Articles de revues sur le sujet « Nanofabric »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Nanofabric.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Nanofabric ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Li, Yinfeng, Simanta Lahkar, Qingyuan Wei, Pizhong Qiao et Han Ye. « Strength nature of two-dimensional woven nanofabrics under biaxial tension ». International Journal of Damage Mechanics 28, no 3 (13 avril 2018) : 367–79. http://dx.doi.org/10.1177/1056789518769343.

Texte intégral
Résumé :
Woven nanostructures have been acknowledged as a platform for solar cells, supercapacitors, and sensors, making them especially of interest in the fields of materials sciences, nanotechnology, and renewable energy. By employing molecular dynamics simulations, the mechanical properties of two-dimensional woven nanofabrics under biaxial tension are evaluated. Two-dimensional woven nanostructures composed of graphene and graphyne nanoribbons are examined. Dynamic failure process of both graphene woven nanofabric and graphyne woven nanofabric with the same woven unit cell initiates at the edge of interlaced ribbons accompanied by the formation of cracks near the crossover location of yarns. Further stress analysis reveals that such failure mode is attributed to the compression between two overlaced ribbons and consequently their deformation under biaxial tension, which is sensitive to the lattice structure of nanoribbon as well as the density of yarns in fabric. Systemic comparisons between nanofabrics with different yarn width and interval show that the strength of nanofabric can be effectively controlled by tuning the space interval between nanoribbons. For nanofabrics with fixed large gap spacing, the strength of fabric does not change with the ribbon width, while the strength of nanofabric with small gap spacing decreases anomalously with the increase in yarn density. Such fabric strength dependency on gap spacing is the result of the stress concentration caused by the interlace compression. The outcomes of simulation suggest that the compacted arrangement of yarns in carbon woven nanofabric structures should be avoided to achieve high strength performance.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Loizou, Katerina, Angelos Evangelou, Orestes Marangos, Loukas Koutsokeras, Iouliana Chrysafi, Stylianos Yiatros, Georgios Constantinides, Stefanos Zaoutsos et Vassilis Drakonakis. « Assessing the performance of electrospun nanofabrics as potential interlayer reinforcement materials for fiber-reinforced polymers ». Composites and Advanced Materials 30 (1 janvier 2021) : 263498332110025. http://dx.doi.org/10.1177/26349833211002519.

Texte intégral
Résumé :
Multiscale-reinforced polymers offer enhanced functionality due to the three different scales that are incorporated; microfiber, nanofiber, and nanoparticle. This work aims to investigate the applicability of different polymer-based nanofabrics, fabricated via electrospinning as reinforcement interlayers for multilayer-fiber-reinforced polymer composites. Three different polymers are examined; polyamide 6, polyacrylonitrile, and polyvinylidene fluoride, both plain and doped with multiwalled carbon nanotubes (MWCNTs). The effect of nanotube concentration on the properties of the resulting nanofabrics is also examined. Nine different nanofabric systems are prepared. The stress–strain behavior of the different nanofabric systems, which are eventually used as reinforcement interlayers, is investigated to assess the enhancement of the mechanical properties and to evaluate their potential as interlayer reinforcements. Scanning electron microscopy is employed to visualize the morphology and microstructure of the electrospun nanofabrics. The thermal behavior of the nanofabrics is investigated via differential scanning calorimetry to elucidate the glass and melting point of the nanofabrics, which can be used to identify optimum processing parameters at composite level. Introduction of MWCNTs appears to augment the mechanical response of the polymer nanofabrics. Examination of the mechanical performance of these interlayer reinforcements after heat treatment above the glass transition temperature reveals that morphological and microstructural changes can promote further enhancement of the mechanical response.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hazarika, Doli, Naba Kumar Kalita, Amit Kumar et Vimal Katiyar. « Functionalized poly(lactic acid) based nano-fabric for anti-viral applications ». RSC Advances 11, no 52 (2021) : 32884–97. http://dx.doi.org/10.1039/d1ra05352c.

Texte intégral
Résumé :
PLA based electrospun nanofabric prepared using ZL and SNC. Incorporation of SNC conferred hydrophobicity. Breathable and reusable nanofabric. PLA/ZL nanofabric demonstrated significant antibacterial & antiviral properties.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Li, Ruya, Yang Si, Zijie Zhu, Yaojun Guo, Yingjie Zhang, Ning Pan, Gang Sun et Tingrui Pan. « Supercapacitive Iontronic Nanofabric Sensing ». Advanced Materials 29, no 36 (31 juillet 2017) : 1700253. http://dx.doi.org/10.1002/adma.201700253.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shivakumar, Kunigal, Shivalingappa Lingaiah, Huanchun Chen, Paul Akangah, Gowthaman Swaminathan et Larry Russell. « Polymer Nanofabric Interleaved Composite Laminates ». AIAA Journal 47, no 7 (juillet 2009) : 1723–29. http://dx.doi.org/10.2514/1.41791.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Chen, Min, Zhiping Chen, Xuewei Fu et Wei-Hong Zhong. « A Janus protein-based nanofabric for trapping polysulfides and stabilizing lithium metal in lithium–sulfur batteries ». Journal of Materials Chemistry A 8, no 15 (2020) : 7377–89. http://dx.doi.org/10.1039/d0ta01989e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bubenchikov, Mikhail Alekseevich, Aleksey Mikhaylovich Bubenchikov, Anton Vadimovich Ukolov, Roman Yur’evich Ukolov et Anna Sergeevna Chelnokova. « INVESTIGATION OF A CARBON NANOFABRIC PERMEABILITY ». Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no 57 (1 janvier 2019) : 62–75. http://dx.doi.org/10.17223/19988621/57/5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kong, Lushi, Xuewei Fu, Xin Fan, Yu Wang, Shengli Qi, Dezhen Wu, Guofeng Tian et Wei-Hong Zhong. « A Janus nanofiber-based separator for trapping polysulfides and facilitating ion-transport in lithium–sulfur batteries ». Nanoscale 11, no 39 (2019) : 18090–98. http://dx.doi.org/10.1039/c9nr04854e.

Texte intégral
Résumé :
The conductive CNF side of the Janus CNF@PI separator used in Li–S battery can effectively trap and convert polysulfides and the insulated PI nanofabric side separates the electrodes and facilitates Li+-transport in Li–S battery.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ng, Vianessa, Guangfeng Hou, Jay Kim, Gregory Beaucage et Mark J. Schulz. « Carbon nanofabric : A multifunctional fire-resistant material ». Carbon Trends 7 (avril 2022) : 100165. http://dx.doi.org/10.1016/j.cartre.2022.100165.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ashjaran, Ali, Mohammad Esmail Yazdanshenas, Abosaeed Rashidi, Ramin Khajavi et Abbas Rezaee. « Overview of bio nanofabric from bacterial cellulose ». Journal of the Textile Institute 104, no 2 (février 2013) : 121–31. http://dx.doi.org/10.1080/00405000.2012.703796.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Ding, Chenfeng, Yiran Guo, Juejing Liu, Grimm Brian Kent, Bertram Tom Jobson, Xuewei Fu, Xiaoping Yang et Wei-Hong Zhong. « A Super-breathable “Woven-like” Protein Nanofabric ». ACS Applied Bio Materials 3, no 5 (31 mars 2020) : 2958–64. http://dx.doi.org/10.1021/acsabm.0c00008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Lackowski, Marcin, Andrzej Krupa et Anatol Jaworek. « Nanofabric nonwoven mat for filtration smoke and nanoparticles ». Polish Journal of Chemical Technology 15, no 2 (1 juillet 2013) : 48–52. http://dx.doi.org/10.2478/pjct-2013-0023.

Texte intégral
Résumé :
The process of production of filtration mats of various thickness from PVC and PVDF polymers by the electrospinning method is presented in the paper. Filtration of nanoparticles and submicron particles is an important problem in industry and health protection systems, in particular in air-conditioning and ventilation appliances. This problem can be effectively solved by application of non-woven fibrous filtration mats. The experimental investigations of mechanical properties of nanofibrous filtration mats produced by electrospinning and the measurements of removal efficiency of submicron particles from flowing gas have indicated potential usefulness of these nanomats for gas cleaning of air-conditioning systems and/or ventilation ducts. The experimental results obtained for cigarette smoke of a mass median diameter of about 1 μm, used as test particles, have shown that nonwoven nanofibrous filtration mats produced by electrospinning have a good filtration efficiency for nano- and submicron particles, owing to a pressure drop similar to HEPA filters. Particles of this size are particularly difficult to be removed from the flow by a conventional method, for example, by a cyclone or electrostatic precipitator.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Park, Dae-Ung, Heung-Sik Um, Beom-Seok Chang, Si-Young Lee, Ki-Yeon Yoo, Won-Youl Choi et Jae-Kwan Lee. « Controlled releasing properties of gelatin nanofabric device containing chlorhexidine ». Oral Biology Research 45, no 2 (30 juin 2021) : 90–98. http://dx.doi.org/10.21851/obr.45.02.202106.90.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Krishna, B. N. Vamsi, Jai Bhagwan et Jae Su Yu. « Sol-Gel Routed NiMn2O4 Nanofabric Electrode Materials for Supercapacitors ». Journal of The Electrochemical Society 166, no 10 (2019) : A1950—A1955. http://dx.doi.org/10.1149/2.0661910jes.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sigman, Michael B., et Brian A. Korgel. « Solventless Synthesis of Bi2S3(Bismuthinite) Nanorods, Nanowires, and Nanofabric ». Chemistry of Materials 17, no 7 (avril 2005) : 1655–60. http://dx.doi.org/10.1021/cm0478733.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Shao, Beibei, Zheheng Song, Xin Chen, Yanfei Wu, Yajuan Li, Caicheng Song, Fan Yang et al. « Bioinspired Hierarchical Nanofabric Electrode for Silicon Hydrovoltaic Device with Record Power Output ». ACS Nano 15, no 4 (9 avril 2021) : 7472–81. http://dx.doi.org/10.1021/acsnano.1c00891.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Khitun, A., Mingqiang Bao et K. L. Wang. « Spin Wave Magnetic NanoFabric : A New Approach to Spin-Based Logic Circuitry ». IEEE Transactions on Magnetics 44, no 9 (septembre 2008) : 2141–52. http://dx.doi.org/10.1109/tmag.2008.2000812.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Yilmaz, Seyhan. « Early experience with a novel self-sealing nanofabric vascular graft for early hemodialysis access ». Vascular 24, no 4 (10 juillet 2016) : 421–24. http://dx.doi.org/10.1177/1708538115607421.

Texte intégral
Résumé :
Aim To report initial experience regarding the use of novel self-sealing electrospun nanofabric graft. Material and methods A total of 21 patients aged between 22 and 64 (male:female ratio = 11:10) underwent AVflo vascular access graft implantation to forearm. Information for patency at 6 and 12 months after the operation was obtained. Cannulation for hemodialysis was allowed 8 h after the operation, as needed. Results Cannulation was performed before 12th hour of implantation in two patients, between 12th and 24th postoperative hours in 10 patients and between 12th and 24th postoperative hours in the remaining nine patients. Primary patency was 17/21 (80.9%) at 6th month and 15/21 (71.4%) at 12th month. Secondary patency was 19/21 (90.4%) at sixth month and 17/21 (80.9%) at 12th month. Conclusion AVflo self-sealing graft allows for early cannulation after implantation and thus may potentially eliminate the need for central venous catheters in selected patients.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Liu, Qianru, Yan Gao, Pinggui He, Chao Yan, Ying Gao, Jianzhi Gao, Hongbing Lu et Zhibo Yang. « Facile fabrication of hollow structured Si-Ni-C nanofabric anode for Li-ion battery ». Materials Letters 231 (novembre 2018) : 205–8. http://dx.doi.org/10.1016/j.matlet.2018.08.044.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Giacomin, Edouard, Sumanth Gudaparthi, Juergen Boemmels, Rajeev Balasubramonian, Francky Catthoor et Pierre-Emmanuel Gaillardon. « A Multiply-and-Accumulate Array for Machine Learning Applications Based on a 3D Nanofabric Flow ». IEEE Transactions on Nanotechnology 20 (2021) : 873–82. http://dx.doi.org/10.1109/tnano.2021.3132224.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Singh, Mandeep, Ashish Gupta, Shashank Sundriyal, Prashant Dubey, Karishma Jain et S. R. Dhakate. « Activated green carbon-based 2-D nanofabric mats for ultra-flexible all-solid-state supercapacitor ». Journal of Energy Storage 49 (mai 2022) : 104193. http://dx.doi.org/10.1016/j.est.2022.104193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Inoue, Shun-ichi, Hidetoshi Tsuda, Toshihisa Tanaka, Masatoshi Kobayashi, Yoshiko Magoshi et Jun Magoshi. « Nanostructure of Natural Fibrous Protein : In Vitro Nanofabric Formation ofSamiacynthiariciniWild Silk Fibroin by Self-Assembling ». Nano Letters 3, no 10 (octobre 2003) : 1329–32. http://dx.doi.org/10.1021/nl0340327.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Shetty, Sawan, Arunjunairaj Mahendran et S. Anandhan. « Development of a new flexible nanogenerator from electrospun nanofabric based on PVDF/talc nanosheet composites ». Soft Matter 16, no 24 (2020) : 5679–88. http://dx.doi.org/10.1039/d0sm00341g.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Filho, José B. G., Carlos G. O. Bruziquesi, Regiane D. F. Rios, Alexandre A. Castro, Henrique F. V. Victória, Klaus Krambrock, Alexandra A. P. Mansur et al. « Selective visible-light-driven toxicity breakdown of nerve agent simulant methyl paraoxon over a photoactive nanofabric ». Applied Catalysis B : Environmental 285 (mai 2021) : 119774. http://dx.doi.org/10.1016/j.apcatb.2020.119774.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Oh, Jin Young, Tae Il Lee, Woo Soon Jang, Soo Sang Chae, Jee Ho Park, Hyun Woo Lee, Jae-Min Myoung et Hong Koo Baik. « Mass production of a 3D non-woven nanofabric with crystalline P3HT nanofibrils for organic solar cells ». Energy & ; Environmental Science 6, no 3 (2013) : 910. http://dx.doi.org/10.1039/c2ee23987f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Toldy, Andrea, Gábor Szebényi, Kolos Molnár, Levente Tóth, Balázs Magyar, Viktor Hliva, Tibor Czigány et Beáta Szolnoki. « The Effect of Multilevel Carbon Reinforcements on the Fire Performance, Conductivity, and Mechanical Properties of Epoxy Composites ». Polymers 11, no 2 (12 février 2019) : 303. http://dx.doi.org/10.3390/polym11020303.

Texte intégral
Résumé :
We studied the effect of a multilevel presence of carbon-based reinforcements—a combination of conventional load-bearing unidirectional carbon fiber (CF) with multiwalled carbon nanotubes (CNT) and conductive CNT-containing nonwoven carbon nanofabric (CNF(CNT))—on the fire performance, thermal conductivity, and mechanical properties of reference and flame-retarded epoxy resin (EP) composites. The inclusion of carbon fibers and flame retardant reduced the peak heat release rate (pHRR) of the epoxy resins. The extent to which the nanoreinforcements reduced the pHRR depended on their influence on thermal conductivity. Specifically, high thermal conductivity is advantageous at the early stages of degradation, but after ignition it may lead to more intensive degradation and a higher pHRR; especially in the reference samples without flame retardant. The lowest pHRR (130 kW/m2) and self-extinguishing V-0 UL-94 rating was achieved in the flame-retarded composite containing all three levels of carbon reinforcement (EP + CNF(CNT) + CNT + CF FR). The plasticizing effect of the liquid flame retardant impaired both the tensile and flexural properties; however, it significantly enhanced the impact resistance of the epoxy resin and its composites.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Khalifa, Mohammed, et S. Anandhan. « Highly sensitive and wearable NO2 gas sensor based on PVDF nanofabric containing embedded polyaniline/g-C3N4 nanosheet composites ». Nanotechnology 32, no 48 (7 septembre 2021) : 485504. http://dx.doi.org/10.1088/1361-6528/ac1f54.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kakunuri, M., S. Kaushik, A. Saini et C. S. Sharma. « SU-8/MWCNT derived Electrospun Composite Carbon Nanofabric as a High Performance Anode Material for Lithium Ion Battery ». ECS Transactions 72, no 1 (19 mai 2016) : 69–74. http://dx.doi.org/10.1149/07201.0069ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Sun, Pingping, Xueying Zhao, Renpeng Chen, Tao Chen, Lianbo Ma, Qi Fan, Hongling Lu et al. « Li3V2(PO4)3encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries ». Nanoscale 8, no 14 (2016) : 7408–15. http://dx.doi.org/10.1039/c5nr08832a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chen, Renpeng, Xiaolan Xue, Jingyu Lu, Tao Chen, Yi Hu, Lianbo Ma, Guoyin Zhu et Zhong Jin. « The dealloying–lithiation/delithiation–realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries ». Nanoscale 11, no 18 (2019) : 8803–11. http://dx.doi.org/10.1039/c9nr00159j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Chen, Renpeng, Xiaolan Xue, Yi Hu, Weihua Kong, Huinan Lin, Tao Chen et Zhong Jin. « Intermetallic SnSb nanodots embedded in carbon nanotubes reinforced nanofabric electrodes with high reversibility and rate capability for flexible Li-ion batteries ». Nanoscale 11, no 28 (2019) : 13282–88. http://dx.doi.org/10.1039/c9nr04645c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lee, Joon Seok, Kyu Ha Choi, Han Do Ghim, Sam Soo Kim, Du Hwan Chun, Hak Yong Kim et Won Seok Lyoo. « Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning ». Journal of Applied Polymer Science 93, no 4 (2004) : 1638–46. http://dx.doi.org/10.1002/app.20602.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kong, Lushi, Nanxi Dong, Guofeng Tian, Shengli Qi et Dezhen Wu. « Highly enhanced Raman scattering with good reproducibility observed on a flexible PI nanofabric substrate decorated by silver nanoparticles with controlled size ». Applied Surface Science 511 (mai 2020) : 145443. http://dx.doi.org/10.1016/j.apsusc.2020.145443.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Shami, Zahed, Seyed Mojtaba Amininasab et Pegah Shakeri. « Structure–Property Relationships of Nanosheeted 3D Hierarchical Roughness MgAl–Layered Double Hydroxide Branched to an Electrospun Porous Nanomembrane : A Superior Oil-Removing Nanofabric ». ACS Applied Materials & ; Interfaces 8, no 42 (17 octobre 2016) : 28964–73. http://dx.doi.org/10.1021/acsami.6b07744.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Goldstein, Seth Copen, et Mihai Budiu. « NanoFabrics ». ACM SIGARCH Computer Architecture News 29, no 2 (mai 2001) : 178–91. http://dx.doi.org/10.1145/384285.379262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Laha, Anindita, Saptarshi Majumdar et Chandra S. Sharma. « Controlled Drug Release Formulation by Sequential Crosslinking of Multilayered Electrospun Gelatin Nanofiber Mat ». MRS Advances 1, no 29 (2016) : 2107–13. http://dx.doi.org/10.1557/adv.2016.320.

Texte intégral
Résumé :
ABSTRACTThe major aim of the present study is to develop and explore the potential of large surface area electrospun polymer nanofabric as a carrier for controlled and sustained release, in particular for hydrophobic drugs. Gelatin (type A), FDA approved natural polymer was electrospun in a mixture of solvent (20% acetic acid in water) to yield long, continuous and uniform fibers with average diameter ∼ 200 nm. Piperine was chosen as a model hydrophobic drug in this study. As gelatin is highly soluble in aqueous medium, we crosslinked electrospun gelatin nanofibers using saturated GTA vapor to increase the water resistive properties. For controlled release over a period of 12 h, we devised several strategies to vary the crosslinking conditions and accordingly understand their effect on drug release mechanism. One of such successful efforts was based on deposition of multiple layers of electrospun fabric by sandwiching between drug loaded gelatin nanofibers and without drug gelatin nanofibers from both sides. Not only the layer by layer deposition, we also crosslinked the different layer in the same sequential way. Sequential crosslinking using GTA vapor in different layers of the fabric, helped in uniform crosslinking throughout the thickness compared to crosslinking after final deposition in the form of a single layer. Effect of different crosslinking strategies was investigated in terms of surface morphology and drug stability. Finally,in-vitrorelease study was performed maintaining the physiological conditions mimicking GI tract to analyze the effect of crosslinking on the drug release profile. Thein-vitrostudies concluded that the controlled drug release can be achieved by tuning the thickness of individual fabric layer followed by their sequential crosslinking, which finally affects the diffusional barrier for drug release. Interestingly, we also found that only 6 min exposure to saturated GTA vapor is sufficient to provide the required drug release in contrast to up to 24 h as reported in literature. This finding also addresses the toxicity problem associated with the use of GTA as a cross-linker.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Khan, Nida Tabassum, et Muhammad Jibran Khan. « Nanofabrics—The Smart Textile ». Engineering Advances 1, no 1 (18 juin 2021) : 26–30. http://dx.doi.org/10.26855/ea.2021.06.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ryosuke, Sato, Gaku Yamaguchi, Daisuke Nagai, Yasuyuki Maki, Kazuto Yoshiba, Takao Yamamoto, Benjamin Chu et Toshiaki Dobashi. « Adsorption dynamics of tannin on deacetylated electrospun Konjac glucomannan fabric ». Soft Matter 14, no 14 (2018) : 2712–23. http://dx.doi.org/10.1039/c8sm00123e.

Texte intégral
Résumé :
We demonstrate the adsorption dynamics of Konjac glucomannan electrospun nanofabrics consisting of an initial diffusion-limited stage and a late stoichiometric relaxation stage and show how to design efficient adsorption using the crossover time.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Demo, Pavel, Šárka Hošková, Marina Davydova, Petra Tichá, Alexej Sveshnikov, Jan Krňanský et Zdeněk Kožíšek. « Nucleation on Polymer Nanofibers and their Controllable Conversion to Protective Layers : Preliminary Theoretical Study ». Key Engineering Materials 466 (janvier 2011) : 201–5. http://dx.doi.org/10.4028/www.scientific.net/kem.466.201.

Texte intégral
Résumé :
Nanofibers are very promising new type of material with a broad range of possible applications. The new NANOSPIDER technology opens a possibility to produce nanofabrics in an amount large enough for them to start being interesting as a construction material. There are many so-called passive applications of nanotextiles (including different types of filters and protective layers), and active applications, when the active chemical agent is incorporated in their structure. In the present paper, however, the new possible application of nanofabrics is proposed: as a base material on which technically interesting nanoclusters are heterogeneously nucleated. The basic thermodynamics of heterogeneous nucleation on nanofibers is considered. The extreme curvature of nanofibers manifests itself in an energetic barrier of nucleation, which is quite different from a case of nucleation on a flat surface. The expression for Gibbs energy of cluster formation is derived, taking into account the elastic strain resulting from a volume (or shape) changes during nucleation.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Feinberg, Adam W., et Kevin Kit Parker. « Surface-Initiated Assembly of Protein Nanofabrics ». Nano Letters 10, no 6 (9 juin 2010) : 2184–91. http://dx.doi.org/10.1021/nl100998p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Datta, Kushal, Arindam Mukherjee et Arun Ravindran. « Automated design flow for diode-based nanofabrics ». ACM Journal on Emerging Technologies in Computing Systems 2, no 3 (juillet 2006) : 219–41. http://dx.doi.org/10.1145/1167943.1167946.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Mosinger, Jiří, Oldřich Jirsák, Pavel Kubát, Kamil Lang et Bedřich Mosinger. « Bactericidal nanofabrics based on photoproduction of singlet oxygen ». J. Mater. Chem. 17, no 2 (2007) : 164–66. http://dx.doi.org/10.1039/b614617a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ding, Chenfeng, Lingbo Huang, Jinle Lan, Yunhua Yu, Wei‐Hong Zhong et Xiaoping Yang. « Superresilient Hard Carbon Nanofabrics for Sodium‐Ion Batteries ». Small 16, no 11 (20 février 2020) : 1906883. http://dx.doi.org/10.1002/smll.201906883.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

He, Chen, et Margarida F. Jacome. « Defect-Aware High-Level Synthesis Targeted at Reconfigurable Nanofabrics ». IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 26, no 5 (mai 2007) : 817–33. http://dx.doi.org/10.1109/tcad.2006.884401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

He, Chen, et Margarida F. Jacome. « Defect-aware high-level synthesis targeted at reconfigurable nanofabrics ». IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 26, no 5 (mai 2007) : 817–33. http://dx.doi.org/10.1109/tcad.2007.8361577.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gmurek, Marta, Jiri Mosinger et Jacek S. Miller. « 2-Chlorophenol photooxidation using immobilized meso-tetraphenylporphyrin in polyurethane nanofabrics ». Photochemical & ; Photobiological Sciences 11, no 9 (2012) : 1422. http://dx.doi.org/10.1039/c2pp25010a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Cui, Guixin, Yan Xin, Xin Jiang, Mengqi Dong, Junling Li, Peng Wang, Shumei Zhai, Yongchun Dong, Jianbo Jia et Bing Yan. « Safety Profile of TiO2-Based Photocatalytic Nanofabrics for Indoor Formaldehyde Degradation ». International Journal of Molecular Sciences 16, no 11 (19 novembre 2015) : 27721–29. http://dx.doi.org/10.3390/ijms161126055.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Mosinger, Jiří, Kamil Lang, Lukáš Plíštil, Soňa Jesenská, Jiří Hostomský, Zdeněk Zelinger et Pavel Kubát. « Fluorescent Polyurethane Nanofabrics : A Source of Singlet Oxygen and Oxygen Sensing ». Langmuir 26, no 12 (15 juin 2010) : 10050–56. http://dx.doi.org/10.1021/la1001607.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Souzandeh, Hamid, Kyle S. Johnson, Yu Wang, Keshava Bhamidipaty et Wei-Hong Zhong. « Soy-Protein-Based Nanofabrics for Highly Efficient and Multifunctional Air Filtration ». ACS Applied Materials & ; Interfaces 8, no 31 (29 juillet 2016) : 20023–31. http://dx.doi.org/10.1021/acsami.6b05339.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Mosinger, Jiří, Kamil Lang, Pavel Kubát, Jan Sýkora, Martin Hof, Lukáš Plíštil et Bedřich Mosinger. « Photofunctional Polyurethane Nanofabrics Doped by Zinc Tetraphenylporphyrin and Zinc Phthalocyanine Photosensitizers ». Journal of Fluorescence 19, no 4 (29 janvier 2009) : 705–13. http://dx.doi.org/10.1007/s10895-009-0464-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie