Littérature scientifique sur le sujet « Multiscale deformations »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multiscale deformations ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Multiscale deformations"
Shahi, Shahrokh, et Soheil Mohammadi. « A Multiscale Finite Element Simulation of Human Aortic Heart Valve ». Applied Mechanics and Materials 367 (août 2013) : 275–79. http://dx.doi.org/10.4028/www.scientific.net/amm.367.275.
Texte intégralLI, ZHIPING. « MULTISCALE MODELLING AND COMPUTATION OF MICROSTRUCTURES IN MULTI-WELL PROBLEMS ». Mathematical Models and Methods in Applied Sciences 14, no 09 (septembre 2004) : 1343–60. http://dx.doi.org/10.1142/s0218202504003647.
Texte intégralBrozzetti, Francesco, Alessandro Cesare Mondini, Cristina Pauselli, Paolo Mancinelli, Daniele Cirillo, Fausto Guzzetti et Giusy Lavecchia. « Mainshock Anticipated by Intra-Sequence Ground Deformations : Insights from Multiscale Field and SAR Interferometric Measurements ». Geosciences 10, no 5 (15 mai 2020) : 186. http://dx.doi.org/10.3390/geosciences10050186.
Texte intégralEfendiev, Yalchin, Juan Galvis et M. Sebastian Pauletti. « Multiscale Finite Element Methods for Flows on Rough Surfaces ». Communications in Computational Physics 14, no 4 (octobre 2013) : 979–1000. http://dx.doi.org/10.4208/cicp.170512.310113a.
Texte intégralZewail, Rami, et Ahmed Hag-ElSafi. « MULTISCALE SPARSE APPEARANCE MODELING AND SIMULATION OF PATHOLOGICAL DEFORMATIONS ». ICTACT Journal on Image and Video Processing 8, no 1 (1 août 2017) : 1596–605. http://dx.doi.org/10.21917/ijivp.2017.0225.
Texte intégralGrondin, F., M. Bouasker, P. Mounanga, A. Khelidj et A. Perronnet. « Physico-chemical deformations of solidifying cementitious systems : multiscale modelling ». Materials and Structures 43, no 1-2 (5 février 2009) : 151–65. http://dx.doi.org/10.1617/s11527-009-9477-z.
Texte intégralBakhaty, Ahmed A., Sanjay Govindjee et Mohammad R. K. Mofrad. « A Coupled Multiscale Approach to Modeling Aortic Valve Mechanics in Health and Disease ». Applied Sciences 11, no 18 (8 septembre 2021) : 8332. http://dx.doi.org/10.3390/app11188332.
Texte intégralKarmarkar, Aditya P., Xiaopeng Xu et Karim El-Sayed. « Temperature and Process Dependent Material Characterization and Multiscale Stress Evolution Analysis for Performance and Reliability Management under Chip Package Interaction ». International Symposium on Microelectronics 2017, no 1 (1 octobre 2017) : 000013–24. http://dx.doi.org/10.4071/isom-2017-tp13_051.
Texte intégralZhou, Tingtao, Katerina Ioannidou, Franz-Josef Ulm, Martin Z. Bazant et R. J. M. Pellenq. « Multiscale poromechanics of wet cement paste ». Proceedings of the National Academy of Sciences 116, no 22 (9 mai 2019) : 10652–57. http://dx.doi.org/10.1073/pnas.1901160116.
Texte intégralSotiropoulos, Gerasimos, et Vissarion Papadopoulos. « Nonlinear multiscale modeling of thin composite shells at finite deformations ». Computer Methods in Applied Mechanics and Engineering 391 (mars 2022) : 114572. http://dx.doi.org/10.1016/j.cma.2022.114572.
Texte intégralThèses sur le sujet "Multiscale deformations"
Song, Jin E. « Hierarchical multiscale modeling of Ni-base superalloys ». Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34855.
Texte intégralShepherd, James Ellison. « Multiscale Modeling of the Deformation of Semi-Crystalline Polymers ». Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10479.
Texte intégralShehadeh, Mu'Tasem A. « Modeling of high strain rate and strain localization in FCC single crystals multiscale dislocation dynamics analyses / ». Online access for everyone, 2005. http://www.dissertations.wsu.edu/Dissertations/Spring2005/M%5FShehadeh%5F050405.pdf.
Texte intégralAbou, Orm Lara. « VMS (Variational MultiScale) stabilization for Stokes-Darcy coupled flows in porous media undergoing finite deformations : application to infusion-based composite processing ». Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-00966922.
Texte intégralBrown, Stephen. « Analyse structurale et âge des déformations cassantes à micro- et méso-échelle dans un bassin sédimentaire intracontinental : le cas du Bassin de Paris ». Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1325.
Texte intégralThe intracontinental domain is located far from tectonic plate margins, where significant stress can accumulate. Deformation of the intraplate domain is a consequence of stress transmission from plate boundaries. It results in lithospheric buckling, regional deformations, and meso to microscale fracture networks. These intraplate deformations reflect the nature of stress regimes at continental plate boundaries. They often have a heterogeneous distribution, and on a regional scale, are frequently impacted by the directions of pre-existing faults or weaknesses. The role of a structural inheritance remains to be shown on a micro and mesoscale.Understanding intraplate deformation is crucial for assessing geological hazards and fluid circulation in the context of subsurface solicitation. This is especially true in densely populated areas with substantial underground infrastructure. In this PhD, we investigate the geometries, distribution, kinematics, and timing of these intraplate deformations within the intracontinental Paris Sedimentary Basin, with the city of Paris at its center.To achieve this and to attempt to link the different scales of structures, we use multiple techniques, combining fieldwork and laboratory work, in order to approach the problem from two different scales: the mesoscale (metric to centimetric) and microscale (centimetric to millimetric). The structural analyses include calculating paleostress fields from microtectonic data collected in the field and in-situ U-Pb absolute dating of synkinematic calcites and calcitic veins. The microscale is investigated through the inversion of magnetic susceptibility and P-wave velocity data to characterize the internal microstructures of rock samples.The data show that an extensive network of multi-directional brittle joints exists and is expressed at different scales. In chalk samples for example, the measured anisotropy of P-wave velocity reflects the directions of mesoscale joints measured in the field. When the applied shear stress exceeds the shear strength of the joint, failure occurs. This can manifest as sliding or fracturing along the joint plane. Thus, some of the joints are reactivated later. Evidences of faulting, while less common than joints, also exist in the Paris Basin. Calculated paleostress tensors indicate mostly strike-slip faulting regimes with maximal principal stress axes (sigma1) roughly N-S. This direction is concordant with the N-S orientation of Pyrenean compression more so than Alpine compression or Tertiary extension at the origin of the European rifted continental basins. Furthermore, through in-situ U-Pb dating of calcite mineralized along fault planes or within veins, we show that the Late Cretaceous to Eocene timing of the fault network is more aligned with the Pyrenean Orogeny than the Alpine Orogeny or the European Cenozoic Rift System (ECRIS)
Brödling, Nils. « Multiscale modeling of fracture and deformation in interface controlled materials ». [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-36166.
Texte intégralShashkov, Ivan. « Multiscale study of the intermittency of plastic deformation by acoustic emission method ». Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0326/document.
Texte intégralRecent studies of plastic deformation using high-resolution experimental techniques testify that deformation processes are often characterized by collective effects that emerge on a mesoscopic scale, intermediate between the scale of individual crystal defects and that of the macroscopic sample. In particular, the acoustic emission (AE) method reveals intermittency of plastic deformation in various experimental conditions, which is manifested by the property of scale invariance, a characteristic feature of self-organized phenomena. The objective of the dissertation was to study the inherent structure of AE for different mechanisms of plastic deformation, to examine its dependence on the strain rate and strain hardening of the material, and to understand the relationships between short time scales related to organization of defects and those relevant to the continuous approach of plasticity. The study was performed on AlMg and Mg-based alloys, the plastic deformation of which is accompanied by a strong acoustic activity and controlled by different physical mechanisms: the Portevin-Le Chatelier (PLC) effect in the first case and a combination of twinning and dislocation glide in the second case. Application of a technique of continuous AE recording ("data streaming") allowed proving that the apparent behavior, discrete or continuous, of AE accompanying the PLC effect depends on the time scale of observation and the physical parameters surveyed. However, unlike the traditional view, it appears that AE has an intermittent character during both stress serrations and macroscopically smooth flow. Using methods of the theory of nonlinear dynamical systems, such as the multifractal analysis, a tendency to a transition between the scale-invariant dynamics and the behaviors characterized by intrinsic scales was detected during work hardening. Finally, we proved that the power-law statistical distributions persist in wide ranges of variation of parameters conventionally used to individualize acoustic events. This result is of general importance because it applies to all avalanche-like processes emerging in dynamical systems
Wang, Ruoya. « Novel theoretical and experimental frameworks for multiscale quantification of arterial mechanics ». Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47718.
Texte intégralBrödling, Nils [Verfasser]. « Multiscale modeling of fracture and deformation in interface controlled materials / vorgelegt von Nils C, Brödling ». Stuttgart : Max-Planck-Inst. für Metallforschung, 2007. http://d-nb.info/995392145/34.
Texte intégralThuramalla, Naveen. « MULTISCALE MODELING AND ANALYSIS OF FAILURE AND STABILITY DURING SUPERPLASTIC DEFORMATION -- UNDER DIFFERENT LOADING CONDITIONS ». UKnowledge, 2004. http://uknowledge.uky.edu/gradschool_theses/323.
Texte intégralLivres sur le sujet "Multiscale deformations"
Piero, Gianpetro, et David R. Owen, dir. Multiscale Modeling in Continuum Mechanics and Structured Deformations. Vienna : Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4.
Texte intégralFan, Jinghong. Multiscale analysis of deformation and failure of materials. Chichester, West Sussex : Wiley, 2011.
Trouver le texte intégralChuang, T. J., et J. W. Rudnicki. Multiscale deformation and fracture in materials and structures : The James R. Rice 60th anniversary volume. New York : Kluwer Academic Publishers, 2002.
Trouver le texte intégralEMMM-2007, (2007 Moscow Russia). Electron microscopy and multiscale modeling : Proceedings of the EMMM-2007 international conference, Moscow, Russia, 3-7 September 2007. [Melville, N.Y.] : American Institute of Physics, 2008.
Trouver le texte intégralFan, Jinghong. Multiscale Analysis of Deformation and Failure of Materials. Chichester, UK : John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470972281.
Texte intégralChuang, T. J., et J. W. Rudnicki, dir. Multiscale Deformation and Fracture in Materials and Structures. Dordrecht : Kluwer Academic Publishers, 2002. http://dx.doi.org/10.1007/0-306-46952-9.
Texte intégralPasternak, Elena, et Arcady Dyskin, dir. Multiscale Processes of Instability, Deformation and Fracturing in Geomaterials. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-22213-9.
Texte intégralJ, Chuang T., Rudnicki J. W et Rice J. R, dir. Multiscale deformation and fracture in materials and structures : The James R. Rice 60th anniversary volume. Dordrecht : Kluwer Academic Publishers, 2001.
Trouver le texte intégralPiero, Gianpetro Del, et Owen David R. Multiscale Modeling in Continuum Mechanics and Structured Deformations. Springer London, Limited, 2014.
Trouver le texte intégralFan, Jinghong. Multiscale Analysis of Deformation and Failure of Materials. Wiley & Sons, Incorporated, John, 2011.
Trouver le texte intégralChapitres de livres sur le sujet "Multiscale deformations"
Niemunis, Andrzej, et Felipe Prada. « PARAELASTIC DEFORMATIONS IN HYPOPLASTICITY ». Dans Multiscale and Multiphysics Processes in Geomechanics, 29–32. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19630-0_8.
Texte intégralDeseri, L. « Crystalline Plasticity and Structured Deformations ». Dans Multiscale Modeling in Continuum Mechanics and Structured Deformations, 203–30. Vienna : Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_6.
Texte intégralPiero, Gianpietro. « Foundations of the Theory of Structured Deformations ». Dans Multiscale Modeling in Continuum Mechanics and Structured Deformations, 125–75. Vienna : Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_4.
Texte intégralParoni, Roberto. « Second-Order Structured Deformations : Approximation Theorems and Energetics ». Dans Multiscale Modeling in Continuum Mechanics and Structured Deformations, 177–202. Vienna : Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_5.
Texte intégralŠilhavý, M. « Energy Minimization for Isotropic Nonlinear Elastic Bodies ». Dans Multiscale Modeling in Continuum Mechanics and Structured Deformations, 1–51. Vienna : Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_1.
Texte intégralLe, Khanh Chau. « Variational problems of crack equilibrium and crack propagation ». Dans Multiscale Modeling in Continuum Mechanics and Structured Deformations, 53–81. Vienna : Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_2.
Texte intégralMarigo, Jean-Jacques. « Griffith Theory Revisited ». Dans Multiscale Modeling in Continuum Mechanics and Structured Deformations, 83–123. Vienna : Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_3.
Texte intégralOwen, David R. « Elasticity with Disarrangements ». Dans Multiscale Modeling in Continuum Mechanics and Structured Deformations, 231–75. Vienna : Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-2770-4_7.
Texte intégralLevitas, Valery I. « Phase Transformations Under High Pressure and Large Plastic Deformations : Multiscale Theory and Interpretation of Experiments ». Dans Proceedings of the International Conference on Martensitic Transformations : Chicago, 3–10. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76968-4_1.
Texte intégralWang, Jielong. « Motion and Deformation ». Dans Multiscale Multibody Dynamics, 59–97. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8441-9_2.
Texte intégralActes de conférences sur le sujet "Multiscale deformations"
Lu, Jing. « Multiscale modeling of large deformations in 3-D polycrystals ». Dans MATERIALS PROCESSING AND DESIGN : Modeling, Simulation and Applications - NUMIFORM 2004 - Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2004. http://dx.doi.org/10.1063/1.1766791.
Texte intégralTyumentsev, Alexander N., Anatoly S. Avilov, Sergei L. Dudarev et Laurence D. Marks. « Metal Microstructure After Large Plastic Deformations : Models and TEM Possibilities ». Dans ELECTRON MICROSCOPY AND MULTISCALE MODELING- EMMM-2007 : An International Conference. AIP, 2008. http://dx.doi.org/10.1063/1.2918113.
Texte intégralManiatty, Antoinette, Karel Matous et Jing Lu. « Multiscale Modeling of Large Deformation Processes in Polycrystalline Metals ». Dans ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-43634.
Texte intégralSibole, Scott, et Ahmet Erdemir. « A Pipeline for High Throughput Post-Processing of Joint and Tissue Simulations for Estimation of Cell Level Deformations ». Dans ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53749.
Texte intégralZhu, Qiang, Zhangli Peng et Robert J. Asaro. « Investigation of RBC Remodeling With a Multiscale Model ». Dans ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13121.
Texte intégralWeinberg, Eli, et Mohammad Mofrad. « Multiscale Fluid-Structure Simulations of the Aortic Valve ». Dans ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176730.
Texte intégralMaute, K., M. L. Dunn, R. Bischel, M. Howard et J. M. Pajot. « Multiscale Design of Vascular Plates ». Dans ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82203.
Texte intégralWeinberg, Eli J., et Mohammad R. K. Mofrad. « Multiscale Simulations of the Healthy and Calcific Human Aortic Valve ». Dans ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192671.
Texte intégralRossi, Paolo, Cristina Castagnetti, Stefano Cattini, Giorgio Di Loro, Francesca Grassi, Luigi Parente, Sara Righi, Luigi Rovati, Roberto Simonini et Alessandro Capra. « Monitoring of underwater animal forests : geometry and biometry ». Dans 5th Joint International Symposium on Deformation Monitoring. Valencia : Editorial de la Universitat Politècnica de València, 2022. http://dx.doi.org/10.4995/jisdm2022.2022.13891.
Texte intégralHalloran, Jason, Scott Sibole et Ahmet Erdemir. « Three Dimensional Cellular Loading and Average Microstructural Tissue Response Using Single and Three Cell Models ». Dans ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53663.
Texte intégralRapports d'organisations sur le sujet "Multiscale deformations"
McDowell, David L. Evolving Multiscale Deformation and Damage in Polycrystals. Fort Belvoir, VA : Defense Technical Information Center, août 2003. http://dx.doi.org/10.21236/ada416378.
Texte intégralShen, Yu-Lin, et Tariq Khraishi. A Framework for Multiscale Modeling of Deformation in Crystalline Solids. Fort Belvoir, VA : Defense Technical Information Center, février 2006. http://dx.doi.org/10.21236/ada444522.
Texte intégralHou, Thomas, Yalchin Efendiev, Hamdi Tchelepi et Louis Durlofsky. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation. Office of Scientific and Technical Information (OSTI), mai 2016. http://dx.doi.org/10.2172/1254120.
Texte intégralTchelepi, Hamdi. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation. Office of Scientific and Technical Information (OSTI), novembre 2014. http://dx.doi.org/10.2172/1164145.
Texte intégralGhoniem, Nasr M. Multiscale Modeling of Deformation, Fracture and Failure of Fusion Materials and Structures Final Report. Office of Scientific and Technical Information (OSTI), novembre 2017. http://dx.doi.org/10.2172/1415926.
Texte intégralNasr M. Ghoniem et Nick Kioussis. Multiscale Modeling of the Deformation of Advanced Ferritic Steels for Generation IV Nuclear Energy. Office of Scientific and Technical Information (OSTI), avril 2009. http://dx.doi.org/10.2172/953345.
Texte intégralAndrade, José E., et John W. Rudnicki. Multiscale framework for predicting the coupling between deformation and fluid diffusion in porous rocks. Office of Scientific and Technical Information (OSTI), décembre 2012. http://dx.doi.org/10.2172/1057395.
Texte intégralBuehler, Markus J. Differential Multiscale Modeling of Chemically Complex Materials under Heavy Deformation : Biological, Bioinspired and Synthetic Hierarchical Materials. Fort Belvoir, VA : Defense Technical Information Center, juin 2010. http://dx.doi.org/10.21236/ada533318.
Texte intégralSparks, Paul, Jesse Sherburn, William Heard et Brett Williams. Penetration modeling of ultra‐high performance concrete using multiscale meshfree methods. Engineer Research and Development Center (U.S.), septembre 2021. http://dx.doi.org/10.21079/11681/41963.
Texte intégralStanek, Christopher, Carlos Tome, Robert Montgomery et Wengfeng Liu. FY14.CASL.012, L2:MPO.P9.03 Demonstration of Atomistically-�informed Multiscale Zr Alloy Deformation Models in Peregrine for Normal and Accident Scenarios. Office of Scientific and Technical Information (OSTI), octobre 2014. http://dx.doi.org/10.2172/1159210.
Texte intégral