Littérature scientifique sur le sujet « Multiple Traffic Light label »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multiple Traffic Light label ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Multiple Traffic Light label"
Gorton, Delvina, Cliona Ni Mhurchu, Mei-hua Chen et Robyn Dixon. « Nutrition labels : a survey of use, understanding and preferences among ethnically diverse shoppers in New Zealand ». Public Health Nutrition 12, no 9 (septembre 2009) : 1359–65. http://dx.doi.org/10.1017/s1368980008004059.
Texte intégralFinkelstein, Eric A., Felicia Jia Ler Ang, Brett Doble, Wei Han Melvin Wong et Rob M. van Dam. « A Randomized Controlled Trial Evaluating the Relative Effectiveness of the Multiple Traffic Light and Nutri-Score Front of Package Nutrition Labels ». Nutrients 11, no 9 (17 septembre 2019) : 2236. http://dx.doi.org/10.3390/nu11092236.
Texte intégralBabio, Nancy, Paloma Vicent, Leonor López, Anna Benito, Julio Basulto et Jordi Salas-Salvadó. « Adolescents’ ability to select healthy food using two different front-of-pack food labels : a cross-over study ». Public Health Nutrition 17, no 6 (17 mai 2013) : 1403–9. http://dx.doi.org/10.1017/s1368980013001274.
Texte intégralTalati, Zenobia, Simone Pettigrew, Bridget Kelly, Kylie Ball, Bruce Neal, Helen Dixon, Trevor Shilton et Caroline Miller. « Can front-of-pack labels influence portion size judgements for unhealthy foods ? » Public Health Nutrition 21, no 15 (18 juillet 2018) : 2776–81. http://dx.doi.org/10.1017/s1368980018001702.
Texte intégralTalati, Zenobia, Manon Egnell, Serge Hercberg, Chantal Julia et Simone Pettigrew. « Consumers’ Perceptions of Five Front-of-Package Nutrition Labels : An Experimental Study Across 12 Countries ». Nutrients 11, no 8 (16 août 2019) : 1934. http://dx.doi.org/10.3390/nu11081934.
Texte intégralVanderlee, Lana, Beatriz Franco-Arellano, Mavra Ahmed, Angela Oh, Wendy Lou et Mary R. L’Abbé. « The efficacy of ‘high in’ warning labels, health star and traffic light front-of-package labelling : an online randomised control trial ». Public Health Nutrition 24, no 1 (6 octobre 2020) : 62–74. http://dx.doi.org/10.1017/s1368980020003213.
Texte intégralEgnell, Talati, Gombaud, Galan, Hercberg, Pettigrew et Julia. « Consumers’ Responses to Front-of-Pack Nutrition Labelling : Results from a Sample from The Netherlands ». Nutrients 11, no 8 (6 août 2019) : 1817. http://dx.doi.org/10.3390/nu11081817.
Texte intégralPacker, Jessica, Simon J. Russell, Deborah Ridout, Anne Conolly, Curtis Jessop, Russell M. Viner et Helen Croker. « Secondary Outcomes of a Front-of-Pack-Labelling Randomised Controlled Experiment in a Representative British Sample : Understanding, Ranking Speed and Perceptions ». Nutrients 14, no 11 (24 mai 2022) : 2188. http://dx.doi.org/10.3390/nu14112188.
Texte intégralFialon, Morgane, Manon Egnell, Zenobia Talati, Pilar Galan, Louise Dréano-Trécant, Mathilde Touvier, Simone Pettigrew, Serge Hercberg et Chantal Julia. « Effectiveness of Different Front-of-Pack Nutrition Labels among Italian Consumers : Results from an Online Randomized Controlled Trial ». Nutrients 12, no 8 (31 juillet 2020) : 2307. http://dx.doi.org/10.3390/nu12082307.
Texte intégralKontopoulou, Lamprini, George Karpetas, Εvangelos C. Fradelos, Ioanna V. Papathanasiou, Foteini Malli, Dimitrios Papagiannis, Dimitrios Mantzaris, Morgane Fialon, Chantal Julia et Konstantinos I. Gourgoulianis. « Online Consumer Survey Comparing Different Front-of-Pack Labels in Greece ». Nutrients 14, no 1 (23 décembre 2021) : 46. http://dx.doi.org/10.3390/nu14010046.
Texte intégralThèses sur le sujet "Multiple Traffic Light label"
SAMPALEAN, NICULINA IUDITA. « ESPLORAZIONE DEL COMPORTAMENTO DEI CONSUMATORI NEI CONFRONTI DELLE DIVERSE ETICHETTE RELATIVE AGLI ALIMENTI DI QUALITÀ CERTIFICATA DALL'UNIONE EUROPEA ». Doctoral thesis, Università Cattolica del Sacro Cuore, 2022. http://hdl.handle.net/10280/115280.
Texte intégralAny food product found on the market contains several labels that help consumers in their decision making when shopping. This help can be guaranteed only if the consumers understand the significance of those labels, the differences between them and the information that they certify. The thesis explored labels’ role in the food marketing sector and studies were carried out according to consumer approach. Using different methods (statistics and econometrics), we analyzed consumers perceptions, awareness, knowledge towards some food labels and their preferences and behavior toward food products bearing these labels (Front of Packaging Nutritional Labels and Quality labels). Quality certified food products were chosen because are dramatically relevant for the European agri-food sector, even more of the Italian one where it forms the DOP Economy, due to its density. Assessments of several food labels from a consumer behavior perspective was carried out. Based on the findings we formulated some policy, marketing recommendations and communication suggestions that could be used by the consortia to enhance consumers’ engagement for products with quality certifications (PDO/PG/TSG or organic). The recommendations were also addressed to policy makers and producers of the PDO/PGI/TSG/Organic products but also to the policy makers of the Nutritional Labelling.
Shrestha, Anita. « Impact of front-of-pack nutrition labelling on dietary choices in Nepal ». Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235055/1/Anita_Shrestha_Thesis.pdf.
Texte intégralHosseinyalamdary, Saivash Hosseinyalamdary. « Traffic Scene Perception using Multiple Sensors for Vehicular Safety Purposes ». The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462803166.
Texte intégralSilva, Maria Cristina Furtado da. « Avaliação da compreensão da representação gráfica das informações nutricionais de rótulos de alimentos em adolescentes ». Universidade do Vale do Rio dos Sinos, 2015. http://www.repositorio.jesuita.org.br/handle/UNISINOS/3819.
Texte intégralMade available in DSpace on 2015-06-11T18:29:09Z (GMT). No. of bitstreams: 1 Maria Cristina Furtado da Silva.pdf: 764706 bytes, checksum: 895ab39648c68f2f22cf494c989f77e0 (MD5) Previous issue date: 2015-03-06
Nenhuma
Este trabalho tem como objetivo avaliar a compreensão da representação gráfica das informações nutricionais presentes nos rótulos de alimentos por adolescentes escolares. Foi realizado um estudo transversal com 56 adolescentes escolares (n=56), com idades compreendidas entre 15 e 17 anos, matriculados em uma escola particular de Porto Alegre/RS. Para a realização da pesquisa foi utilizado um questionário específico estruturado com nove perguntas fechadas dicotômicas e de múltipla escolha. Os resultados mostram que 41% dos adolescentes escolares costumam ler os rótulos antes da compra, 71% afirmam conhecer o significado de valor energético dos alimentos, 63% declaram compreender as informações escritas nos rótulos e 61% confiam nas informações escritas nas embalagens de alimentos. A maioria dos adolescentes compreende os componentes nutricionais presentes nos rótulos de alimentos brasileiros, e apenas 45% entendeu as informações nutricionais presentes no modelo de rótulo Traffic Light Labelling ou “Semáforo Nutricional”, evidenciando que a rotulagem utilizada no Brasil apresentou resultados mais positivos de compreensão. Os resultados do estudo indicam que um número relevante de adolescentes (63%) compreende os componentes nutricionais presentes nos rótulos de alimentos brasileiros e um número significativo de indivíduos compreendeu e identificou a informação nutricional mais saudável descritas nos rótulos; no entanto, sugere-se o desenvolvimento de programas de educação nutricional para potencializar a compreensão das informações nutricionais contidas nos rótulos para este perfil de consumidor.
This paper aims at evaluating the understanding of graphical representation of nutritional information on food labels by young adolescent students. Therefore, it was carried out a cross-sectional study with 56 young adolescent students (n = 56), aged between 15 and 17 years, enrolled in a private school in Porto Alegre / RS. A specific questionnaire containing nine dichotomous and multiple choice closed questions was used for data gathering. The results showed that 41% of young adolescent students usually read the labels before purchasing, 71% of them claim to know the meaning of the energetic value of food, 63% say they understand the information written on the labels, and 61 % trust the information written on food packages. Most adolescents understand the nutritional components present on the labels of Brazilian foods, and only 45% understood the nutrition information on the Traffic Light labelling system, showing that the labels used in Brazil are better understood. The results indicate that a meaningful number of adolescents (63%) understands the nutritional components on the labels of Brazilian food, and a meaningful number of individuals understood and identified the healthiest nutritional information given on labels; however, it is suggested the development of nutrition education programs to enhance the understanding of the nutritional information on the labels for this consumer profile.
Weng, Shih-Han, et 翁詩涵. « Process Evaluation of Traffic-Light Food Label Intervention in Restaurant of a Research Institute ». Thesis, 2015. http://ndltd.ncl.edu.tw/handle/15317538477283009498.
Texte intégral國立陽明大學
公共衛生研究所
103
Abstract Objectives To evaluate the process of “Traffic-Light Food Label Intervention,” in the cafeteria of a research institute in Taiwan. This process evaluation aimed at (1) customers’ notice, utilization and evaluation to traffic-light food labels, (2) factors that affected customers’ notice, utilization and evaluation to traffic-light food labels, and (3) the degree of implementation of the intervention. Method “Traffic-Light Food Label Intervention” provided health education and direct ques of foods’ health quality in the cafeteria. Two cross-sectional surveys were carried out to assess customers’ notice, utilization and evaluation to the intervention. The two surveys were taken place during lunch time on 2014/7/11, 7/14, 7/15 and 2015/4/24, 4/27, 4/28, respectively. Besides, the survey was done in the cafeteria, and participants were workers having lunch between 11:30 and 13:00. There are 275 and 205 participants in the first and second survey. The data analyses were chi-square test and multiple logistic regression. Results In two surveys, 96% and 92% of the customers’ noticed education information and traffic-light food labels, respectively. The utilization rate of traffic-light food labels of the second survey (50%) was higher than the first survey (38%). Customers in both surveys gave the traffic-light food labels positive evaluation. Customers who agreed that the restaurant provided sufficient food choices would have greater odds to gave positive evaluation to the traffic-ligh food labels (OR=4.05, 95% CI: 2.31~7.13). Regarding food quality, the cafeteria irregularly provided green light main course on the days of the first survey. The Employee Food Committee requested the cafeteria to provide at least one green light main course during all the lunch time, after they received the results of the first survey. Later, on the days of the second survey, the cafeteria followed the request and provided green light main course in lunchtime. However, the mislabeling of traffic-light food labels needed to be improved. Conclusion Popularizing traffic-light food labels could make most customers notice and be willing to utilize traffic-light food labels information to choose healthy food. Our study shows that the customers gave the traffic-light food labels positive evaluation. Moreover, traffic-light food labels might increase the proportion of choosing green light food and decrease the proportion of choosing red light food after the labeling. Therefore, “Traffic-Light Food Label Intervention” is a feasible strategy to improve healthy eating in Taiwan.
Chapitres de livres sur le sujet "Multiple Traffic Light label"
Wilbrink, Marc, et Michael Oehl. « The More the Better ? Comparison of Different On-Board HMI Communication Strategies for Highly Automated Vehicles Using a LED Light-Band to Inform Passengers About Safe Interactions with Multiple Surrounding Traffic Participants ». Dans Communications in Computer and Information Science, 441–48. Cham : Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19682-9_56.
Texte intégralDatta, Debasish. « Optical Network Control and Management ». Dans Optical Networks, 457–90. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834229.003.0012.
Texte intégralTsiropoulou, Eirini Eleni, Panagiotis Vamvakas et Symeon Papavassiliou. « Resource Allocation in Multi-Tier Femtocell and Visible-Light Heterogeneous Wireless Networks ». Dans Advances in Wireless Technologies and Telecommunication, 210–46. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-2023-8.ch010.
Texte intégralActes de conférences sur le sujet "Multiple Traffic Light label"
Jang, Chulhoon, Chansoo Kim, Dongchul Kim, Minchae Lee et Myoungho Sunwoo. « Multiple exposure images based traffic light recognition ». Dans 2014 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2014. http://dx.doi.org/10.1109/ivs.2014.6856541.
Texte intégralTang, Yang, Shuang Chen, Honggang Zhang, Gang Wang et Rui Yang. « MRP-Net : A Light Multiple Region Perception Neural Network for Multi-label AU Detection ». Dans 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9412515.
Texte intégralZhou, Binbin, Jiannong Cao et Hejun Wu. « Adaptive Traffic Light Control of Multiple Intersections in WSN-Based ITS ». Dans 2011 IEEE Vehicular Technology Conference (VTC 2011-Spring). IEEE, 2011. http://dx.doi.org/10.1109/vetecs.2011.5956434.
Texte intégralLiu, Shanshan, Linyan Xie, Yan Yang, Xu Qiao, Kun Song, Beihua Kong et Xuantao Su. « Label-free analysis of single and multiple cells with a 2D light scattering static cytometer ». Dans SPIE BiOS, sous la direction de Daniel L. Farkas, Dan V. Nicolau et Robert C. Leif. SPIE, 2015. http://dx.doi.org/10.1117/12.2080519.
Texte intégralJoyo, Ambteen, Kaziq Yaqub et Nicholas Madamopoulos. « Managing traffic-light-duration by exploiting smart antenna technology (MATSAT) for coordinated multiple-intersections (CMI) ». Dans 2015 International Conference on Emerging Technologies (ICET). IEEE, 2015. http://dx.doi.org/10.1109/icet.2015.7389226.
Texte intégralS.A.C, Madhusanka, Rathnayake K.K.H.M et Mahaliyanaarachchi R. P. « Impact of Traffic Light Food Labelling on Consumer Awareness of Health and Healthy Choices of the Pointof-Purchase ». Dans 2nd International Conference on Agriculture, Food Security and Safety. iConferences (Pvt) Ltd, 2021. http://dx.doi.org/10.32789/agrofood.2021.1001.
Texte intégralSaedi, Kazem, et Amir Hossein Mohajcrzadeh. « Designing a Light-Weighted Multi-Class and Novel Multiple Logical Fuzzy Controller to Manage Intelligent Urban Traffic ». Dans 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE). IEEE, 2018. http://dx.doi.org/10.1109/iccke.2018.8566565.
Texte intégralSucianti, Ainy. « The Effect of Front-of-Package Traffic Light (FoPTL) Nutrition Label Design on the Acceptability and Understanding of Nutrition Labels for Hypertension Patients ». Dans The International Conference on Public Health and Well-being. iConferences, 2019. http://dx.doi.org/10.32789/publichealth.2019.1004.
Texte intégralRacila, Laurentiu. « Saturation flow mathematical model based on multiple combinations of lane groups ». Dans CIT2016. Congreso de Ingeniería del Transporte. Valencia : Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/cit2016.2016.4254.
Texte intégralXing, Dong, Qian Zheng, Qianhui Liu et Gang Pan. « TinyLight : Adaptive Traffic Signal Control on Devices with Extremely Limited Resources ». Dans Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California : International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/555.
Texte intégralRapports d'organisations sur le sujet "Multiple Traffic Light label"
Cheng, Wen, Yongping Zhang et Edward Clay. Comprehensive Performance Assessment of Passive Crowdsourcing for Counting Pedestrians and Bikes. Mineta Transportation Institute, février 2022. http://dx.doi.org/10.31979/mti.2022.2025.
Texte intégral