Articles de revues sur le sujet « Nano-Biomaterials »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Nano-Biomaterials.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Nano-Biomaterials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Kang, Inn-Kyu, Yoshihiro Ito et Oh Hyeong Kwon. « Nano-/Microfabrication of Biomaterials ». BioMed Research International 2014 (2014) : 1–2. http://dx.doi.org/10.1155/2014/963972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sharma, Rahul, Deepti Sharma, Linda D. Hazlett et Nikhlesh K. Singh. « Nano-Biomaterials for Retinal Regeneration ». Nanomaterials 11, no 8 (22 juillet 2021) : 1880. http://dx.doi.org/10.3390/nano11081880.

Texte intégral
Résumé :
Nanoscience and nanotechnology have revolutionized key areas of environmental sciences, including biological and physical sciences. Nanoscience is useful in interconnecting these sciences to find new hybrid avenues targeted at improving daily life. Pharmaceuticals, regenerative medicine, and stem cell research are among the prominent segments of biological sciences that will be improved by nanostructure innovations. The present review was written to present a comprehensive insight into various emerging nanomaterials, such as nanoparticles, nanowires, hybrid nanostructures, and nanoscaffolds, that have been useful in mice for ocular tissue engineering and regeneration. Furthermore, the current status, future perspectives, and challenges of nanotechnology in tracking cells or nanostructures in the eye and their use in modified regenerative ophthalmology mechanisms have also been proposed and discussed in detail. In the present review, various research findings on the use of nano-biomaterials in retinal regeneration and retinal remediation are presented, and these findings might be useful for future clinical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Oh, Il-Kwon, Anchal Srivastava, In-Kyu Park et Michael Z. Hu. « Nano for Biomimetics and Biomaterials ». Journal of Nanomaterials 2014 (2014) : 1. http://dx.doi.org/10.1155/2014/485642.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Liu, Xuanyong, Paul K. Chu et Chuanxian Ding. « Surface nano-functionalization of biomaterials ». Materials Science and Engineering : R : Reports 70, no 3-6 (novembre 2010) : 275–302. http://dx.doi.org/10.1016/j.mser.2010.06.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hoffman, Allan S. « Biomaterials in the nano-era ». Chinese Science Bulletin 58, no 35 (16 septembre 2013) : 4337–41. http://dx.doi.org/10.1007/s11434-013-6090-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yamamoto, Masaya, Shahin Rafii et Sina Y. Rabbany. « Scaffold biomaterials for nano-pathophysiology ». Advanced Drug Delivery Reviews 74 (juillet 2014) : 104–14. http://dx.doi.org/10.1016/j.addr.2013.09.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Nie, Yu, et Xiangrong Song. « Nano/Microtechnology in Biomaterials and Pharmaceutics ». Pharmaceutical Nanotechnology 8, no 4 (8 octobre 2020) : 257. http://dx.doi.org/10.2174/221173850804200929092606.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lo, An-Ya, Chuan Wang, Wei Hsuan Hung, Anmin Zheng et Biswarup Sen. « Nano- and Biomaterials for Sustainable Development ». Journal of Nanomaterials 2015 (2015) : 1–2. http://dx.doi.org/10.1155/2015/129894.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhou, Wei, et Jun Zheng. « A Novel Feasible Purifying Strategy for Nano-Sized Calcium Phosphate Based Biomaterials ». Advanced Materials Research 503-504 (avril 2012) : 258–61. http://dx.doi.org/10.4028/www.scientific.net/amr.503-504.258.

Texte intégral
Résumé :
The present paper proposes a new purifying strategy which can be applied in rapid synthesis of nano-sized calcium phosphate based biomaterials. To understand the new preparation process, the synthesized nano-hydroxyapatite was investigated as model to explicate. The results showed that by using the new method, quantities of pure nano-HAP could be obtained, and the D-process efficiency could be adapted to improve to some extend. Comparing with traditional purifying processing, dialysis is efficient and much easier. It is anticipated that dialysis can be accepted an easy, efficient, promising feasibility strategy for nano-CP biomaterials mass production.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hermansson, Leif, Hakan Engqvist, Jesper Lööf, Gunilla Gómez-Ortega et Kajsa Björklund. « Nano-Size Biomaterials Based on Ca-Aluminate ». Advances in Science and Technology 49 (octobre 2006) : 21–26. http://dx.doi.org/10.4028/www.scientific.net/ast.49.21.

Texte intégral
Résumé :
This study deals with the microstructure and property profile of biomaterials within the Ca-aluminate system (CA). Hydrated CA materials are stable in bone tissue, and thus not resorbable as the Ca-phosphate materials are. Identified possible applications for CA-based materials are within vertebroplasty and odontology. CA with ZrO2 particles as well as CA with glass particles were examined with regard to mechanical properties, biocompatibility and bioactivity. The hydrates formed - examined by HRTEM - are in the size range of 20-50 nm. With the studied systems it is possible to obtain a combination of high and early strength, shape stability including low expansion pressure, and in vivo bioactivity.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Trnková, Libuše, et Zdeněk Farka. « Advanced nano- and biomaterials in biophysical chemistry ». Monatshefte für Chemie - Chemical Monthly 148, no 11 (11 octobre 2017) : 1899–900. http://dx.doi.org/10.1007/s00706-017-2063-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Cicha, Iwona, Raminder Singh, Christoph D. Garlichs et Christoph Alexiou. « Nano-biomaterials for cardiovascular applications : Clinical perspective ». Journal of Controlled Release 229 (mai 2016) : 23–36. http://dx.doi.org/10.1016/j.jconrel.2016.03.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Mahapatro, Anil. « Bio-functional nano-coatings on metallic biomaterials ». Materials Science and Engineering : C 55 (octobre 2015) : 227–51. http://dx.doi.org/10.1016/j.msec.2015.05.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Im, Yeon Min, Dong Woo Khang et Tae Hyun Nam. « Nanostructured Titanium Biomaterials : Understanding and Applications ». Materials Science Forum 654-656 (juin 2010) : 2053–56. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2053.

Texte intégral
Résumé :
Nanostructured implant materials are considered as promising future biomaterials. Specifically, titanium based nanomaterial is the mostly used implant materials in orthopedic, dental and vascular surgeries. Due to the advantage of nanoscale features, treatment with nano porous and nano bump surface features have shown enhanced biocompatibilities, such as adhesion, proliferation and differentiation for bone and vascular cells. In addition, nanotoxicity issue with immune cells (macrophages) is currently paramount interest for determining subsequent tissue cellular response on implanted biomaterials. In this review, we demonstrated altered cellular interaction of bone, vascular cells on nanostructured titanium based alloys/materials through systematic controlling of nanoscale surface features, such as porosity and nanobumps. All this knowledge will be beneficial for both understanding and designing nanostructured biomaterials for increasing biocompatibility, thus, all these endeavors will lead increment of functionality of biomaterials and will eventually prolong the life time of implanted biomaterials.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Wu, Guosong, Penghui Li, Hongqing Feng, Xuming Zhang et Paul K. Chu. « Engineering and functionalization of biomaterials via surface modification ». Journal of Materials Chemistry B 3, no 10 (2015) : 2024–42. http://dx.doi.org/10.1039/c4tb01934b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Gulati, Karan, Abdalla Abdal-hay et Sašo Ivanovski. « Novel Nano-Engineered Biomaterials for Bone Tissue Engineering ». Nanomaterials 12, no 3 (21 janvier 2022) : 333. http://dx.doi.org/10.3390/nano12030333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wang, Shuo, Jingan Li, Zixiao Zhou, Sheng Zhou et Zhenqing Hu. « Micro-/Nano-Scales Direct Cell Behavior on Biomaterial Surfaces ». Molecules 24, no 1 (26 décembre 2018) : 75. http://dx.doi.org/10.3390/molecules24010075.

Texte intégral
Résumé :
Cells are the smallest living units of a human body’s structure and function, and their behaviors should not be ignored in human physiological and pathological metabolic activities. Each cell has a different scale, and presents distinct responses to specific scales: Vascular endothelial cells may obtain a normal function when regulated by the 25 µm strips, but de-function if the scale is removed; stem cells can rapidly proliferate on the 30 nm scales nanotubes surface, but stop proliferating when the scale is changed to 100 nm. Therefore, micro and nano scales play a crucial role in directing cell behaviors on biomaterials surface. In recent years, a series of biomaterials surface with micro and/or nano scales, such as micro-patterns, nanotubes and nanoparticles, have been developed to control the target cell behavior, and further enhance the surface biocompatibility. This contribution will introduce the related research, and review the advances in the micro/nano scales for biomaterials surface functionalization.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Nie, Yu, et Xiangrong Song. « Nano/Microtechnology in Biomaterials and Pharmaceutics (Part II) ». Pharmaceutical Nanotechnology 8, no 5 (19 novembre 2020) : 356–57. http://dx.doi.org/10.2174/221173850805201102154354.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Stancekova, Dana, Jan Semcer, Jozef Holubjak et Mario Drbul. « Machinability of Nano-Structured Biomaterials for Dental Implants ». Communications - Scientific letters of the University of Zilina 16, no 3A (31 octobre 2014) : 96–100. http://dx.doi.org/10.26552/com.c.2014.3a.96-100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Rejinold, N. Sanoj, R. Jayakumar et Yeu-Chun Kim. « Radio frequency responsive nano-biomaterials for cancer therapy ». Journal of Controlled Release 204 (avril 2015) : 85–97. http://dx.doi.org/10.1016/j.jconrel.2015.02.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Förster, Stephan, et Matthias Konrad. « From self-organizing polymers to nano- and biomaterials ». J. Mater. Chem. 13, no 11 (2003) : 2671–88. http://dx.doi.org/10.1039/b307512p.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kapat, Kausik, Quazi T. H. Shubhra, Miao Zhou et Sander Leeuwenburgh. « Piezoelectric Nano‐Biomaterials for Biomedicine and Tissue Regeneration ». Advanced Functional Materials 30, no 44 (18 février 2020) : 1909045. http://dx.doi.org/10.1002/adfm.201909045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Srivani, Dr Alla, et Gurram Vasanth. « Acceleration Voltage and Spot Size of Advanced Bio Material in Nano scale ». International Journal of Research In Science & ; Engineering, no 25 (27 septembre 2022) : 1–4. http://dx.doi.org/10.55529/ijrise.25.1.4.

Texte intégral
Résumé :
Hydrogels, films, micro/nanofibers, and particles, which have recently emerged as advanced biomaterials, have great potential for use as cell/drug carriers for localised drug delivery and as biomimetic scaffolds for future regenerative therapies. Biological properties such as biocompatibility, biodegradability, immunogenicity of biomaterials, and current application strategies are discussed. Finally, the final remarks and prospects for such advanced biomaterials are discussed. This article discusses stem cell biology, biomaterials, and technological approaches, as well as the design of biomaterials and devices used in vivo and in vitro. Generating new functional liver substitutes, improving bone repair processes, neurogenesis, groundbreaking models of cardiac fibrosis, and developing novel venous valve prostheses are some of the specific topics covered. This interdisciplinary approach emphasises how various properties of biomaterials and devices play a role in promoting Nano materials to Modern Technology.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Crivelli, Barbara, Sara Perteghella, Elia Bari, Milena Sorrenti, Giuseppe Tripodo, Theodora Chlapanidas et Maria Luisa Torre. « Silk nanoparticles : from inert supports to bioactive natural carriers for drug delivery ». Soft Matter 14, no 4 (2018) : 546–57. http://dx.doi.org/10.1039/c7sm01631j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Killi, Naresh, Runali Arjun Dhakare, Amarnath Singam, Metta Lokanadham, Harshavardhan Chitikeshi et Rathna Venkata Naga Gundloori. « Design and fabrication of mechanically strong nano-matrices of linseed oil based polyesteramide blends ». MedChemComm 7, no 12 (2016) : 2299–308. http://dx.doi.org/10.1039/c6md00380j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bhandari, Netra Lal, Sunita Bista, Tika Ram Gautam, Kabita Bist, Ganesh Bhandari, Sumita Subedi et Kedar Nath Dhakal. « An Overview of Synthesis Based Biomedical Applications of Hydroxyapatite Nanomaterials ». Journal of Nepal Chemical Society 42, no 1 (1 mars 2021) : 64–74. http://dx.doi.org/10.3126/jncs.v42i1.35333.

Texte intégral
Résumé :
Hydroxyapatite (HAp) is the mineral phase of animal bones embedded in a collagen-containing organic matrix. It is a naturally optimized material for the physical support of the bones. Synthetic Hydroxyapatite based biomaterials, hence, find wide applications in orthopedics, dentistry, and tissue engineering due to their biocompatibility, bioactivity, osteoconductivity, and similar chemical composition to that of HAp present in animal bones. Different physicochemical synthetic methods and natural biogenic sources have been reported for the synthesis of nano-hydroxyapatite. However, particle size, aspect ratio, and the distribution of HAp in biomaterials have significant effects to use as bone substitutes and implants. This paper has summarized some synthetic methods of preparing nano-HAp from different biogenic approaches. Further, it focuses on some facile synthetic routes of preparing nano-HAp with controlled particle size with higher crystallinity and native bone architectures. This review article aims to correlate some simplistic and cost-effective biosynthetic approaches of nano-HAp, their size-dependent properties characterization, and biomedical applications.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Houacine, Chahinez, Sakib Saleem Yousaf, Iftikhar Khan, Rajneet Kaur Khurana et Kamalinder K. Singh. « Potential of Natural Biomaterials in Nano-scale Drug Delivery ». Current Pharmaceutical Design 24, no 43 (28 mars 2019) : 5188–206. http://dx.doi.org/10.2174/1381612825666190118153057.

Texte intégral
Résumé :
<P>Background: The usage of natural biomaterials or naturally derived materials intended for interface with biological systems has steadily increased in response to the high demand of amenable materials, which are suitable for purpose, biocompatible and biodegradable. There are many naturally derived polymers which overlap in terms of purpose as biomaterials but are equally diverse in their applications. </P><P> Methods: This review examines the applications of the following naturally derived polymers; hyaluronic acid, silk fibroin, chitosan, collagen and tamarind polysaccharide (TSP); further focusing on the biomedical applications of each as well as emphasising on individual novel applications. </P><P> Results: Each of the polymers was found to demonstrate a wide variety of successful biomedical applications fabricated as wound dressings, scaffolds, matrices, films, sponges, implants or hydrogels to suit the therapeutic need. Interestingly, blending and amelioration of polymer structures were the two selection strategies to modify the functionality of the polymers to suit the purpose. Further, these polymers have shown promise to deliver small molecule drugs, proteins and genes as nano-scale delivery systems. </P><P> Conclusion: The review highlights the range of applications of the aforementioned polymers as biomaterials. Hyaluronic acid, silk fibroin, chitosan, collagen and TSP have been successfully utilised as biomaterials in the subfields of implant enhancement, wound management, drug delivery, tissue engineering and nanotechnology. Whilst there are a number of associated advantages (i.e. biodegradability, biocompatibility, non-toxic, nonantigenic as well as amenability) the selected disadvantages of each individual polymer provide significant scope for their further exploration and overcoming challenges like feasibility of mass production at a relatively low cost.</P>
Styles APA, Harvard, Vancouver, ISO, etc.
28

Patil-Sen, Yogita. « Advances in nano-biomaterials and their applications in biomedicine ». Emerging Topics in Life Sciences 5, no 1 (7 avril 2021) : 169–76. http://dx.doi.org/10.1042/etls20200333.

Texte intégral
Résumé :
Nanotechnology has received considerable attention and interest over the past few decades in the field of biomedicine due to the wide range of applications it provides in disease diagnosis, drug design and delivery, biomolecules detection, tissue engineering and regenerative medicine. Ultra-small size and large surface area of nanomaterials prove to be greatly advantageous for their biomedical applications. Moreover, the physico-chemical and thus, the biological properties of nanomaterials can be manipulated depending on the application. However, stability, efficacy and toxicity of nanoparticles remain challenge for researchers working in this area. This mini-review highlights the recent advances of various types of nanoparticles in biomedicine and will be of great value to researchers in the field of materials science, chemistry, biology and medicine.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Dinda, Amit Kumar, et Chandravilas Keshvan Prashant. « Novel Biomaterials and Nano-Biotechnology Approaches in Tumor Diagnosis ». Advances in Science and Technology 76 (octobre 2010) : 78–89. http://dx.doi.org/10.4028/www.scientific.net/ast.76.78.

Texte intégral
Résumé :
Each year 10.9 million people worldwide are diagnosed with cancer and it is the third most common disease in world. Early diagnosis of cancer and cure are major challenges. Recent advances in development of novel biomaterials as well as rapid progress in the area of nano-biotechnology has potentials to change all the current modalities of cancer diagnosis and management. The unique physical and chemical properties of nanomaterials are extremely helpful for detection of biomarkers of the disease, molecular imaging as well as specific targeted therapy sparing the normal organs. Nanoparticle (NP) has large surface area which can be conjugated or coated with different molecular probes for diverse detection system (optical, electrical, magnetic etc.) as well as used as a vehicle to carry different biomolecules and anticancer drugs to tumor cells. Semiconductor quantum dot (QD) with novel optical and electronic properties helped to devise a new class of NP probes for molecular, cellular, and in vivo imaging. A large variety of materials ranging from metal, ceramic, polymer, lipid, protein and nucleic acid are used for developing novel nanoparticles with multiple functions which can detect different aspects of cancer biology and progression. The major issue of concern is biocompatibility and safety of these materials and their fate after in-vivo use. However with collaborative interdisciplinary research it will be possible to develop safer nanomaterials in future
Styles APA, Harvard, Vancouver, ISO, etc.
30

Visalakshan, Rahul M., Melanie N. MacGregor, Alex A. Cavallaro, Salini Sasidharan, Akash Bachhuka, Agnieszka M. Mierczynska-Vasilev, John D. Hayball et Krasimir Vasilev. « Creating Nano-engineered Biomaterials with Well-Defined Surface Descriptors ». ACS Applied Nano Materials 1, no 6 (16 mai 2018) : 2796–807. http://dx.doi.org/10.1021/acsanm.8b00458.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Cui, Chunxiang, Hua Liu, Yanchun Li, Jinbin Sun, Ru Wang, Shuangjin Liu et A. Lindsay Greer. « Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials ». Materials Letters 59, no 24-25 (octobre 2005) : 3144–48. http://dx.doi.org/10.1016/j.matlet.2005.05.037.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Sultan, Sahar, Gilberto Siqueira, Tanja Zimmermann et Aji P. Mathew. « 3D printing of nano-cellulosic biomaterials for medical applications ». Current Opinion in Biomedical Engineering 2 (juin 2017) : 29–34. http://dx.doi.org/10.1016/j.cobme.2017.06.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

ZHAO, Rui, Fei MAO, Hui QIAN, Xiao YANG, Xiangdong ZHU et Xingdong ZHANG. « Micro-/Nano-structured Biomaterials for Bone Regeneration : New Progress ». Journal of Inorganic Materials 38, no 7 (2023) : 750. http://dx.doi.org/10.15541/jim20220580.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Deutsch, Sid. « A Nano Approach [review of "Biomaterials : A Nano Approach" (Ramakrishna, S., et al ; 2010)] ». IEEE Pulse 2, no 1 (janvier 2011) : 52–54. http://dx.doi.org/10.1109/mpul.2010.939614.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Higuchi, Julia, Katarzyna Klimek, Jacek Wojnarowicz, Agnieszka Opalińska, Agnieszka Chodara, Urszula Szałaj, Sylwia Dąbrowska, Damian Fudala et Grazyna Ginalska. « Electrospun Membrane Surface Modification by Sonocoating with HA and ZnO:Ag Nanoparticles—Characterization and Evaluation of Osteoblasts and Bacterial Cell Behavior In Vitro ». Cells 11, no 9 (8 mai 2022) : 1582. http://dx.doi.org/10.3390/cells11091582.

Texte intégral
Résumé :
Guided tissue regeneration and guided bone regeneration membranes are some of the most common products used for bone regeneration in periodontal dentistry. The main disadvantage of commercially available membranes is their lack of bone cell stimulation and easy bacterial colonization. The aim of this work was to design and fabricate a new membrane construct composed of electrospun poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) fibers sonocoated with layers of nanoparticles with specific properties, i.e., hydroxyapatite and bimetallic nanocomposite of zinc oxide–silver. Thus, within this study, four different variants of biomaterials were evaluated, namely: poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) biomaterial, poly(D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite biomaterial, poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano zinc oxide–silver biomaterial, and poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide–silver biomaterial. First, it was demonstrated that the wettability of biomaterials—a prerequisite property important for ensuring desired biological response—was highly increased after the sonocoating process. Moreover, it was indicated that biomaterials composed of poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) with or without a nano hydroxyapatite layer allowed proper osteoblast growth and proliferation, but did not have antibacterial properties. Addition of a nano zinc oxide–silver layer to the biomaterial inhibited growth of bacterial cells around the membrane, but at the same time induced very high cytotoxicity towards osteoblasts. Most importantly, enrichment of this biomaterial with a supplementary underlayer of nano hydroxyapatite allowed for the preservation of antibacterial properties and also a decrease in the cytotoxicity towards bone cells, associated with the presence of a nano zinc oxide–silver layer. Thus, the final structure of the composite poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide–silver seems to be a promising construct for tissue engineering products, especially guided tissue regeneration/guided bone regeneration membranes. Nevertheless, additional research is needed in order to improve the developed construct, which will simultaneously protect the biomaterial from bacterial colonization and enhance the bone regeneration properties.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Si, Mengying, Jin Zhang, Yuyang He, Ziqi Yang, Xu Yan, Mingren Liu, Shengnan Zhuo et al. « Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose ». Green Chemistry 20, no 15 (2018) : 3414–19. http://dx.doi.org/10.1039/c8gc00744f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Gomes Machado, Callinca Paolla, Andrea Vaz Braga Pintor et Mônica Diuana Calasans Maia. « Evaluation of strontium-containing hydroxyapatite as bone substitute in sheep tibiae. » Brazilian Journal of Implantology and Health Sciences 1, no 7 (18 décembre 2019) : 153–64. http://dx.doi.org/10.36557/2674-8169.2019v1n7p153-164.

Texte intégral
Résumé :
With the advancement of research in biomaterials, it has been suggested that the best osteoconductivity of hydroxyapatite would be achieved if its crystal were closer to the structure, size and morphology of biological apatite, that is why nano-hydroxyapatite (nano-HA) is of great importance. current interest. Strontium ions are known to reduce bone resorption, induce osteoblastic activity and stimulate bone formation. The aim of this study was to evaluate biocompatibility and osteoconduction in surgical defects filled with nano-hydroxyapatite microspheres containing 1% strontium (nano-SrHA), stoichiometric nano-HA microspheres (nano-HA) compared to the clot (control) . Four Santa Inês sheep, weighing an average of 32 kg, were anesthetized and submitted to three 2 mm diameter perforations in the medial face of the tibia. The surgical defects were filled with blood clot, microspheres of Sr-HA 1% and microspheres of HA. After 30 days the samples were drawn (6 mm), decalcified, processed for inclusion in paraffin and stained with hematoxylin and eosin (HE) for histological evaluation with light microscopy. All groups revealed bone neoformation from the periphery to the center of the defect, with the nano-SrHA group being less intense among those studied. Presence of a discrete mononuclear inflammatory infiltrate in all experimental groups. Giant foreign body cells were only observed in the HA group. Areas of bone neoformation were observed in close contact with both biomaterials. According to the results obtained, microspheres of HA and SrHA 1% are biocompatible and have osteoconductive properties.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Sabater i Serra, Roser, et Ángel Serrano-Aroca. « Special Issue : “Polymer-Based Biomaterials and Tissue Engineering” ». Materials 16, no 14 (10 juillet 2023) : 4923. http://dx.doi.org/10.3390/ma16144923.

Texte intégral
Résumé :
Polymers in the form of films, fibers, nano- and microspheres, composites, and porous supports are promising biomaterials for a wide range of advanced biomedical applications: wound healing, controlling drug delivery, anti-cancer therapy, biosensors, stem cell therapy, and tissue engineering [...]
Styles APA, Harvard, Vancouver, ISO, etc.
39

Hu, Cheng, Jianxun Sun, Cheng Long, Lina Wu, Changchun Zhou et Xingdong Zhang. « Synthesis of nano zirconium oxide and its application in dentistry ». Nanotechnology Reviews 8, no 1 (4 décembre 2019) : 396–404. http://dx.doi.org/10.1515/ntrev-2019-0035.

Texte intégral
Résumé :
Abstract Zirconium oxide (ZrO2) is the general material in dental area, with natural color, high toughness and strength. Recent years, small blocks of ZrO2 such as micro/nano powders have been studied and developed widely. Nano scale ZrO2, which show simproved mechanical characteristics and superior biocompatibility, are usually incorporated into different applications used in dentistry and tissue engineering. This review provides an overview of nano-ZrO2 materials and its applications in dentistry. The synthesis of nano-ZrO2 powders were mainly prepared by coprecipitation, hydrothermal method and sol-gel method. Then different applications of nano-ZrO2 biomaterials in dental ceramics, implants, radio pacifying agents, basement and tissue engineering fields were briefly introduced.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Lin, Chien-Chi, Emanuele Mauri et Filippo Rossi. « Editorial on the Special Issue “Advances in Nanogels” ». Gels 8, no 12 (17 décembre 2022) : 835. http://dx.doi.org/10.3390/gels8120835.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Aizenberg, Joanna. « New Nanofabrication Strategies : Inspired by Biomineralization ». MRS Bulletin 35, no 4 (avril 2010) : 323–30. http://dx.doi.org/10.1557/mrs2010.555.

Texte intégral
Résumé :
AbstractNature produces a wide variety of exquisite mineralized tissues, fulfilling diverse functions. Organisms exercise a level of molecular control over the detailed nano- and microstructure of the biomaterials that is unparalleled in today's technology. Our understanding of the underlying design principles of biomaterials provides ample opportunities for developing new approaches to materials fabrication at the nanometer and micrometer scale. It is clear that valuable materials lessons can be taught by any organism. I will exemplify this point by describing new nano- and microfabrication strategies and devices that have been inspired by the studies of biomineralization in echinoderms. The topics will include self-assembly, control of crystallization, synthesis of adaptive optical structures, hybrid materials, and novel actuation systems at the nanoscale level.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Saha, Udiptya, Keshav Todi et Bansi D. Malhotra. « Emerging DNA-based multifunctional nano-biomaterials towards electrochemical sensing applications ». Nanoscale 13, no 23 (2021) : 10305–19. http://dx.doi.org/10.1039/d1nr02409d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Lee, Sinah, Kyu-Young Kang, Myung-Joon Jeong, Antje Potthast et Falk Liebner. « Evaluation of supercritical CO2 dried cellulose aerogels as nano-biomaterials ». Journal of the Korean Physical Society 71, no 8 (octobre 2017) : 483–86. http://dx.doi.org/10.3938/jkps.71.483.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

陈, 程. « 3D Printed Microporous PEEK/Nano-Hydroxyapatite Biomaterials for Brain Repair ». Advances in Clinical Medicine 12, no 05 (2022) : 4349–54. http://dx.doi.org/10.12677/acm.2022.125630.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Fujimoto, Keiji. « Development of Nano-biomaterials Involved in Exquisite Functions of Biomembranes. » membrane 27, no 6 (2002) : 310–16. http://dx.doi.org/10.5360/membrane.27.310.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Venkatesan, Jayachandran, et Se-Kwon Kim. « Nano-Hydroxyapatite Composite Biomaterials for Bone Tissue Engineering—A Review ». Journal of Biomedical Nanotechnology 10, no 10 (1 octobre 2014) : 3124–40. http://dx.doi.org/10.1166/jbn.2014.1893.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

An, Yu Liang, Yan Qiu Liu et Xia Yuan. « Controlled Synthesis of Homogeneous Carbon Nano-Capsules Based on Biomaterials ». Advanced Materials Research 58 (octobre 2008) : 27–31. http://dx.doi.org/10.4028/www.scientific.net/amr.58.27.

Texte intégral
Résumé :
A novel and practical route for preparing carbon nanocapsules using biomass – starch as the starting materials was presented. Carbon nanocapsules can be effectively synthesized by catalytic carbonizing starch in hydrogen flow. The carbohydrate was carbonized in a controllable way that leads to a large amount of carbon cages nanoparticles under Fe catalyst. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) were employed to characterizing carbon nanomaterials. The growth mechanism of carbon nanocapsules is briefly discussed in term of composition of precursor.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Gulati, Karan. « Nano- and Micro-Engineered Biomaterials : Trigger, Therapy and Toxicity Evaluations ». Materials Today Advances 16 (décembre 2022) : 100311. http://dx.doi.org/10.1016/j.mtadv.2022.100311.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Park, Ok, Gyeonghui Yu, Heejung Jung et Hyejung Mok. « Recent studies on micro-/nano-sized biomaterials for cancer immunotherapy ». Journal of Pharmaceutical Investigation 47, no 1 (22 novembre 2016) : 11–18. http://dx.doi.org/10.1007/s40005-016-0288-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Raghu, A., Yogesha et Sharath Ananthamurthy. « Optical tweezer for micro and nano scale rheology of biomaterials ». Indian Journal of Physics 84, no 8 (août 2010) : 1051–61. http://dx.doi.org/10.1007/s12648-010-0099-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie