Articles de revues sur le sujet « Mycorrhizas Physiology »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Mycorrhizas Physiology.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Mycorrhizas Physiology ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Jones, Melanie D., et Sally E. Smith. « Exploring functional definitions of mycorrhizas : Are mycorrhizas always mutualisms ? » Canadian Journal of Botany 82, no 8 (1 août 2004) : 1089–109. http://dx.doi.org/10.1139/b04-110.

Texte intégral
Résumé :
Mycorrhizas are considered to be classic mutualisms. Here, we define mutualism as a reciprocal increase in fitness of the symbionts, and we review the evidence for mycorrhizal mutualism at the community, whole-plant, and cellular scales. It is difficult to use results of most mycorrhizal studies because (i) fungal contribution to nutrient uptake is not accurately estimated, (ii) increased growth is not necessarily correlated with increased plant fecundity or survival, especially in communities, and (iii) benefits that occur only at certain times of year, or under specific extreme conditions, may not be detected. To produce the nonmycorrhizal controls required to study mutualism in the field, soil microflora and fauna must be severely perturbed; therefore, it is virtually impossible to evaluate effects of mycorrhizas on plant fitness under realistic conditions. Using the evidence available, we conclude that mycorrhizas can occupy various positions along the continuum from parasitism to mutualism, depending on the specific plant and fungal genotypes and their abiotic and biotic environments. Although we discuss the possibility of defining mycorrhizas by some physiological characteristic, we conclude that mycorrhizas should be defined on a structural or developmental basis and that any requirement to demonstrate mutualism be eliminated.Key words: mycorrhiza, mutualism, parasitism, physiology, fitness, community.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Farias-Larios, J., S. Guzman-Gonzalez et A. Michel-Rosales. « The Advances in the Study on Mycorrhizas of Fruit Trees in Dry Tropics of Mexico ». HortScience 31, no 4 (août 1996) : 684c—684. http://dx.doi.org/10.21273/hortsci.31.4.684c.

Texte intégral
Résumé :
The productivity of marginal soils frequently found in the arid tropics might be improved by using VAM fungi as “biofertilizer” and as a tool of sustainable agricultural systems. Study of mycorrhizas of fruit trees was performed in 1987 in western Mexico. More progress has been made in resources, taxonomy, anatomy and morphology, physiology, ecology, effects, and application of mycorrhizas in fruit trees and ornamental plants production. Currently, five genera has been identified and inoculated plants showed significant difference in respect to plants not inoculated with mycorrhizal fungi. Citrus trees were highly dependent on mycorrhizae for normal growth and development, while the banana plants showed lower levels of root colonization by different strains of VAM fungi. The added endomycorrhizal inoculum significantly increased root fungal colonization in fruit trees and reduce the time in nursery. The current status and research trends in the study of fruit tree mycorrhizas in western Mexico are introduced, and the application prospects in sustainable agriculture also are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Doré, Jeanne, Roland Marmeisse, Jean-Philippe Combier et Gilles Gay. « A Fungal Conserved Gene from the Basidiomycete Hebeloma cylindrosporum Is Essential for Efficient Ectomycorrhiza Formation ». Molecular Plant-Microbe Interactions® 27, no 10 (octobre 2014) : 1059–69. http://dx.doi.org/10.1094/mpmi-03-14-0087-r.

Texte intégral
Résumé :
We used Agrobacterium-mediated insertional mutagenesis to identify genes in the ectomycorrhizal fungus Hebeloma cylindrosporum that are essential for efficient mycorrhiza formation. One of the mutants presented a dramatically reduced ability to form ectomycorrhizas when grown in the presence of Pinus pinaster. It failed to form mycorrhizas in the presence of glucose at 0.5 g liter–1, a condition favorable for mycorrhiza formation by the wild-type strain. However, it formed few mycorrhizas when glucose was replaced by fructose or when glucose concentration was increased to 1 g liter–1. Scanning electron microscopy examination of these mycorrhizas revealed that this mutant was unable to differentiate true fungal sheath and Hartig net. Molecular analyses showed that the single-copy disrupting T-DNA was integrated 6,884 bp downstream from the start codon, of an open reading frame potentially encoding a 3,096-amino-acid-long protein. This gene, which we named HcMycE1, has orthologs in numerous fungi as well as different other eukaryotic microorganisms. RNAi inactivation of HcMycE1 in the wild-type strain also led to a mycorrhizal defect, demonstrating that the nonmycorrhizal phenotype of the mutant was due to mutagenic T-DNA integration in HcMycE1. In the wild-type strain colonizing P. pinaster roots, HcMycE1 was transiently upregulated before symbiotic structure differentiation. Together with the inability of the mutant to differentiate these structures, this suggests that HcMycE1 plays a crucial role upstream of the fungal sheath and Hartig net differentiation. This study provides the first characterization of a fungal mutant altered in mycorrhizal ability.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dodd, John C. « Arbuscular mycorrhizas : physiology and function ». Geoderma 104, no 3-4 (décembre 2001) : 345–46. http://dx.doi.org/10.1016/s0016-7061(01)00064-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Smith, Sally. « Arbuscular Mycorrhizas : Physiology and Function ». Soil Biology and Biochemistry 33, no 11 (septembre 2001) : 1575–76. http://dx.doi.org/10.1016/s0038-0717(01)00097-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Runjin, Liu, Xu Kun et Liu Pengqi. « The Advances in the Study on Mycorrhizas of Fruit Trees in China ». HortScience 30, no 4 (juillet 1995) : 886C—886. http://dx.doi.org/10.21273/hortsci.30.4.886c.

Texte intégral
Résumé :
The study of mycorrhizas of fruit trees was carried out in the 1980s in China. More progress has been made in resources, taxonomy, anatomy and morphology, physiology, ecology, effects, and application of mycorrhizas in fruit trees. The present status and research trends in the study of fruit tree mycorrhizas in China were introduced, and the application prospects of mycorrhizas in fruit tree cultivation also were discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Maldonado-Mendoza, Ignacio E., Gary R. Dewbre et Maria J. Harrison. « A Phosphate Transporter Gene from the Extra-Radical Mycelium of an Arbuscular Mycorrhizal Fungus Glomus intraradices Is Regulated in Response to Phosphate in the Environment ». Molecular Plant-Microbe Interactions® 14, no 10 (octobre 2001) : 1140–48. http://dx.doi.org/10.1094/mpmi.2001.14.10.1140.

Texte intégral
Résumé :
The majority of vascular flowering plants are able to form symbiotic associations with arbuscular mycorrhizal fungi. These symbioses, termed arbuscular mycorrhizas, are mutually beneficial, and the fungus delivers phosphate to the plant while receiving carbon. In these symbioses, phosphate uptake by the arbuscular mycorrhizal fungus is the first step in the process of phosphate transport to the plant. Previously, we cloned a phosphate transporter gene involved in this process. Here, we analyze the expression and regulation of a phosphate transporter gene (GiPT) in the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices during mycorrhizal association with carrot or Medicago truncatula roots. These analyses reveal that GiPT expression is regulated in response to phosphate concentrations in the environment surrounding the extra-radical hyphae and modulated by the overall phosphate status of the mycorrhiza. Phosphate concentrations, typical of those found in the soil solution, result in expression of GiPT. These data imply that G. intraradices can perceive phosphate levels in the external environment but also suggest the presence of an internal phosphate sensing mechanism.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rillig, Matthias C., et Daniel L. Mummey. « Mycorrhizas and soil structure ». New Phytologist 171, no 1 (juillet 2006) : 41–53. http://dx.doi.org/10.1111/j.1469-8137.2006.01750.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Selosse, Marc-André. « Are liverworts imitating mycorrhizas ? » New Phytologist 165, no 2 (7 janvier 2005) : 345–50. http://dx.doi.org/10.1111/j.1469-8137.2004.01298.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ashford, Anne. « Tubular vacuoles in arbuscular mycorrhizas ». New Phytologist 154, no 3 (6 juin 2002) : 545–47. http://dx.doi.org/10.1046/j.1469-8137.2002.00434_2.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Pickles, Brian J., Camille Truong, Stephanie J. Watts‐Williams et C. Guillermo Bueno. « Mycorrhizas for a sustainable world ». New Phytologist 225, no 3 (2 janvier 2020) : 1065–69. http://dx.doi.org/10.1111/nph.16307.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Smith, F. Andrew. « Measuring the influence of mycorrhizas ». New Phytologist 148, no 1 (octobre 2000) : 4–6. http://dx.doi.org/10.1111/j.1469-8137.2000.00751_148_1.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Gao, Ling-Ling, Wolfgang Knogge, Gabriele Delp, F. Andrew Smith et Sally E. Smith. « Expression Patterns of Defense-Related Genes in Different Types of Arbuscular Mycorrhizal Development in Wild-Type and Mycorrhiza-Defective Mutant Tomato ». Molecular Plant-Microbe Interactions® 17, no 10 (octobre 2004) : 1103–13. http://dx.doi.org/10.1094/mpmi.2004.17.10.1103.

Texte intégral
Résumé :
The expression of defense-related genes was analyzed in the interactions of six arbuscular mycorrhizal (AM) fungi with the roots of wild-type tomato (Lycopersicon esculentum Mill.) cv. 76R and of the near-isogenic mycorrhiza-defective mutant rmc. Depending on the fungal species, wild-type tomato forms both major morphological AM types, Arum and Paris. The mutant rmc blocks the penetration of the root surface or invasion of the root cortex by most species of AM fungi, but one fungus has been shown to develop normal mycorrhizas. In the wild-type tomato, accumulation of mRNA representing a number of defense-related genes was low in Arum-type interactions, consistent with findings for this AM morphotype in other plant species. In contrast, Paris-type colonization, particularly by members of the family Gigasporaceae, was accompanied by a substantial transient increase in expression of some defense-related genes. However, the extent of root colonization did not differ significantly in the two wild-type AM morpho-types, suggesting that accumulation of defense gene products per se does not limit mycorrhiza development. In the mutant, interactions in which the fungus failed to penetrate the root lacked significant accumulation of defense gene mRNAs. However, phenotypes in which the fungus penetrated epidermal or hypodermal cells were associated with an enhanced and more prolonged gene expression. These results are discussed in relation to the mechanisms that may underlie the specificity of the interactions between AM fungi and the rmc mutant.
Styles APA, Harvard, Vancouver, ISO, etc.
14

NAZERI, NAZANIN K., HANS LAMBERS, MARK TIBBETT et MEGAN H. RYAN. « Moderating mycorrhizas : arbuscular mycorrhizas modify rhizosphere chemistry and maintain plant phosphorus status within narrow boundaries ». Plant, Cell & ; Environment 37, no 4 (25 octobre 2013) : 911–21. http://dx.doi.org/10.1111/pce.12207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Allen, Michael F., et Kuni Kitajima. « In situhigh-frequency observations of mycorrhizas ». New Phytologist 200, no 1 (17 juin 2013) : 222–28. http://dx.doi.org/10.1111/nph.12363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Cooke, John C., D. J. Read, D. H. Lewis, A. H. Fitter et I. J. Alexander. « Mycorrhizas in Ecosystems ». Mycologia 86, no 2 (mars 1994) : 304. http://dx.doi.org/10.2307/3760658.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Read, D. J., et R. Bajwa. « Some nutritional aspects of the biology of ericaceous mycorrhizas ». Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 85, no 3-4 (1985) : 317–31. http://dx.doi.org/10.1017/s0269727000004097.

Texte intégral
Résumé :
SynopsisSome aspects of the role of the ericoid mycorrhizal symbiosis in the ecology and physiology of ericaceous plants are described. Mycorrhizal infection leads to enhancement of plant nitrogen content and an experimental analysis of the basis of this effect is reported. In addition to improving the efficiency of ammonium absorption at low concentrations, the mycorrhizal endophyte utilises amino acids, peptides and proteins as nitrogen substrates for growth. These are the predominant nitrogen sources in organic heathland soil. It is suggested that the success of ericaceous plants in such soils may arise through the capacity of the mycorrhizal fungus to provide its host with access to this nutrient resource. A model is described in which absorption of ammonium and amino nitrogen leads to soil acidification, increased acid protease activity and improved vigour of the ericaceous plants.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Graham, James H. « What do root pathogens see in mycorrhizas ? » New Phytologist 149, no 3 (mars 2001) : 357–59. http://dx.doi.org/10.1046/j.1469-8137.2001.00077.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Alexander, Ian, et Marc-André Selosse. « Mycorrhizas in tropical forests : a neglected research imperative ». New Phytologist 182, no 1 (6 mars 2009) : 14–16. http://dx.doi.org/10.1111/j.1469-8137.2009.02798.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Strullu‐Derrien, Christine, Jean‐Philippe Rioult et Désiré‐Georges Strullu. « Mycorrhizas in Upper Carboniferous Radiculites ‐type cordaitalean rootlets ». New Phytologist 182, no 3 (16 avril 2009) : 561–64. http://dx.doi.org/10.1111/j.1469-8137.2009.02805.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Aono, Toshihiro, Ignacio E. Maldonado-Mendoza, Gary R. Dewbre, Maria J. Harrison et Masanori Saito. « Expression of alkaline phosphatase genes in arbuscular mycorrhizas ». New Phytologist 162, no 2 (mai 2004) : 525–34. http://dx.doi.org/10.1111/j.1469-8137.2004.01041.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Kennedy, Peter, et Tom Bruns. « Mycorrhizas take root at the Ecological Society of America ». New Phytologist 176, no 4 (décembre 2007) : 745–48. http://dx.doi.org/10.1111/j.1469-8137.2007.02280.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Marsh, John F., et Michael Schultze. « Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants ». New Phytologist 150, no 3 (juin 2001) : 525–32. http://dx.doi.org/10.1046/j.1469-8137.2001.00140.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Chang, Ying, Alessandro Desirò, Hyunsoo Na, Laura Sandor, Anna Lipzen, Alicia Clum, Kerrie Barry et al. « Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota ». New Phytologist 222, no 1 (12 janvier 2019) : 511–25. http://dx.doi.org/10.1111/nph.15613.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

BARROSO, J., A. CASIMIRO, F. CARRAPICO, M. SLOME et S. PAIS. « Localization of uricase in mycorrhizas of Ophrys lutea Cav. » New Phytologist 108, no 3 (mars 1988) : 335–40. http://dx.doi.org/10.1111/j.1469-8137.1988.tb04171.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

GRAHAM, J. H., et J. P. SYVERTSEN. « Vesicular-arbuscular mycorrhizas increase chloride concentration in citrus seedlings * ». New Phytologist 113, no 1 (septembre 1989) : 29–36. http://dx.doi.org/10.1111/j.1469-8137.1989.tb02392.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

LEHTO, TARJA. « Mycorrhizas and drought resistance of Picea sitchensis (Bong.) Carr. » New Phytologist 122, no 4 (28 avril 2006) : 661–68. http://dx.doi.org/10.1111/j.1469-8137.1992.tb00094.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

LEHTO, TARJA. « Mycorrhizas and drought resistance of Picea sitchensis (Bong.) Carr ». New Phytologist 122, no 4 (28 avril 2006) : 669–73. http://dx.doi.org/10.1111/j.1469-8137.1992.tb00095.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

TINKER, P. B., D. M. DURALL et M. D. JONES. « Carbon use efficiency in mycorrhizas theory and sample calculations ». New Phytologist 128, no 1 (septembre 1994) : 115–22. http://dx.doi.org/10.1111/j.1469-8137.1994.tb03994.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Manjarrez, Maria, Helle M. Christophersen, Sally E. Smith et F. Andrew Smith. « Cortical colonisation is not an absolute requirement for phosphorus transfer to plants in arbuscular mycorrhizas formed by Scutellospora calospora in a tomato mutant : evidence from physiology and gene expression ». Functional Plant Biology 37, no 12 (2010) : 1132. http://dx.doi.org/10.1071/fp09248.

Texte intégral
Résumé :
Arbuscules in Arum-type arbuscular mycorrhizas (AM), formed intracellularly in root cortical cells, are generally believed to be the most important and defining characteristics of the symbiosis as sites for phosphorus (P) and carbon (C) exchange. We used a Pen + Coi– phenotype (penetration of epidermal and exodermal root cells but not arbuscule formation) formed in rmc (reduced mycorrhizal colonisation) mutant tomato (Lycopersicon esculentum Mill.) by Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders to determine whether the fungus is capable of transferring P from soil to plant and whether there is concurrent upregulation of AM-inducible orthophosphate (Pi) transporter gene expression in the roots. Our physiological data showed that colonisation of outer root cell layers is sufficient for P transfer from S. calospora to tomato. This transfer of P was supported by increased expression of the Pi transporter genes, LePT3 and LePT5, known to be upregulated in AM interactions. We conclude that cortical colonisation and formation of arbuscules or arbusculate hyphal coils is not an absolute prerequisite for P transfer in this symbiosis.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Geil, R. D., et F. C. Guinel. « Effects of elevated substrate–ethylene on colonization of leek (Allium porrum) by the arbuscular mycorrhizal fungus Glomus aggregatum ». Canadian Journal of Botany 80, no 2 (1 février 2002) : 114–19. http://dx.doi.org/10.1139/b01-135.

Texte intégral
Résumé :
There are very few studies of hormonal regulation of arbuscular mycorrhiza formation that include the gaseous hormone ethylene. Ethylene is considered inhibitory to the formation of arbuscular mycorrhizae; however, very low concentrations may promote their formation. We used an improved method of exogenous ethylene application to determine whether ethylene concentration dependent changes in colonization occur in the leek (Allium porrum L. cv. Giant Musselburgh) – Glomus aggregatum Schenck & Smith emend. Koske system. This improved method allowed for a continuous flow of constant concentration of the gas to be applied to a substrate. The 0.6 µL/L substrate–ethylene treatment reduced both root and leaf length and resulted in significantly lower arbuscular colonization compared with controls, whereas the 0.3 µL/L treatment reduced root length only and did not significantly affect colonization levels. Despite continuous application of exogenous ethylene, the amount of ethylene detected in inoculated substrates was reduced to near zero 20 days after inoculation. This decrease may be either due to an increased capacity for ethylene oxidation by arbuscular mycorrhizal roots or because arbuscular mycorrhizal fungi (or other microbes in the pot-cultured inoculum) are capable of metabolizing ethylene. The present study highlights the need for investigations into arbuscular mycorrhizal fungal physiology and the mechanisms by which ethylene regulates arbuscular mycorrhiza formation.Key words: arbuscular mycorrhiza, colonization, exogenous ethylene, monocot.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Nehls, Uwe, Joachim Wiese, Martin Guttenberger et Rüdiger Hampp. « Carbon Allocation in Ectomycorrhizas : Identification and Expression Analysis of an Amanita muscaria Monosaccharide Transporter ». Molecular Plant-Microbe Interactions® 11, no 3 (mars 1998) : 167–76. http://dx.doi.org/10.1094/mpmi.1998.11.3.167.

Texte intégral
Résumé :
Ectomycorrhizas are formed between certain soil fungi and fine roots of predominantly woody plants. An important feature of this symbiosis is the supply of plant-derived carbohydrates to the fungus. As a first step toward a better understanding of the molecular basis of this process, we cloned a monosaccharide transporter from the ectomycorrhizal fungus Amanita muscaria. Degenerate oligonucleotide primers were designed to match conserved regions from known fungal sugar transporters. A cDNA fragment of the transporter was obtained from mycorrhizal mRNA by reverse transcription-polymerase chain reaction. This fragment was used to identify a clone (AmMst1) encoding the entire monosaccharide transporter in a Picea abies/A. muscaria mycorrhizal cDNA library. The cDNA codes for an open reading frame of 520 amino acids, showing best homology to a Neurospora crassa monosaccharide transporter. The function of AmMST1 as monosaccharide transporter was confirmed by heterologous expression of the cDNA in a Schizosaccharomyces pombe mutant lacking a monosaccharide uptake system. AmMst1 was constitutively expressed in fungal hyphae under all growth conditions. Nevertheless, in mycorrhizas as well as in hyphae grown at monosaccharide concentrations above 5 mM, the amount of AmMst1 transcript increased fourfold. We therefore suggest that AmMst1 is upregulated in ectomycorrhizas by a monosaccharide-controlled mechanism.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Read, D. J., et J. Perez-Moreno. « Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance ? » New Phytologist 157, no 3 (mars 2003) : 475–92. http://dx.doi.org/10.1046/j.1469-8137.2003.00704.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

HAUG, I., R. WEBER, F. OBERWINKLER et J. TSCHEN. « Tuberculate mycorrhizas of Castanopsis horneensis King and Engelhardtia roxburghiana Wall ». New Phytologist 117, no 1 (janvier 1991) : 25–35. http://dx.doi.org/10.1111/j.1469-8137.1991.tb00941.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Frew, Adam, Pedro M. Antunes, Duncan D. Cameron, Susan E. Hartley, Scott N. Johnson, Matthias C. Rillig et Alison E. Bennett. « Plant herbivore protection by arbuscular mycorrhizas : a role for fungal diversity ? » New Phytologist 233, no 3 (26 octobre 2021) : 1022–31. http://dx.doi.org/10.1111/nph.17781.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Franken, P., et N. Requena. « Analysis of gene expression in arbuscular mycorrhizas : new approaches and challenges ». New Phytologist 150, no 3 (juin 2001) : 517–23. http://dx.doi.org/10.1046/j.1469-8137.2001.00123.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Moyersoen, B., P. Becker et I. J. Alexander. « Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests ? » New Phytologist 150, no 3 (juin 2001) : 591–99. http://dx.doi.org/10.1046/j.1469-8137.2001.00125.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

McGee, P. A. « Growth response to and morphology of mycorrhizas of Thysanotus (Anthericaceae Monocotyledonae) ». New Phytologist 109, no 4 (août 1988) : 459–63. http://dx.doi.org/10.1111/j.1469-8137.1988.tb03721.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

BERNDT, R., I. KOTTKE et F. OBERWINKLER. « Ascomycete mycorrhizas from pot-grown silver-fir seedlings (Abies alba Mill.) ». New Phytologist 115, no 3 (juillet 1990) : 471–82. http://dx.doi.org/10.1111/j.1469-8137.1990.tb00473.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

DIGHTON, JOHN, PHILIP A. MASON et JAN M. POSKITT. « Field use of 32P to measure phosphate uptake by birch mycorrhizas ». New Phytologist 116, no 4 (décembre 1990) : 655–61. http://dx.doi.org/10.1111/j.1469-8137.1990.tb00551.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

CLAPP, J. P., J. P. W. YOUNG, J. W. MERRYWEATHER et A. H. FITTER. « Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community ». New Phytologist 130, no 2 (juin 1995) : 259–65. http://dx.doi.org/10.1111/j.1469-8137.1995.tb03047.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Massicotte, Hugues B., et Frédérique C. Guinel. « Fostering comprehension and integration in mycorrhiza biology : conceptual scaffolding as an aid in teaching and exploration »,. Botany 95, no 10 (octobre 2017) : 983–1003. http://dx.doi.org/10.1139/cjb-2017-0064.

Texte intégral
Résumé :
Over the last decade, we have witnessed extraordinary progress in the understanding of molecular dialogues between the partners in plant root mutualisms and, as such, a considerable amount of new information now needs to be integrated into an already significant body of literature. The topic of symbiosis has become difficult to explore in a teaching venue, as there is seemingly so much to discuss, and yet students are truly interested in the discipline because of its potential applications in conservation, sustainable agriculture, and forestry. In this minireview targeted to instructors, senior students, and scientists, we offer a means of teaching the symbioses between mycorrhizal fungi and vascular plants, whereby we propose a conceptual staircase with three levels of incremental learning difficulty. At the first level, we describe the fundamentals of mycorrhizas with special emphasis on the plant–fungus interface. At the second level, we focus on the pre-communication between the two partners. At the third level, we discuss the physiology of the interface in terms of agriculture and forestry. At the end of each level, we provide a short summary where the most important concepts have been outlined for an instructor. As well, throughout the text, we raise questions of interest to the field at large.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Peterson, R. L., et M. L. Farquhar. « Mycorrhizas : Integrated Development between Roots and Fungi ». Mycologia 86, no 3 (mai 1994) : 311. http://dx.doi.org/10.2307/3760561.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Peterson, R. L., et M. L. Farquhar. « Mycorrhizas—Integrated development between roots and fungi ». Mycologia 86, no 3 (mai 1994) : 311–26. http://dx.doi.org/10.1080/00275514.1994.12026415.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Pietikäinen, Anne, Minna-Maarit Kytöviita, Rebecca Husband et J. Peter W. Young. « Diversity and persistence of arbuscular mycorrhizas in a low-Arctic meadow habitat ». New Phytologist 176, no 3 (novembre 2007) : 691–98. http://dx.doi.org/10.1111/j.1469-8137.2007.02209.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

FONTANA, ANNA. « VESICULAR-ARBUSCULAR MYCORRHIZAS OF GINKGO BILOBA L. IN NATURAL AND CONTROLLED CONDITIONS ». New Phytologist 99, no 3 (mars 1985) : 441–47. http://dx.doi.org/10.1111/j.1469-8137.1985.tb03671.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Ferrol, Nuria, Elisabeth Tamayo et Paola Vargas. « The heavy metal paradox in arbuscular mycorrhizas : from mechanisms to biotechnological applications ». Journal of Experimental Botany 67, no 22 (31 octobre 2016) : 6253–65. http://dx.doi.org/10.1093/jxb/erw403.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Carotenuto, Gennaro, Veronica Volpe, Giulia Russo, Mara Politi, Ivan Sciascia, Janice Almeida‐Engler et Andrea Genre. « Local endoreduplication as a feature of intracellular fungal accommodation in arbuscular mycorrhizas ». New Phytologist 223, no 1 (avril 2019) : 430–46. http://dx.doi.org/10.1111/nph.15763.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

STRULLU, D. G., B. GRELLIER, J. P. GARREC, C. C. McCREADY et J. L. HARLEY. « EFFECTS OF MONOVALENT AND DIVALENT CATIONS ON PHOSPHATE ABSORPTION BY BEECH MYCORRHIZAS ». New Phytologist 103, no 2 (juin 1986) : 403–16. http://dx.doi.org/10.1111/j.1469-8137.1986.tb00626.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

DIGHTON, J., et R. A. SKEFFINGTON. « EFFECTS OF ARTIFICIAL ACID PRECIPITATION ON THE MYCORRHIZAS OF SCOTS PINE SEEDLINGS ». New Phytologist 107, no 1 (septembre 1987) : 191–202. http://dx.doi.org/10.1111/j.1469-8137.1987.tb04893.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie