Texte intégral
Résumé :
The first in silico modeling of the Pd–H-single-walled carbon nanohorn nanocomposites shows that apex angle of horn-shaped tips of single-walled carbon nanohorns controls the morphology and reactivity of confined Pd clusters.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hasani, Ali. « Approaches to Graphene, Carbon Nanotube and Carbon nanohorn, Synthesis, Properties and Applications ». Nanoscience & ; Nanotechnology-Asia 10, no 1 (23 janvier 2020) : 4–11. http://dx.doi.org/10.2174/2210681208666180904102649.

Texte intégral
Résumé :
By far the most important members of carbon-based materials family, are graphene, Carbon Nanotube (CNT) and Carbon Nanohorn (CNH). Thanks to their outstanding features and effective applications, have been broadly researched in recent times. Numerous ways have been proposed to synthesize graphene, CNT and CNH. This paper presents an overview of approaches to graphene, CNT and CNH synthesis, properties and applications. Most of the ways to create graphene is related to Hummer's method. Thanks to the exclusive electrical and thermal properties of graphene, it has been applied to build batteries, gas and vapor sensors, and elimination of numerous pollutants from water. Also, this review involves the conventional definition of the carbon nanotubes growth mechanism. Undoubtedly, an expert interpretation of nanotube growth at the atomic scale is one of the major challenges to improve nanotubes bulk synthesis procedure. In fact, a controlled growth may lead to get the ideal form of nanotube. Moreover, carbon nanohorn is a new member of single-graphene tubules family with a diameter of 3-6 nm and a length 35-45 nm. According to the latest reports, a new fluid including carbon nanohorns and ethylene glycol can be used for solar energy applications. Carbon nanohorns have an important role in increasing sunlight absorption as for the pure base fluid. Nanohorn spectral characteristics are far more interesting than those of amorphous carbon for the exclusive application. They can be used in important industries such as gas sensors, drug delivery, detecting some food borne contaminants.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Venezia, Eleonora, Pejman Salimi, Susana Chauque et Remo Proietti Zaccaria. « Sustainable Synthesis of Sulfur−Single Walled Carbon Nanohorns Composite for Long Cycle Life Lithium−Sulfur Battery ». Nanomaterials 12, no 22 (8 novembre 2022) : 3933. http://dx.doi.org/10.3390/nano12223933.

Texte intégral
Résumé :
Lithium–sulfur batteries are considered one of the most appealing technologies for next-generation energy−storage devices. However, the main issues impeding market breakthrough are the insulating property of sulfur and the lithium−polysulfide shuttle effect, which cause premature cell failure. To face this challenge, we employed an easy and sustainable evaporation method enabling the encapsulation of elemental sulfur within carbon nanohorns as hosting material. This synthesis process resulted in a morphology capable of ameliorating the shuttle effect and improving the electrode conductivity. The electrochemical characterization of the sulfur–carbon nanohorns active material revealed a remarkable cycle life of 800 cycles with a stable capacity of 520 mA h/g for the first 400 cycles at C/4, while reaching a value around 300 mAh/g at the 750th cycle. These results suggest sulfur–carbon nanohorn active material as a potential candidate for next−generation battery technology.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Verde-Gómez, Ysmael, Elizabeth Montiel-Macías, Ana María Valenzuela-Muñiz, Ivonne Alonso-Lemus, Mario Miki-Yoshida, Karim Zaghib, Nicolas Brodusch et Raynald Gauvin. « Structural Study of Sulfur-Added Carbon Nanohorns ». Materials 15, no 10 (10 mai 2022) : 3412. http://dx.doi.org/10.3390/ma15103412.

Texte intégral
Résumé :
In the past few decades, nanostructured carbons (NCs) have been investigated for their interesting properties, which are attractive for a wide range of applications in electronic devices, energy systems, sensors, and support materials. One approach to improving the properties of NCs is to dope them with various heteroatoms. This work describes the synthesis and study of sulfur-added carbon nanohorns (S-CNH). Synthesis of S-CNH was carried out by modified chemical vapor deposition (m-CVD) using toluene and thiophene as carbon and sulfur sources, respectively. Some parameters such as the temperature of synthesis and carrier gas flow rates were modified to determine their effect on the properties of S-CNH. High-resolution scanning and transmission electron microscopy analysis showed the presence of hollow horn-type carbon nanostructures with lengths between 1 to 3 µm and, diameters that are in the range of 50 to 200 nm. Two types of carbon layers were observed, with rough outer layers and smooth inner layers. The surface textural properties are attributed to the defects induced by the sulfur intercalated into the lattice or bonded with the carbon. The XRD patterns and X-ray microanalysis studies show that iron serves as the seed for carbon nanohorn growth and iron sulfide is formed during synthesis.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kumar, Dinesh, Veena Verma, H. S. Bhatti et Keya Dharamvir. « Elastic Moduli of Carbon Nanohorns ». Journal of Nanomaterials 2011 (2011) : 1–6. http://dx.doi.org/10.1155/2011/127952.

Texte intégral
Résumé :
Carbon nanotube is a special case of carbon nanohorns or carbon nanocones with zero apex angle. Research into carbon nanohorns started almost at the same time as the discovery of nanotubes in 1991. Most researchers focused on the investigation of nanotubes, and the exploration of nanohorns attracted little attention. To model the carbon nanohorns, we make use of a more reliable second-generation reactive empirical bond-order potential by Brenner and coworkers. We investigate the elastic moduli and conclude that these nanohorns are equally strong and require in-depth investigation. The values of Young's and Shear moduli decrease with apex angle.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sani, Elisa, Nicolò Papi, Luca Mercatelli, Simona Barison, Filippo Agresti, Stefano Rossi et Aldo Dell’Oro. « Optical Limiting of Carbon Nanohorn-Based Aqueous Nanofluids : A Systematic Study ». Nanomaterials 10, no 11 (29 octobre 2020) : 2160. http://dx.doi.org/10.3390/nano10112160.

Texte intégral
Résumé :
Nowadays, the use of lasers has become commonplace in everyday life, and laser protection has become an important field of scientific investigation, as well as a security issue. In this context, optical limiters are receiving increasing attention. This work focuses on the identification of the significant parameters affecting optical limiting properties of aqueous suspensions of pristine single-wall carbon nanohorns. The study is carried out on the spectral range, spanning from ultraviolet to near-infrared (355, 532 and 1064 nm). Optical nonlinear properties are systematically investigated as a function of nanohorn morphology, concentration, dimensions of aggregates, sample preparation procedure, nanostructure oxidation and the presence and concentration of surfactants to identify the role of each parameter in the nonlinear optical behavior of colloids. The size and morphology of individual nanoparticles were identified to primarily determine optical limiting. A cluster size effect was also demonstrated, showing more effective optical limiting in larger aggregates. Most importantly, we describe an original approach to identify the dominant nonlinear mechanism. This method requires simple transmittance measurements and a fitting procedure. In our suspensions, nonlinearity was identified to be of electronic origin at a 532 nm wavelength, while at 355 nm, it was found in the generation of bubbles.
Styles APA, Harvard, Vancouver, ISO, etc.
7

MacLucas, Timothy, et Sebastian Suarez. « On the Solid Lubricity of Electrophoretically Deposited Carbon Nanohorn Coatings ». Lubricants 7, no 8 (26 juillet 2019) : 62. http://dx.doi.org/10.3390/lubricants7080062.

Texte intégral
Résumé :
In this study, dahlia-type carbon nanohorns (CNH) have been deposited onto a stainless steel substrate by using electrophoretic deposition. Secondly, the lubrication properties of the carbon nanohorn coating have been researched by tribometry and compared to an uncoated reference. Wear track analysis has been conducted to identify the underlying tribo-mechanisms. Additionally, Raman spectroscopy was employed to study the structural changes of the CNH during dispersion and tribological testing. Furthermore, energy dispersive X-ray spectroscopy (EDX) was used in order to investigate the chemical composition of the wear tracks’ surface. This work has shown that CNH coatings have the ability to maintain effective solid lubrication on a polished stainless steel surface. A temporary friction reduction of 83% was achieved compared to the uncoated reference. Moreover, the lubricity was active for significant periods of time due to the formation of a Mg(OH)2 layer which provides a certain degree of substrate adhesion as it holds the CNH in the wear track. Once this holding layer wanes, the CNH are gradually removed from wear track resulting in an increase of the coefficient of friction. The complete removal of CNH from the wear track as well as considerable oxide formation was confirmed by EDX. Moreover, the amount of defects in the CNHs’ structure increases by being exposed to tribological strain. Adhesion has been identified as the dominant wear mechanism.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cioffi, Carla, St?phane Campidelli, Fulvio G. Brunetti, Moreno Meneghetti et Maurizio Prato. « Functionalisation of carbon nanohorns ». Chemical Communications, no 20 (2006) : 2129. http://dx.doi.org/10.1039/b601176d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Miyako, Eijiro, Hideya Nagata, Ken Hirano, Kotaro Sakamoto, Yoji Makita, Ken-ichi Nakayama et Takahiro Hirotsu. « Photoinduced antiviral carbon nanohorns ». Nanotechnology 19, no 7 (29 janvier 2008) : 075106. http://dx.doi.org/10.1088/0957-4484/19/7/075106.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pagona, Georgia, Georgios Rotas, Ioannis D. Petsalakis, Giannoula Theodorakopoulos, Jing Fan, Alan Maigné, Masako Yudasaka, Sumio Iijima et Nikos Tagmatarchis. « Soluble Functionalized Carbon Nanohorns ». Journal of Nanoscience and Nanotechnology 7, no 10 (1 octobre 2007) : 3468–72. http://dx.doi.org/10.1166/jnn.2007.821.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Zhang, Jianshuo, Yang Liu, Zhoubin Yu, Meihua Huang, Chuxin Wu, Chuanhong Jin et Lunhui Guan. « Boosting the performance of the Fe–N–C catalyst for the oxygen reduction reaction by introducing single-walled carbon nanohorns as branches on carbon fibers ». Journal of Materials Chemistry A 7, no 40 (2019) : 23182–90. http://dx.doi.org/10.1039/c9ta08938a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Puthusseri, Divya, Deepu J. Babu, Sherif Okeil et Jörg J. Schneider. « Gas adsorption capacity in an all carbon nanomaterial composed of carbon nanohorns and vertically aligned carbon nanotubes ». Physical Chemistry Chemical Physics 19, no 38 (2017) : 26265–71. http://dx.doi.org/10.1039/c7cp05022d.

Texte intégral
Résumé :
Carbon composites composed of arrays of vertically aligned carbon nanotubes and spherically aggregated carbon nanohorns show an enhanced CO2 adsorption capacity in the high pressure regime.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Chen, Daiqin, Chao Wang, Feng Jiang, Zhuang Liu, Chunying Shu et Li-Jun Wan. « In vitro and in vivo photothermally enhanced chemotherapy by single-walled carbon nanohorns as a drug delivery system ». J. Mater. Chem. B 2, no 29 (2014) : 4726–32. http://dx.doi.org/10.1039/c4tb00249k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Zhu, Gangbing, Mwenze Nkulu Fiston, Junjuan Qian et Odoom Jibrael Kingsford. « Highly sensitive electrochemical sensing of para-chloronitrobenzene using a carbon nanohorn–nanotube hybrid modified electrode ». Analytical Methods 11, no 8 (2019) : 1125–30. http://dx.doi.org/10.1039/c8ay02680g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sandanayaka, Atula S. D., et Osamu Ito. « Photoinduced electron transfer in supramolecules composed of porphyrin/phthalocyanine and nanocarbon materials ». Journal of Porphyrins and Phthalocyanines 13, no 10 (octobre 2009) : 1017–33. http://dx.doi.org/10.1142/s1088424609001388.

Texte intégral
Résumé :
Photoinduced electron transfer in supramolecules composed of porphyrin/phthalocyanine and nanocarbon materials such as fullerenes, single-walled carbon nanotubes, and single-walled carbon nanohorns have been reviewed. With the aid of highly efficient visible-light harvesting porphyrin/phthalocyanine, the photosensitized electron transfer takes place from the photoexcited porphyrin/phthalocyanine to fullerene, which acts as a strong electron acceptor. In the case of nanocarbon materials such as single-walled carbon nanotubes and nanohorns, they may act as electron-trapping sites. From the holes and electrons generated on porphyrin/phthalocyanine-nanocarbons, electron pooling takes place at the strong and stable electron trapper (viologen dication) in solution.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Peña-Álvarez, Miriam, Elena del Corro, Fernando Langa, Valentín G. Baonza et Mercedes Taravillo. « Morphological changes in carbon nanohorns under stress : a combined Raman spectroscopy and TEM study ». RSC Advances 6, no 55 (2016) : 49543–50. http://dx.doi.org/10.1039/c5ra27162b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Chronopoulos, Demetrios D., Zheng Liu, Kazu Suenaga, Masako Yudasaka et Nikos Tagmatarchis. « [3 + 2] cycloaddition reaction of azomethine ylides generated by thermal ring opening of aziridines onto carbon nanohorns ». RSC Advances 6, no 50 (2016) : 44782–87. http://dx.doi.org/10.1039/c6ra07167h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Xu, Yanxia, Xianfu Meng, Jinliang Liu, Shuyun Zhu, Lining Sun et Liyi Shi. « New nanoplatforms based on upconversion nanoparticles and single-walled carbon nanohorns for sensitive detection of acute promyelocytic leukemia ». RSC Advances 6, no 2 (2016) : 1037–41. http://dx.doi.org/10.1039/c5ra17451a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Hirata, Eri, Eijiro Miyako, Nobutaka Hanagata, Natsumi Ushijima, Norihito Sakaguchi, Julie Russier, Masako Yudasaka, Sumio Iijima, Alberto Bianco et Atsuro Yokoyama. « Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation ». Nanoscale 8, no 30 (2016) : 14514–22. http://dx.doi.org/10.1039/c6nr02756c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Suarez-Martinez, Irene, Marc Monthioux et Christopher P. Ewels. « Fullerene Interaction with Carbon Nanohorns ». Journal of Nanoscience and Nanotechnology 9, no 10 (1 octobre 2009) : 6144–48. http://dx.doi.org/10.1166/jnn.2009.1571.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Chronopoulos, Demetrios, Nikolaos Karousis, Toshinari Ichihashi, Masako Yudasaka, Sumio Iijima et Nikos Tagmatarchis. « Benzyne cycloaddition onto carbon nanohorns ». Nanoscale 5, no 14 (2013) : 6388. http://dx.doi.org/10.1039/c3nr01755a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Stergiou, Anastasios, Zheng Liu, Bin Xu, Toshiro Kaneko, Christopher P. Ewels, Kazu Suenaga, Minfang Zhang, Masako Yudasaka et Nikos Tagmatarchis. « Individualized p-Doped Carbon Nanohorns ». Angewandte Chemie International Edition 55, no 35 (22 juillet 2016) : 10468–72. http://dx.doi.org/10.1002/anie.201605644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Stergiou, Anastasios, Zheng Liu, Bin Xu, Toshiro Kaneko, Christopher P. Ewels, Kazu Suenaga, Minfang Zhang, Masako Yudasaka et Nikos Tagmatarchis. « Individualized p-Doped Carbon Nanohorns ». Angewandte Chemie 128, no 35 (22 juillet 2016) : 10624–28. http://dx.doi.org/10.1002/ange.201605644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Ambolikar, Arvind S., Saurav K. Guin et Suman Neogy. « An insight into the outer- and inner-sphere electrochemistry of oxygenated single-walled carbon nanohorns (o-SWCNHs) ». New Journal of Chemistry 43, no 46 (2019) : 18210–19. http://dx.doi.org/10.1039/c9nj04467a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Russell, Brice A., Aldo D. Migone, Justin Petucci, M. Mercedes Calbi, Masako Yudasaka et Sumio Iijima. « Ethane adsorption on aggregates of dahlia-like nanohorns : experiments and computer simulations ». Physical Chemistry Chemical Physics 18, no 22 (2016) : 15436–46. http://dx.doi.org/10.1039/c6cp01861k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Annamalai, K. P., Jianping Gao, Lile Liu, Jun Mei, Woonming Lau et Yousheng Tao. « Nanoporous graphene/single wall carbon nanohorn heterostructures with enhanced capacitance ». Journal of Materials Chemistry A 3, no 22 (2015) : 11740–44. http://dx.doi.org/10.1039/c5ta02580j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Zhu, Shuyun, Xian-En Zhao, Jinmao You, Guobao Xu et Hua Wang. « Carboxylic-group-functionalized single-walled carbon nanohorns as peroxidase mimetics and their application to glucose detection ». Analyst 140, no 18 (2015) : 6398–403. http://dx.doi.org/10.1039/c5an01104c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Almeida, Eduardo R., Hélio F. Dos Santos et Priscila V. S. Z. Capriles. « Carbon nanohorns as nanocontainers for cisplatin : insight into their interaction with the plasma membranes of normal and breast cancer cells ». Physical Chemistry Chemical Physics 23, no 30 (2021) : 16376–89. http://dx.doi.org/10.1039/d1cp02015c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Lucío, María Isabel, Roberta Opri, Marcella Pinto, Alessia Scarsi, Jose L. G. Fierro, Moreno Meneghetti, Giulio Fracasso, Maurizio Prato, Ester Vázquez et María Antonia Herrero. « Targeted killing of prostate cancer cells using antibody–drug conjugated carbon nanohorns ». Journal of Materials Chemistry B 5, no 44 (2017) : 8821–32. http://dx.doi.org/10.1039/c7tb02464a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Vizuete, María, María J. Gómez-Escalonilla, Myriam Barrejón, José Luis G. Fierro, Minfang Zhang, Masako Yudasaka, Sumio Iijima, Pedro Atienzar, Hermenegildo García et Fernando Langa. « Synthesis, characterization and photoinduced charge separation of carbon nanohorn–oligothienylenevinylene hybrids ». Physical Chemistry Chemical Physics 18, no 3 (2016) : 1828–37. http://dx.doi.org/10.1039/c5cp05734e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Wang, Junling, Ran Wang, Fangrong Zhang, Yajun Yin, Leixia Mei, Fengjuan Song, Mingtao Tao, Wanqing Yue et Wenying Zhong. « Overcoming multidrug resistance by a combination of chemotherapy and photothermal therapy mediated by carbon nanohorns ». Journal of Materials Chemistry B 4, no 36 (2016) : 6043–51. http://dx.doi.org/10.1039/c6tb01469k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Iglesias, Daniel, Javier Guerra, María Isabel Lucío, Rafael C. González-Cano, Juan T. López Navarrete, M. Carmen Ruiz Delgado, Ester Vázquez et M. Antonia Herrero. « Microwave-assisted functionalization of carbon nanohorns with oligothiophene units with SERS activity ». Chemical Communications 56, no 63 (2020) : 8948–51. http://dx.doi.org/10.1039/d0cc03496g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Voiry, Damien, Georgia Pagona, Elisa Del Canto, Luca Ortolani, Vittorio Morandi, Laure Noé, Marc Monthioux, Nikos Tagmatarchis et Alain Penicaud. « Reductive dismantling and functionalization of carbon nanohorns ». Chemical Communications 51, no 24 (2015) : 5017–19. http://dx.doi.org/10.1039/c4cc10389k.

Texte intégral
Résumé :
Aggregated carbon nanohorns (CNHs) spontaneously dismantle in organic solvents upon reduction with potassium naphthalenide; the reduced CNHs can be further functionalized via addition of electrophiles.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Nan, Yanli, Yuanyuan He, Zihan Zhang, Jian Wei et Yubin Zhang. « Controllable synthesis of N-doped carbon nanohorns : tip from closed to half-closed, used as efficient electrocatalysts for oxygen evolution reaction ». RSC Advances 11, no 56 (2021) : 35463–71. http://dx.doi.org/10.1039/d1ra06458d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Zieba, Wojciech, Piotr Olejnik, Stanislaw Koter, Piotr Kowalczyk, Marta E. Plonska-Brzezinska et Artur P. Terzyk. « Opening the internal structure for transport of ions : improvement of the structural and chemical properties of single-walled carbon nanohorns for supercapacitor electrodes ». RSC Advances 10, no 63 (2020) : 38357–68. http://dx.doi.org/10.1039/d0ra07748h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Kagkoura, Antonia, et Nikos Tagmatarchis. « Carbon Nanohorn-Based Electrocatalysts for Energy Conversion ». Nanomaterials 10, no 7 (19 juillet 2020) : 1407. http://dx.doi.org/10.3390/nano10071407.

Texte intégral
Résumé :
In the context of even more growing energy demands, the investigation of alternative environmentally friendly solutions, like fuel cells, is essential. Given their outstanding properties, carbon nanohorns (CNHs) have come forth as promising electrocatalysts within the nanocarbon family. Carbon nanohorns are conical nanostructures made of sp2 carbon sheets that form aggregated superstructures during their synthesis. They require no metal catalyst during their preparation and they are inexpensively produced in industrial quantities, affording a favorable candidate for electrocatalytic reactions. The aim of this article is to provide a comprehensive overview regarding CNHs in the field of electrocatalysis and especially, in oxygen reduction, methanol oxidation, and hydrogen evolution, as well as oxygen evolution from water splitting, underlining the progress made so far, and pointing out the areas where significant improvement can be achieved.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ford, Rochelle, Stephen J. Devereux, Susan J. Quinn et Robert D. O'Neill. « Carbon nanohorn modified platinum electrodes for improved immobilisation of enzyme in the design of glutamate biosensors ». Analyst 144, no 17 (2019) : 5299–307. http://dx.doi.org/10.1039/c9an01085h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Cui, Longbin, Yang Liu, Xiaohui Wu, Ziqi Hu, Zujin Shi et Huanjun Li. « Fe3O4-decorated single-walled carbon nanohorns with extraordinary microwave absorption property ». RSC Advances 5, no 92 (2015) : 75817–22. http://dx.doi.org/10.1039/c5ra13077h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Cong, Huan, et Yi Luan. « Recent Synthetic Advances on π-Extended Carbon Nanohoops ». Synlett 28, no 12 (20 mars 2017) : 1383–88. http://dx.doi.org/10.1055/s-0036-1588978.

Texte intégral
Résumé :
As a part of the ‘bottom-up’ campaign for the precise preparation of carbon nanotubes, the chemical synthesis of carbon nanohoops is observing rapid progress, with a number of milestone achievements, over the past decade. With simple carbon nanohoops (e.g. cycloparaphenylenes) now no longer elusive targets, this Synpacts article highlights latest synthetic advances to further build up nanohoops’ π-systems. Works reviewed herein include the study explaining the unsuccessful Scholl reaction method, the preparation of a carbon nanohoop consisting solely of hexabenzocoronene units, syntheses of π-extended carbon nanohoops employing the ring-closing metathesis method, and the anthracene photodimerization/cycloreversion method for anthracene-incorporated carbon nanohoop synthesis.1 Introduction2 Some Latest Syntheses of π-Extended Carbon Nanohoops3 Conclusion
Styles APA, Harvard, Vancouver, ISO, etc.
40

Chen, Min, Jiang Guo, Fangjing Mo, Hui Meng, Wangqing Yu et Yingzi Fu. « Self-enhanced photoelectrochemical sensor based on a Schottky heterostructure organic electron donor matrix ». Chemical Communications 58, no 3 (2022) : 455–58. http://dx.doi.org/10.1039/d1cc04500h.

Texte intégral
Résumé :
A self-enhanced photoelectrochemical copper ion sensor was constructed using an organic electron donor matrix with a Schottky heterostructure prepared from dopamine and single walled carbon nanohorns.
Styles APA, Harvard, Vancouver, ISO, etc.
41

Wang, Ran, Hongjing Cui, Junling Wang, Nannan Li, Qian Zhao, Ying Zhou, Zhiyi Lv et Wenying Zhong. « Enhancing the antitumor effect of methotrexate in intro and in vivo by a novel targeted single-walled carbon nanohorn-based drug delivery system ». RSC Advances 6, no 53 (2016) : 47272–80. http://dx.doi.org/10.1039/c6ra06667d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Parasuraman, Perumalswamy Sekar, Vijaya Rohini Parasuraman, Rajeshkumar Anbazhagan, Hsieh-Chih Tsai et Juin-Yih Lai. « Synthesis of “Dahlia-Like” Hydrophilic Fluorescent Carbon Nanohorn as a Bio-Imaging PROBE ». International Journal of Molecular Sciences 20, no 12 (18 juin 2019) : 2977. http://dx.doi.org/10.3390/ijms20122977.

Texte intégral
Résumé :
Carbon nanohorns (CNH) were synthesized by a simple conventional hydrothermal method in this study. The CNHs were prepared by the chemical oxidation from the carbonation of Nafion (catalyst) with heparin (carbon resource). The formation of CNH involved two major steps, as described followed. First, the formation of carbon nanorice (CNR) was achieved by carbonation and self-assembly of heparin inside the Nafion structure. Second, the further oxidation of CNR resulted the heterogeneous and porous micelle domains showed at the outer layer of the CNR particles. These porous domains exhibited hydrophobic carbon and resulted self-assembly of the CNR to form the structure of CNHs. The resulting CNHs aggregated into a “dahlia-like” morphology with fluorescence in a diameter of 50–200 nm. The “dahlia-like” CNH showed better fluorescence (450nm) than CNR particles because of the presence of more structural defect. These findings suggest that the hydrophilic fluorescent carbon nanohorns (HFCNHs) synthesized in this study have the potential to be used for in vitro bio-imaging
Styles APA, Harvard, Vancouver, ISO, etc.
43

Wan, Jinpeng, Ruling Wang, Hanrui Bai, Yibo Wang et Jin Xu. « Comparative physiological and metabolomics analysis reveals that single-walled carbon nanohorns and ZnO nanoparticles affect salt tolerance in Sophora alopecuroides ». Environmental Science : Nano 7, no 10 (2020) : 2968–81. http://dx.doi.org/10.1039/d0en00582g.

Texte intégral
Résumé :
Using physiology and metabolome analyses, we showed the promoting effects of single-walled carbon nanohorns and ZnO nanoparticles on plant growth and salt tolerance in Sophora alopecuroides seedlings.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lodermeyer, Fabian, Rubén D. Costa, Rubén Casillas, Florian T. U. Kohler, Peter Wasserscheid, Maurizio Prato et Dirk M. Guldi. « Carbon nanohorn-based electrolyte for dye-sensitized solar cells ». Energy & ; Environmental Science 8, no 1 (2015) : 241–46. http://dx.doi.org/10.1039/c4ee02037e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Bertozzi, C., R. Jasti, J. Bhattacharjee et J. Neaton. « Carbon Nanohoops ». Synfacts 2009, no 03 (19 février 2009) : 0266. http://dx.doi.org/10.1055/s-0028-1087767.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Deng, Li, et Mingyuan Zhu. « Metal–nitrogen (Co-g-C3N4) doping of surface-modified single-walled carbon nanohorns for use as an oxygen reduction electrocatalyst ». RSC Advances 6, no 31 (2016) : 25670–77. http://dx.doi.org/10.1039/c5ra27895c.

Texte intégral
Résumé :
A cobalt-doped graphitic carbon nitride (g-C3N4) polymer was supported on surface-modified single-walled carbon nanohorns (SWCNHs) to produce a new Co-g-C3N4 catalyst for the oxygen reduction reaction (ORR).
Styles APA, Harvard, Vancouver, ISO, etc.
47

Merlo, A., V. R. S. S. Mokkapati, S. Pandit et I. Mijakovic. « Boron nitride nanomaterials : biocompatibility and bio-applications ». Biomaterials Science 6, no 9 (2018) : 2298–311. http://dx.doi.org/10.1039/c8bm00516h.

Texte intégral
Résumé :
Boron nitride has structural characteristics similar to carbon 2D materials (graphene and its derivatives) and its layered structure has been exploited to form different nanostructures such as nanohorns, nanotubes, nanoparticles and nanosheets.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Miyawaki, Jin, Masako Yudasaka, Takeshi Azami, Yoshimi Kubo et Sumio Iijima. « Toxicity of Single-Walled Carbon Nanohorns ». ACS Nano 2, no 2 (16 janvier 2008) : 213–26. http://dx.doi.org/10.1021/nn700185t.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Geng, Junfeng, Caterina Ducati, Douglas S. Shephard, Manish Chhowalla, Brian F. G. Johnson et John Robertson. « Carbon nanohorns grown from ruthenium nanoparticles ». Chemical Communications, no 10 (19 avril 2002) : 1112–13. http://dx.doi.org/10.1039/b201182b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Pagona, Georgia, Nikos Tagmatarchis, Jing Fan, Masako Yudasaka et Sumio Iijima. « Cone-End Functionalization of Carbon Nanohorns ». Chemistry of Materials 18, no 17 (août 2006) : 3918–20. http://dx.doi.org/10.1021/cm0604864.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie