Littérature scientifique sur le sujet « Multivariate Lévy models »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multivariate Lévy models ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Multivariate Lévy models"

1

Ballotta, Laura, et Efrem Bonfiglioli. « Multivariate asset models using Lévy processes and applications ». European Journal of Finance 22, no 13 (10 avril 2014) : 1320–50. http://dx.doi.org/10.1080/1351847x.2013.870917.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Panov, Vladimir. « Series Representations for Multivariate Time-Changed Lévy Models ». Methodology and Computing in Applied Probability 19, no 1 (29 août 2015) : 97–119. http://dx.doi.org/10.1007/s11009-015-9461-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Jacod, Jean, et Mark Podolskij. « On the minimal number of driving Lévy motions in a multivariate price model ». Journal of Applied Probability 55, no 3 (septembre 2018) : 823–33. http://dx.doi.org/10.1017/jpr.2018.52.

Texte intégral
Résumé :
Abstract In this paper we consider the factor analysis for Lévy-driven multivariate price models with stochastic volatility. Our main aim is to provide conditions on the volatility process under which we can possibly reduce the dimension of the driving Lévy motion. We find that these conditions depend on a particular form of the multivariate Lévy process. In some settings we concentrate on nondegenerate symmetric α-stable Lévy motions.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Avanzi, Benjamin, Jamie Tao, Bernard Wong et Xinda Yang. « Capturing non-exchangeable dependence in multivariate loss processes with nested Archimedean Lévy copulas ». Annals of Actuarial Science 10, no 1 (11 décembre 2015) : 87–117. http://dx.doi.org/10.1017/s1748499515000135.

Texte intégral
Résumé :
AbstractThe class of spectrally positive Lévy processes is a frequent choice for modelling loss processes in areas such as insurance or operational risk. Dependence between such processes (e.g. between different lines of business) can be modelled with Lévy copulas. This approach is a parsimonious, efficient and flexible method which provides many of the advantages akin to distributional copulas for random variables. Literature on Lévy copulas seems to have primarily focussed on bivariate processes. When multivariate settings are considered, these usually exhibit an exchangeable dependence structure (whereby all subset of the processes have an identical marginal Lévy copula). In reality, losses are not always associated in an identical way, and models allowing for non-exchangeable dependence patterns are needed. In this paper, we present an approach which enables the development of such models. Inspired by ideas and techniques from the distributional copula literature we investigate the procedure of nesting Archimedean Lévy copulas. We provide a detailed analysis of this construction, and derive conditions under which valid multivariate (nested) Lévy copulas are obtained. Our results are discussed and illustrated, notably with an example of model fitting to data.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fasen, Vicky. « Limit Theory for High Frequency Sampled MCARMA Models ». Advances in Applied Probability 46, no 3 (septembre 2014) : 846–77. http://dx.doi.org/10.1239/aap/1409319563.

Texte intégral
Résumé :
We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a high-frequency time grid {hn, 2hn,…, nhn}, where hn ↓ 0 and nhn → ∞ as n → ∞, or at a constant time grid where hn = h. For this model, we present the asymptotic behavior of the properly normalized partial sum to a multivariate stable or a multivariate normal random vector depending on the domain of attraction of the driving Lévy process. Furthermore, we derive the asymptotic behavior of the sample variance. In the case of finite second moments of the driving Lévy process the sample variance is a consistent estimator. Moreover, we embed the MCARMA process in a cointegrated model. For this model, we propose a parameter estimator and derive its asymptotic behavior. The results are given for more general processes than MCARMA processes and contain some asymptotic properties of stochastic integrals.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Moser, Martin, et Robert Stelzer. « Tail behavior of multivariate lévy-driven mixed moving average processes and supOU Stochastic Volatility Models ». Advances in Applied Probability 43, no 4 (décembre 2011) : 1109–35. http://dx.doi.org/10.1239/aap/1324045701.

Texte intégral
Résumé :
Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∬f(A, t - s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) continuous-time autoregressive moving average processes, and increments of fractional Lévy processes. In this paper we introduce multivariate MMA processes and give conditions for their existence and regular variation of the stationary distributions. Furthermore, we study the tail behavior of multivariate supOU processes and of a stochastic volatility model, where a positive semidefinite supOU process models the stochastic volatility.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Moser, Martin, et Robert Stelzer. « Tail behavior of multivariate lévy-driven mixed moving average processes and supOU Stochastic Volatility Models ». Advances in Applied Probability 43, no 04 (décembre 2011) : 1109–35. http://dx.doi.org/10.1017/s0001867800005322.

Texte intégral
Résumé :
Multivariate Lévy-driven mixed moving average (MMA) processes of the type X t = ∬f(A, t - s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) continuous-time autoregressive moving average processes, and increments of fractional Lévy processes. In this paper we introduce multivariate MMA processes and give conditions for their existence and regular variation of the stationary distributions. Furthermore, we study the tail behavior of multivariate supOU processes and of a stochastic volatility model, where a positive semidefinite supOU process models the stochastic volatility.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fasen, Vicky. « Limit Theory for High Frequency Sampled MCARMA Models ». Advances in Applied Probability 46, no 03 (septembre 2014) : 846–77. http://dx.doi.org/10.1017/s0001867800007400.

Texte intégral
Résumé :
We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a high-frequency time grid {h n , 2h n ,…, nh n }, where h n ↓ 0 and nh n → ∞ as n → ∞, or at a constant time grid where h n = h. For this model, we present the asymptotic behavior of the properly normalized partial sum to a multivariate stable or a multivariate normal random vector depending on the domain of attraction of the driving Lévy process. Furthermore, we derive the asymptotic behavior of the sample variance. In the case of finite second moments of the driving Lévy process the sample variance is a consistent estimator. Moreover, we embed the MCARMA process in a cointegrated model. For this model, we propose a parameter estimator and derive its asymptotic behavior. The results are given for more general processes than MCARMA processes and contain some asymptotic properties of stochastic integrals.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ballotta, Laura, Gianluca Fusai, Angela Loregian et M. Fabricio Perez. « Estimation of Multivariate Asset Models with Jumps ». Journal of Financial and Quantitative Analysis 54, no 5 (28 septembre 2018) : 2053–83. http://dx.doi.org/10.1017/s0022109018001321.

Texte intégral
Résumé :
We propose a consistent and computationally efficient 2-step methodology for the estimation of multidimensional non-Gaussian asset models built using Lévy processes. The proposed framework allows for dependence between assets and different tail behaviors and jump structures for each asset. Our procedure can be applied to portfolios with a large number of assets because it is immune to estimation dimensionality problems. Simulations show good finite sample properties and significant efficiency gains. This method is especially relevant for risk management purposes such as, for example, the computation of portfolio Value at Risk and intra-horizon Value at Risk, as we show in detail in an empirical illustration.
Styles APA, Harvard, Vancouver, ISO, etc.
10

JEVTIĆ, PETAR, MARINA MARENA et PATRIZIA SEMERARO. « MULTIVARIATE MARKED POISSON PROCESSES AND MARKET RELATED MULTIDIMENSIONAL INFORMATION FLOWS ». International Journal of Theoretical and Applied Finance 22, no 02 (mars 2019) : 1850058. http://dx.doi.org/10.1142/s0219024918500589.

Texte intégral
Résumé :
The class of marked Poisson processes and its connection with subordinated Lévy processes allow us to propose a new interpretation of multidimensional information flows and their relation to market movements. The new approach provides a unified framework for multivariate asset return models in a Lévy economy. In fact, we are able to recover several processes commonly used to model asset returns as subcases. We consider a first application example using the normal inverse Gaussian specification.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Multivariate Lévy models"

1

Petkovic, Alexandre. « Three essays on exotic option pricing, multivariate Lévy processes and linear aggregation of panel models ». Doctoral thesis, Universite Libre de Bruxelles, 2009. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210357.

Texte intégral
Résumé :
This thesis is composed of three chapters that form two parts. The first part is composed of two chapters and studies problems related to the exotic option market. In the first chapter we are interested in a numerical problem. More precisely we derive closed-form approximations for the price of some exotic options in the Black and Scholes framework. The second chapter discusses the construction of multivariate Lévy processes with and without stochastic volatility. The second part is composed of one chapter. It deals with a completely different issue. There we will study the problem of individual and temporal aggregation in panel data models.
Doctorat en sciences économiques, Orientation économie
info:eu-repo/semantics/nonPublished
Styles APA, Harvard, Vancouver, ISO, etc.
2

LOREGIAN, ANGELA. « Multivariate Lèvy models : estimation and asset allocation ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/49727.

Texte intégral
Résumé :
Multidimensional asset models based on Lévy processes have been introduced to meet the necessity of capturing market shocks using more refined distribution assumptions compared to the standard Gaussian framework. In particular, along with accurately modeling marginal distributions of asset returns, capturing the dependence structure among them is of paramount importance, for example, to correctly price derivatives written on more than one underlying asset. Most of the literature on multivariate Lévy models focuses in fact on pricing multi-asset products, which is also the case of the model introduced in Ballotta and Bonfiglioli (2014). Believing that risk and portfolio management applications may benefit from a better description of the joint distribution of the returns as well, we choose to adopt Ballotta and Bonfiglioli (2014) model for asset allocation purposes and we empirically test its performances. We choose this model since, besides its flexibility and the ability to properly capture the dependence among assets, it is simple, relatively parsimonious and it has an immediate and intuitive interpretation, retaining a high degree of mathematical tractability. In particular we test two specifications of the general model, assuming respectively a pure jump process, more precisely the normal inverse Gaussian process, or a jump-diffusion process, precisely Merton’s jump-diffusion process, for all the components involved in the model construction. To estimate the model we propose a simple and easy-to-implement three-step procedure, which we assess via simulations, comparing the results with those obtained through a more computationally intensive one-step maximum likelihood estimation. We empirically test portfolio construction based on multivariate Lévy models assuming a standard utility maximization framework; for the exponential utility function we get a closed form expression for the expected utility, while for other utility functions (we choose to test the power one) we resort to numerical approximations. Among the benchmark strategies, we consider in our study what we call a ‘non-parametric optimization approach’, based on Gaussian kernel estimation of the portfolio return distribution, which to our knowledge has never been used. A different approach to allocation decisions aims at minimizing portfolio riskiness requiring a minimum expected return. Following Rockafellar and Uryasev (2000), we describe how to solve this optimization problem in our multivariate Lévy framework, when risk is measured by CVaR. Moreover we present formulas and methods to compute, as efficiently as possible, some downside risk measures for portfolios made of assets following the multivariate Lévy model by Ballotta and Bonfiglioli (2014). More precisely, we consider traditional risk measures (VaR and CVaR), the corresponding marginal measures, which evaluate their sensibility to portfolio weights alterations, and intra-horizon risk measures, which take into account the magnitude of losses that can incur before the end of the investment horizon. Formulas for CVaR in monetary terms and marginal measures, together with our approach to evaluate intra-horizon risk, are among the original contributions of this work.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Stelzer, Robert [Verfasser]. « Multivariate continuous time stochastic volatility models driven by a Lévy process / Robert Josef Stelzer ». 2007. http://d-nb.info/986220337/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie