Littérature scientifique sur le sujet « Multiferroics - Spintronics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Multiferroics - Spintronics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Multiferroics - Spintronics"

1

Béa, H., M. Gajek, M. Bibes et A. Barthélémy. « Spintronics with multiferroics ». Journal of Physics : Condensed Matter 20, no 43 (9 octobre 2008) : 434221. http://dx.doi.org/10.1088/0953-8984/20/43/434221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

GAREEVA, Z. V., A. M. TROCHINA et SH T. GAREEV. « MAGNETOELECTRIC EFFECTS AND NEW SPINTRONICS LOGIC DEVICES ». Izvestia Ufimskogo Nauchnogo Tsentra RAN, no 1 (31 mars 2023) : 65–70. http://dx.doi.org/10.31040/2222-8349-2023-0-1-65-70.

Texte intégral
Résumé :
The paper discusses new logic spintronic devices and the prospects for the use of perovskite-type multiferroics as working elements of magnetoelectric components. The principle of operation of the considered logical devices is based on the use of two components - a magnetoelectric, in which the magnetic state is recorded due to energy-efficient magnetoelectric interaction, and a spin-orbital component, in which information is read out based on the conversion of spin into charge due to the spin-orbital interaction of electrons; both components are interconnected by a nanoelectrode. When designing new logic spintronic devices, it is necessary to take into account the effectiveness of the mechanisms of ME interactions; features of spin - polarized currents and associated torques influencing magnetic moments; as well as other factors affecting the speed of switching magnetic states and the sensitivity of the device to external agents. Multiferroic materials that are promising for use as elements of ME components of new logic devices must meet a number of requirements, the most significant of which are the magnitude of the magnetoelectric coupling coefficient and the temperature at which ME effects occur. The paper considers representatives of multiferroics with a perovskite structure that meet these conditions, to some extent partially, these are high-temperature multiferroic bismuth ferrite (BiFeO3) and Ruddlesden-Popper structures, in which high-temperature ferroelectric effects are already realized and under certain conditions an ME effect is possible. The crystal structure of these compounds is considered, and the role of crystallographic distortions responsible for the manifestation of magnetoelectric properties is analyzed. Expressions are obtained for the tensor of the magnetoelectric effect as functions of magnetic order parameters, and the fundamental possibility of realizing ME effects in Ruddlesden-Popper structures containing magnetic cations is shown.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Chen, Aitian, Yuelei Zhao, Yan Wen, Long Pan, Peisen Li et Xi-Xiang Zhang. « Full voltage manipulation of the resistance of a magnetic tunnel junction ». Science Advances 5, no 12 (décembre 2019) : eaay5141. http://dx.doi.org/10.1126/sciadv.aay5141.

Texte intégral
Résumé :
One of the motivations for multiferroics research is to find an energy-efficient solution to spintronic applications, such as the solely electrical control of magnetic tunnel junctions. Here, we integrate spintronics and multiferroics by depositing MgO-based magnetic tunnel junctions on ferroelectric substrate. We fabricate two pairs of electrodes on the ferroelectric substrate to generate localized strain by applying voltage. This voltage-generated localized strain has the ability to modify the magnetic anisotropy of the free layer effectively. By sequentially applying voltages to these two pairs of electrodes, we successively and unidirectionally rotate the magnetization of the free layer in the magnetic tunnel junctions to complete reversible 180° magnetization switching. Thus, we accomplish a giant nonvolatile solely electrical switchable high/low resistance in magnetic tunnel junctions at room temperature without the aid of a magnetic field. Our results are important for exploring voltage control of magnetism and low-power spintronic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Wang, Jiawei, Aitian Chen, Peisen Li et Sen Zhang. « Magnetoelectric Memory Based on Ferromagnetic/Ferroelectric Multiferroic Heterostructure ». Materials 14, no 16 (17 août 2021) : 4623. http://dx.doi.org/10.3390/ma14164623.

Texte intégral
Résumé :
Electric-field control of magnetism is significant for the next generation of large-capacity and low-power data storage technology. In this regard, the renaissance of a multiferroic compound provides an elegant platform owing to the coexistence and coupling of ferroelectric (FE) and magnetic orders. However, the scarcity of single-phase multiferroics at room temperature spurs zealous research in pursuit of composite systems combining a ferromagnet with FE or piezoelectric materials. So far, electric-field control of magnetism has been achieved in the exchange-mediated, charge-mediated, and strain-mediated ferromagnetic (FM)/FE multiferroic heterostructures. Concerning the giant, nonvolatile, and reversible electric-field control of magnetism at room temperature, we first review the theoretical and representative experiments on the electric-field control of magnetism via strain coupling in the FM/FE multiferroic heterostructures, especially the CoFeB/PMN–PT [where PMN–PT denotes the (PbMn1/3Nb2/3O3)1−x-(PbTiO3)x] heterostructure. Then, the application in the prototype spintronic devices, i.e., spin valves and magnetic tunnel junctions, is introduced. The nonvolatile and reversible electric-field control of tunneling magnetoresistance without assistant magnetic field in the magnetic tunnel junction (MTJ)/FE architecture shows great promise for the future of data storage technology. We close by providing the main challenges of this and the different perspectives for straintronics and spintronics.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zvezdin, A. K., A. S. Logginov, G. A. Meshkov et A. P. Pyatakov. « Multiferroics : Promising materials for microelectronics, spintronics, and sensor technique ». Bulletin of the Russian Academy of Sciences : Physics 71, no 11 (novembre 2007) : 1561–62. http://dx.doi.org/10.3103/s1062873807110263.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Blessi, S., S. Vijayalakshmi et S. Pauline. « Synthesis, Structural and Dielectric Properties of Pure and Ni Substituted Bismuth Ferrite ». Advanced Materials Research 938 (juin 2014) : 140–44. http://dx.doi.org/10.4028/www.scientific.net/amr.938.140.

Texte intégral
Résumé :
Multiferroics have been known as materials exhibiting both ferroelectric and ferromagnetic properties in same phase, they have interesting physical properties as well as possibility of practical application in some new memories, spintronics and sensor devices. The present work reports the fabrication of pure and Nickel substituted Bismuth Ferrite by simple hydrothermal method at 180oC for 11 hours. The structural study was carried out using X-ray powder diffraction (XRD), and the Dielectric properties were investigated over a wide range of frequency and temperature. The image of SEM is in good agreement with the XRD analysis. The synthesis method is simple and cost effective. KEYWORDS: Multiferroics; Dielectric loss; Hydrothermal method; XRD.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Béa, H., M. Bibes, M. Sirena, G. Herranz, K. Bouzehouane, E. Jacquet, S. Fusil et al. « Combining half-metals and multiferroics into epitaxial heterostructures for spintronics ». Applied Physics Letters 88, no 6 (6 février 2006) : 062502. http://dx.doi.org/10.1063/1.2170432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Liu, Ming, et Nian X. Sun. « Voltage control of magnetism in multiferroic heterostructures ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 372, no 2009 (28 février 2014) : 20120439. http://dx.doi.org/10.1098/rsta.2012.0439.

Texte intégral
Résumé :
Electrical tuning of magnetism is of great fundamental and technical importance for fast, compact and ultra-low power electronic devices. Multiferroics, simultaneously exhibiting ferroelectricity and ferromagnetism, have attracted much interest owing to the capability of controlling magnetism by an electric field through magnetoelectric (ME) coupling. In particular, strong strain-mediated ME interaction observed in layered multiferroic heterostructures makes it practically possible for realizing electrically reconfigurable microwave devices, ultra-low power electronics and magnetoelectric random access memories (MERAMs). In this review, we demonstrate this remarkable E-field manipulation of magnetism in various multiferroic composite systems, aiming at the creation of novel compact, lightweight, energy-efficient and tunable electronic and microwave devices. First of all, tunable microwave devices are demonstrated based on ferrite/ferroelectric and magnetic-metal/ferroelectric composites, showing giant ferromagnetic resonance (FMR) tunability with narrow FMR linewidth. Then, E-field manipulation of magnetoresistance in multiferroic anisotropic magnetoresistance and giant magnetoresistance devices for achieving low-power electronic devices is discussed. Finally, E-field control of exchange-bias and deterministic magnetization switching is demonstrated in exchange-coupled antiferromagnetic/ferromagnetic/ferroelectric multiferroic hetero-structures at room temperature, indicating an important step towards MERAMs. In addition, recent progress in electrically non-volatile tuning of magnetic states is also presented. These tunable multiferroic heterostructures and devices provide great opportunities for next-generation reconfigurable radio frequency/microwave communication systems and radars, spintronics, sensors and memories.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Assefa, Gezahegn. « Electric Field Controlled Itinerant Carrier Spin Polarization in Ferromagnetic Semiconductors ». Advances in Condensed Matter Physics 2021 (12 juillet 2021) : 1–5. http://dx.doi.org/10.1155/2021/6663876.

Texte intégral
Résumé :
Electric field control of magnetic properties has been achieved across a number of different material systems. In diluted magnetic semiconductors (DMSs), ferromagnetic metals, multiferroics, etc., electrical manipulation of magnetism has been observed. Here, we study the effect of an electric field on the carrier spin polarization in DMSs ( GaAsMn ); in particular, emphasis is given to spin-dependent transport phenomena. In our system, the interaction between the carriers and the localized spins in the presence of electric field is taken as the main interaction. Our results show that the electric field plays a major role on the spin polarization of carriers in the system. This is important for spintronics application.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Oda, Tatsuki. « Development and application of the density functional approach with spin density magnetic dipole interaction ». Impact 2020, no 1 (27 février 2020) : 30–31. http://dx.doi.org/10.21820/23987073.2020.1.30.

Texte intégral
Résumé :
Work on magnetism, spintronics and multiferroics has generated a great deal of new insight in the field of nanotechnology. According to Professor Tatsuki Oda, who is an expert in this field, one of the most important advancements is the new computational approach to assessing magnetic anisotropy energy (MAE) in antiferromagnets and ferrimagnets in realistic materials. Oda and his team from the Kanazawa University in Japan have taken this unique approach to achieve a world first - offering new tools to help researchers overcome the existing difficulties experienced in measuring antiferromagnetism. In a recent project, Oda's team have been considering the development and application of the density functional approach with spin density magnetic dipole interaction.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Multiferroics - Spintronics"

1

Roy, Kuntal. « Hybrid spintronics and straintronics : An ultra-low-energy computing paradigm ». VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/381.

Texte intégral
Résumé :
The primary obstacle to continued downscaling of charge-based electronic devices in accordance with Moore's law is the excessive energy dissipation that takes place in the device during switching of bits. Unlike charge-based devices, spin-based devices are switched by flipping spins without moving charge in space. Although some energy is still dissipated in flipping spins, it can be considerably less than the energy associated with current flow in charge-based devices. Unfortunately, this advantage will be squandered if the method adopted to switch the spin is so energy-inefficient that the energy dissipated in the switching circuit far exceeds the energy dissipated inside the system. Regrettably, this is often the case, e.g., switching spins with a magnetic field or with spin-transfer-torque mechanism. In this dissertation, it is shown theoretically that the magnetization of two-phase multiferroic single-domain nanomagnets can be switched very energy-efficiently, more so than any device currently extant, leading possibly to new magnetic logic and memory systems which might be an important contributor to Beyond-Moore's-Law technology. A multiferroic composite structure consists of a layer of piezoelectric material in intimate contact with a magnetostrictive layer. When a tiny voltage of few millivolts is applied across the structure, it generates strain in the piezoelectric layer and the strain is transferred to the magnetostrictive nanomagnet. This strain generates magnetostrictive anisotropy in the nanomagnet and thus rotates its direction of magnetization, resulting in magnetization reversal or 'bit-flip'. It is shown after detailed analysis that full 180 degree switching of magnetization can occur in the "symmetric" potential landscape of the magnetostrictive nanomagnet, even in the presence of room-temperature thermal fluctuations, which differs from the general perception on binary switching. With proper choice of materials, the energy dissipated in the bit-flip can be made as low as one attoJoule at room-temperature. Also, sub-nanosecond switching delay can be achieved so that the device is adequately fast for general-purpose computing. The above idea, explored in this dissertation, has the potential to produce an extremely low-power, yet high-density and high-speed, non-volatile magnetic logic and memory system. Such processors would be well suited for embedded applications, e.g., implantable medical devices that could run on energy harvested from the patient's body motion.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ibrahim, Fatima. « Theoretical study of electronic structure and magnetism in materials for spintronics ». Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAE003/document.

Texte intégral
Résumé :
L'avenir de la spintronique repose sur le développement de matériaux ayant des propriétés magnétiques remarquables. L'objectif de cette thèse est de comprendre la physique des deux matériaux fonctionnels proposés pour des applications spintroniques qui utilisent des simulations de la densité fonctionnelle.Nous nous sommes intéressés dans une première partie au ferrite de gallium pour lequel il a été montré que les propriétés dépendaient de la concentration de fer.Les spectres optiques ont été calculés et comparés aux spectres expérimentaux suggérant des niveaux élevés de désordre. Dans la deuxième partie, nous avons montré une polarisation de spin à l’interface hybride formée entre la phthalocyanine de manganèse et la surface de cobalt,en accord avec les expériences de photoémission.La formation de la spinterface a été expliquée par différents mécanismes d'hybridation dans chaque canal de spin.Cette polarisation de spin est coordonnée avec des moments magnétiques induits sur les sites moléculaires
The future of the spintronics technology requires developing functional materials with remarkable magnetic properties. The aim of this thesis is to understand the physics of functional materials proposed for spintronic applications using ab-initio density functional simulations. We investigated the properties of two different functional materials. We first studied the magnetoelectric gallium ferrite GFO. The dependence of the different properties on the iron concentration has been demonstrated and discussed. The optical spectra were calculated and compared to the experimental once suggesting high levels of iron disorder. In the second part, we demonstrated a highly spin polarized hybrid interface formed between manganese phthalocyanine and cobalt surface in agreement with photoemission experiments. The formation of this spinterface was described by different hybridization mechanisms in each spin channel. This high spin polarization is coordinated with induced magnetic moments on the molecular sites
Styles APA, Harvard, Vancouver, ISO, etc.
3

Watanabe, Hikaru. « Theoretical Study of Nonlinear Current Generation in Parity-time Inversion Symmetric Magnets ». Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tang, Cheng. « Computational exploration of two-dimensional materials with novel electronic, optical and magnetic properties ». Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/212532/1/Cheng_Tang_Thesis.pdf.

Texte intégral
Résumé :
This project was a step forward in discovering new two-dimensional (2D) structures for electronic and spintronic applications. This work comprehensively investigates seven intriguing 2D structures with novel electronic, optical and magnetic properties on the basis of the global structural search and first-principles calculations. These findings not only highlight the promising materials platforms for advanced nanodevices but also provide the theoretical guides for designing multifunctional 2D materials.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Chirac, Théophile. « New spintronic components based on antiferromagnetic materials ». Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS482.

Texte intégral
Résumé :
Les mémoires magnétiques actuelles commencent à atteindre leurs limites physiques en terme de stabilité, vitesse et consommation énergétique, alors que la course à la miniaturisation s'intensifie. Le champ émergeant de la spintronique étudie le comportement collectif des spins dans la matière ainsi que leurs interactions aux interfaces, afin de trouver une solution en termes de matériaux, architectures et sources excitatrices. En particulier, les matériaux antiferromagnétiques sont particulièrement prometteurs. Ces matériaux ordonnées sont abondants, naturellement stables, robustes, ultra rapides et compatibles avec l'électronique des isolants. En effet, la plupart des oxydes à base de métaux de transition sont des isolants antiferromagnétiques ayant leur fréquence de résonance dans le terahertz et un champ de flop de quelques dizaines de teslas. Ils peuvent aussi être semi-métalliques, métalliques, semiconducteurs, supraconducteurs ou multiferroïques. Cette thèse s'intéresse aux deux antiferromagnétiques: oxyde de nickel (NiO) et ferrite de bismuth (BiFeO₃). NiO est un antiferromagnétique type à température ambiante, avec une structure cristalline simple. Une étude basée sur des simulations dynamiques atomiques montre que des courants de spin atteignables peuvent réaliser une mémoire à trois états avec ce composé, avec un temps de réponse de l'ordre de la picoseconde. La simulation explique aussi la formation de structures chirales dans BiFeO₃, un antiferromagnétique également ferroélectrique, présentant un couplage magnétoélectrique entre ses deux ordres. Dans une deuxième partie, les domaines antiferromagnétiques dans BiFeO₃ sont observés expérimentalement par génération de seconde harmonique optique, avec une résolution spatiale de un micron. Les domaines antiferromagnétiques de BiFeO₃ sont ensuite excités par une impulsion laser intense, et la dynamique des deux ordres couplés (antiferromagnétisme et ferroélectricité) est étudiée dans le régime picoseconde. Enfin, l'injection d'impulsions de spins dans dans un antiferromagnétique, tel que BiFeO₃ ou NiO est envisagée en utilisant la génération de courant de spin induite par la désaimantation ultrarapide de couches adjacentes magnétiques par des impulsions laser
Current magnetic memory devices are reaching their physical limits in terms of stability, speed and power consumption as the race to miniaturization intensifies. The emergent research field of spintronics studies the collective behavior of spins in matter and their interplay at interfaces, to find new avenues in terms of materials, architectures and stimulation sources. A particularly promising group of materials are the antiferromagnets. These abundant magnetically ordered materials are naturally stable, robust, ultra-fast and compatible with insulator electronics. Indeed, most transition metal oxide compounds are antiferromagnetic insulators, have resonance in the terahertz range and flop fields of tens of teslas. They can also be semi-metals, metals, semiconductors, superconductors or multiferroics. This thesis focuses on two antiferromagnets: nickel oxide (NiO) and bismuth ferrite (BiFeO₃). NiO is the archetypical antiferromagnet at ambient temperature with a simple crystalline structure. Using dynamical atomistic simulations, I show that this compound can be the elemental brick of a three state memory device controlled by currently available pulses of spin currents, with a picosecond response time. The simulations also explain the formation of chiral structures in BiFeO₃, a ferroelectric antiferromagnet with magnetoelectric coupling between the two orders. In a second part, antiferromagnetic domains in BiFeO₃ are experimentally observed using second harmonic generation of light, with a sub-micron spatial resolution. Antiferromagnetic domains of BiFeO₃ are then excited by an intense femtosecond laser pulse, and the dynamics of the two coupled orders (antiferromagnetism and ferroelectricity) is studied with a sub-picosecond time resolution. Finally, the injection of spin current in an antiferromagnet such as BiFeO₃ or NiO is envisioned by characterizing the spin bursts generated by ultrafast laser-induced demagnetization of adjacent ferromagnetic layers
Styles APA, Harvard, Vancouver, ISO, etc.
6

D'Souza, Noel. « APPLICATIONS OF 4-STATE NANOMAGNETIC LOGIC USING MULTIFERROIC NANOMAGNETS POSSESSING BIAXIAL MAGNETOCRYSTALLINE ANISOTROPY AND EXPERIMENTS ON 2-STATE MULTIFERROIC NANOMAGNETIC LOGIC ». VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3539.

Texte intégral
Résumé :
Nanomagnetic logic, incorporating logic bits in the magnetization orientations of single-domain nanomagnets, has garnered attention as an alternative to transistor-based logic due to its non-volatility and unprecedented energy-efficiency. The energy efficiency of this scheme is determined by the method used to flip the magnetization orientations of the nanomagnets in response to one or more inputs and produce the desired output. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque inhibit the promised energy-efficiency. Another technique offering superior energy efficiency, “straintronics”, involves the application of a voltage to a piezoelectric layer to generate a strain which is transferred to an elastically coupled magnetrostrictive layer, causing magnetization rotation. The functionality of this scheme can be enhanced further by introducing magnetocrystalline anisotropy in the magnetostrictive layer, thereby generating four stable magnetization states (instead of the two stable directions produced by shape anisotropy in ellipsoidal nanomagnets). Numerical simulations were performed to implement a low-power universal logic gate (NOR) using such 4-state magnetostrictive/piezoelectric nanomagnets (Ni/PZT) by clocking the piezoelectric layer with a small electrostatic potential (~0.2 V) to switch the magnetization of the magnetic layer. Unidirectional and reliable logic propagation in this system was also demonstrated theoretically. Besides doubling the logic density (4-state versus 2-state) for logic applications, these four-state nanomagnets can be exploited for higher order applications such as image reconstruction and recognition in the presence of noise, associative memory and neuromorphic computing. Experimental work in strain-based switching has been limited to magnets that are multi-domain or magnets where strain moves domain walls. In this work, we also demonstrate strain-based switching in 2-state single-domain ellipsoidal magnetostrictive nanomagnets of lateral dimensions ~200 nm fabricated on a piezoelectric substrate (PMN-PT) and studied using Magnetic Force Microscopy (MFM). A nanomagnetic Boolean NOT gate and unidirectional bit information propagation through a finite chain of dipole-coupled nanomagnets are also shown through strain-based "clocking". This is the first experimental demonstration of strain-based switching in nanomagnets and clocking of nanomagnetic logic (Boolean NOT gate), as well as logic propagation in an array of nanomagnets.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Zaidi, Tahir. « Ferromagnetic and multiferroic thin films aimed towards optoelectronic and spintronic applications ». Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/41110.

Texte intégral
Résumé :
This work targeted the growth of gadolinium (Gd)-doped gallium nitride (GaN) thin films (Ga₁₋ₓGdₓN) by metal organic chemical vapor deposition (MOCVD). Characterization and evaluation of these Ga₁₋ₓGdₓN thin films for application in spintronics/optoelectronics devices also formed part of this work. This work presents: (1) the first report of stable, reproducible n- and p-type Ga₁₋ₓGdₓN thin films by MOCVD; (2) the first Ga₁₋ₓGdₓN p-n diode structure; and (3) the first report of a room temperature spin-polarized LED using a Ga₁₋ₓGdₓN spin injection layer. The Ga₁₋ₓGdₓN thin films grown in this work were electrically conductive, and co-doping them with Silicon (Si) or Magnesium (Mg) resulted in n-type and p-type materials, respectively. All the materials and structures grown in this work, including the Ga₁₋ₓGdₓN-based p-n diode and spin polarized LED, were characterized for their structural, optical, electrical and magnetic properties. The spin-polarized LED gave spin polarization ratio of 22% and systematic variation of this ratio at room temperature with external magnetic field was observed.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fashami, Mohammad Salehi. « MULTIFERROIC NANOMAGNETIC LOGIC : HYBRID SPINTRONICS-STRAINTRONIC PARADIGM FOR ULTRA-LOW ENERGY COMPUTING ». VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3520.

Texte intégral
Résumé :
Excessive energy dissipation in CMOS devices during switching is the primary threat to continued downscaling of computing devices in accordance with Moore’s law. In the quest for alternatives to traditional transistor based electronics, nanomagnet-based computing [1, 2] is emerging as an attractive alternative since: (i) nanomagnets are intrinsically more energy-efficient than transistors due to the correlated switching of spins [3], and (ii) unlike transistors, magnets have no leakage and hence have no standby power dissipation. However, large energy dissipation in the clocking circuit appears to be a barrier to the realization of ultra low power logic devices with such nanomagnets. To alleviate this issue, we propose the use of a hybrid spintronics-straintronics or straintronic nanomagnetic logic (SML) paradigm. This uses a piezoelectric layer elastically coupled to an elliptically shaped magnetostrictive nanomagnetic layer for both logic [4-6] and memory [7-8] and other information processing [9-10] applications that could potentially be 2-3 orders of magnitude more energy efficient than current CMOS based devices. This dissertation focuses on studying the feasibility, performance and reliability of such nanomagnetic logic circuits by simulating the nanoscale magnetization dynamics of dipole coupled nanomagnets clocked by stress. Specifically, the topics addressed are: 1. Theoretical study of multiferroic nanomagnetic arrays laid out in specific geometric patterns to implement a “logic wire” for unidirectional information propagation and a universal logic gate [4-6]. 2. Monte Carlo simulations of the magnetization trajectories in a simple system of dipole coupled nanomagnets and NAND gate described by the Landau-Lifshitz-Gilbert (LLG) equations simulated in the presence of random thermal noise to understand the dynamics switching error [11, 12] in such devices. 3. Arriving at a lower bound for energy dissipation as a function of switching error [13] for a practical nanomagnetic logic scheme. 4. Clocking of nanomagnetic logic with surface acoustic waves (SAW) to drastically decrease the lithographic burden needed to contact each multiferroic nanomagnet while maintaining pipelined information processing. 5. Nanomagnets with four (or higher states) implemented with shape engineering. Two types of magnet that encode four states: (i) diamond, and (ii) concave nanomagnets are studied for coherence of the switching process.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ahmad, Hasnain. « Electric Field Controlled Strain Induced Switching of Magnetization of Galfenol Nanomagnets in Magneto-electrically Coupled Multiferroic Stack ». VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4387.

Texte intégral
Résumé :
The ability to control the bi-stable magnetization states of shape anisotropic single domain nanomagnets has enormous potential for spawning non-volatile and energy-efficient computing and signal processing systems. One of the most energy efficient switching methods is to adopt a system of a 2-phase multiferroic nanomagnet, where a voltage applied on the piezoelectric layer generates a strain in it and the strain is elastically transferred to the magnetostrictive nanomagnet which rotates the magnetization states of the nanomagnet at room temperature via the converse magnet-electric effect. Recently, it has been demonstrated that the magnetization of a Co nanomagnet can be switched between two stable orientations by this technique. The switching probability, however, is low due to the relatively small magnetostriction of Co. One possible way to improve the statistics is to use a better magnetostrictive material like Galfenol which has much higher magnetostriction and is therefore desirable, but it also presents unique material challenges owing to the existence of many phases. Nonetheless, there is a need to step beyond elemental ferromagnets and examine compound or alloyed ferromagnets with much higher magnetostriction to advance this field. There has not been much work in nanoscale FeGa magnets which are important for nanomagnetic logic and memory applications. Here, we have experimentally demonstrated switching of magnetization of Galfenol nanomagnets and proposed a core component of ultra-energy-efficient memory cell. We also demonstrated a bit writing scheme which completely reverses the magnetization with only strain, thus overcoming the fundamental obstacle of strain induced switching of magnetizations of nanomagnets.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Fischer, Johanna. « Imaging and tailoring electric and antiferromagnetic textures in multiferroic thin films of BiFeO₃ ». Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP013.

Texte intégral
Résumé :
Les matériaux antiferromagnétiques suscitent un intérêt croissant pour la spintronique de par leur insensibilité aux champs magnétiques parasites et leur dynamique magnétique ultrarapide. Cependant, la lecture et le contrôle de l’ordre antiferromagnétique restent des verrous pour le développement des dispositifs. Dans les matériaux multiferroïques, le couplage magnétoélectrique entre les ordres électrique et magnétique pourrait permettre de contrôler l’antiferromagnétisme avec un champ électrique. Dans cette thèse, nous imageons une grande variété de textures antiferromagnétiques que nous contrôlons par l’ingénierie des contraintes et le champ électrique pour l’archétype des matériaux multiferroïques, BiFeO₃. Nous élaborons des films minces sous différentes contraintes d’épitaxie, maîtrisant ainsi la texture de domaines ferroélectriques, telle qu’imagée par microscopie à force piézoélectrique. De plus, nous montrons qu’une transition de phase inverse peut être utilisée pour accroître l’ordre électrique global, d’une configuration labyrinthique de domaines vers un réseau périodique en bandes rectilignes. La magnétométrie à centre NV nous permet de corréler les textures antiferromagnétiques et ferroélectriques. Nous démontrons que les contraintes stabilisent différents types de cycloïdes ainsi qu’un ordre antiferromagnétique colinéaire. La diffraction X élastique résonante permet de confirmer macroscopiquement l’existence de deux types de cycloïdes. Enfin, nous contrôlons électriquement ces textures antiferromagnétiques, passant d’une cycloïde à une autre ou transformant un ordre colinéaire en cycloïde. Sur la base d’un substrat imposant une contrainte anisotrope, nous stabilisons des films ne présentant qu’un seul domaine ferroélectrique associé à un unique domaine antiferromagnétique. Ceci ouvre de larges perspectives pour explorer le couplage entre l’antiferromagnétisme non-colinéaire et le transport de spin
Antiferromagnetic materials are generating a growing interest for spintronics due to important assets such as their insensitivity to spurious magnetic fields and fast magnetization dynamics. A major bottleneck for functional devices is the readout and electric control of the antiferromagnetic order. In multiferroics, the magnetoelectric coupling between ferroelectric and antiferromagnetic orders may represent an efficient way to control antiferromagnetism with an electric field. In this thesis, we observe a wide variety of antiferromagnetic textures that we control by strain engineering and electric field in the archetypical multiferroic, BiFeO₃. We elaborate epitaxial BiFeO₃ thin films, harbouring various ferroelectric domain landscapes, as imaged by piezoresponse force microscopy. Furthermore, we resort on an inverse phase transition to improve the global electrical order from maze to perfect array of striped ferroelectric domains. Using scanning NV magnetometry, we correlate the antiferromagnetic landscapes to the ferroelectric ones. We demonstrate that strain stabilizes bulk or exotic spin cycloids, as well as collinear antiferromagnetic order. With resonant X-ray elastic scattering, we macroscopically confirm the existence of two types of cycloid. Furthermore, we electrically design antiferromagnetic landscapes on demand, changing one type of cycloid to another or turning collinear states into non-collinear ones. Finally, resorting on anisotropic strain, we stabilize a single domain ferroelectric state, in which a single spin cycloid propagates. This opens a fantastic avenue to investigate the coupling between non-collinear antiferromagnetism and spin transport
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Multiferroics - Spintronics"

1

Wiraka, Haradewa Siṅgha, et Wolfgang Kleemann. Ferroics and multiferroics : Special topic volume with invited peer reviewed papers only. Zurich : Trans Tech Publications, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Virk, Hardev Singh, et Wolfgang Kleemann. Ferroics and Multiferroics. Trans Tech Publications, Limited, 2012.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Multiferroics - Spintronics"

1

Lu, Xiaoli, Heng Li, Xin Li, Jiwen Zhang, Jincheng Zhang, Yue Hao et Marin Alexe. « Multiferroics for Spintronics ». Dans Series in Material Science and Engineering, 139–62. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 : CRC Press, 2016. http://dx.doi.org/10.1201/9781315372532-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kleemann, Wolfgang, et Pavel Borisov. « Multiferroic and Magnetoelectric Materials for Spintronics ». Dans Smart Materials for Energy, Communications and Security, 3–11. Dordrecht : Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8796-7_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Sen, Amlan, Rabindra Nath Shaw et Ankush Ghosh. « Magnetization Pattern Study of Unit Domain Multiferroic Nanomagnet for Spintronics Devices ». Dans Lecture Notes in Electrical Engineering, 533–42. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0749-3_41.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Muneeswaran, Muniyandi, Mayakrishnan Gopiraman, Shanmuga Sundar Dhanabalan, N. V. Giridharan et Ali Akbari-Fakhrabadi. « Multiferroic Properties of Rare Earth-Doped BiFeO3 and Their Spintronic Applications ». Dans Metal and Metal Oxides for Energy and Electronics, 375–95. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53065-5_11.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gradauskaite, Elzbieta, Peter Meisenheimer, Marvin Müller, John Heron et Morgan Trassin. « 12 Multiferroic heterostructures for spintronics ». Dans Multiferroics, 371–412. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110582130-012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

« Multiferroics for Spintronics ». Dans Multiferroic Materials, 155–78. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | : CRC Press, 2016. http://dx.doi.org/10.1201/9781315372532-13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

« Multiferroics Materials, Future of Spintronics ». Dans Engineering Magnetic, Dielectric and Microwave Properties of Ceramics and Alloys, 89–112. Materials Research Forum LLC, 2019. http://dx.doi.org/10.21741/9781644900390-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chand Verma, Kuldeep, et Manpreet Singh. « Processing Techniques with Heating Conditions for Multiferroic Systems of BiFeO3, BaTiO3, PbTiO3, CaTiO3 Thin Films ». Dans Thermoelectricity [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101122.

Texte intégral
Résumé :
In this chapter, we have report a list of synthesis methods (including both synthesis steps & heating conditions) used for thin film fabrication of perovskite ABO3 (BiFeO3, BaTiO3, PbTiO3 and CaTiO3) based multiferroics (in both single-phase and composite materials). The processing of high quality multiferroic thin film have some features like epitaxial strain, physical phenomenon at atomic-level, interfacial coupling parameters to enhance device performance. Since these multiferroic thin films have ME properties such as electrical (dielectric, magnetoelectric coefficient & MC) and magnetic (ferromagnetic, magnetic susceptibility etc.) are heat sensitive, i.e. ME response at low as well as higher temperature might to enhance the device performance respect with long range ordering. The magnetoelectric coupling between ferromagnetism and ferroelectricity in multiferroic becomes suitable in the application of spintronics, memory and logic devices, and microelectronic memory or piezoelectric devices. In comparison with bulk multiferroic, the fabrication of multiferroic thin film with different structural geometries on substrate has reducible clamping effect. A brief procedure for multiferroic thin film fabrication in terms of their thermal conditions (temperature for film processing and annealing for crystallization) are described. Each synthesis methods have its own characteristic phenomenon in terms of film thickness, defects formation, crack free film, density, chip size, easier steps and availability etc. been described. A brief study towards phase structure and ME coupling for each multiferroic system of BiFeO3, BaTiO3, PbTiO3 and CaTiO3 is shown.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Bhardwaj, S. « Multiferroicity in Aurivillius Based Bi4Ti3O12 Ceramics : An Overview, Future Prospective and Comparison with Ferrites ». Dans Materials Research Foundations, 311–35. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901595-9.

Texte intégral
Résumé :
The growing modern society demands more new generation devices to fulfil their requirements. This has forced the scientific community to develop multifunctional smart devices. Aurivillius based Bi4Ti3O12 ceramics are one of the leading families of oxide materials, which attract immense attention due to their electrical, ferroelectric, optical, and dielectric properties. These materials have gained special attention due to their numerous device applications such as magnetic recording, sensors, read head technology, spintronic devices, switching devices, data storage devices and multiple state memory devices etc. Multiferroic are the materials in which two or more than two ferroic orders exist simultaneously. This chapter focuses on the possibility of existence of multiferroic behaviour in Aurivillius based compounds specially Bi4Ti3O12. Firstly, we have discussed the basics of multiferroics and their types and the magnetoelectric effect. The effect of different dopants in originating the multiferroism in Bi4Ti3O12 have been reviewed and discuss in detail. At the end comparison of multiferroic and ferrite materials and their future perspective have been discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Mandal, Satish Kumar, Savita, Pradip Kumar Priya, Ram Pratap Yadav, Hari Pratap Bhasker, Raj Kumar Anand et Amreesh Chandra. « A Detailed Study of Structural, Dielectric and Luminescence Properties of Sm3+ Doped BiFeO3 Nanoceramics ». Dans Materials Science : A Field of Diverse Industrial Applications, 110–19. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815051247123010008.

Texte intégral
Résumé :
Observation of at least two coexisting switchable ferroic states viz., ferromagnetic, ferroelectric, and/or ferroelastic at room temperature with promising coupling among order parameters, has made BiFeO3 a highly explored material in the field of multiferroics and/or magnetoelectric multiferroics, which creates the possibility for its application in various technological devices such as spintronics, spin-valve, DRAM, actuators, sensors, solar-cells photovoltaic, etc. Intrinsically, its low coupling coefficients, difficulty to prepare in pure phase in bulk, high leakage current, etc. have restricted BiFeO3 from technological reliability. However, the effect of doping with iso- and alio-valent ions, nanostructure, thin-film-form and nanoparticles, etc., has been carried out to improve its physical properties by several research groups over the decades. In this chapter, the structural, luminescence, and dielectric properties of samarium (Sm3+) doped BiFeO3 nanoceramics synthesized using a modified gelcombustion route are discussed in detail. The effect of Sm3+ doping in BiFeO3 is explored using the X-ray diffraction (XRD) technique. The XRD studies exhibit a possible structural phase transition above Sm3+ doping of 15% from rhombohedral (R3c) space group to the orthorhombic (Pbnm) space group. The dielectric study shows interesting behavior accompanied by structural transition. Our study suggests that Sm3+ doping plays an important role in governing the structural, luminescence, and dielectric properties of BiFeO3 samples.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Multiferroics - Spintronics"

1

Gajek, M., H. Bea, M. Bibes, K. Bouzehouane, S. Fusil, G. Herranz, E. Jacquet et al. « Spintronics with Multiferroics ». Dans INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376450.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Torelli, Piero. « Magnetic phase transitions in multiferroics (Conference Presentation) ». Dans Spintronics IX, sous la direction de Henri-Jean Drouhin, Jean-Eric Wegrowe et Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2230654.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Dil, Hugo. « Manipulating topological spin textures in multiferroic and polar materials ». Dans Spintronics XIII, sous la direction de Henri-Jean M. Drouhin, Jean-Eric Wegrowe et Manijeh Razeghi. SPIE, 2020. http://dx.doi.org/10.1117/12.2570644.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Jia, C. L., et J. Berakdar. « Functionalization of multiferroic oxide structures for spintronic devices ». Dans OPTO, sous la direction de Ferechteh H. Teherani, David C. Look, Cole W. Litton et David J. Rogers. SPIE, 2010. http://dx.doi.org/10.1117/12.845582.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Liu, Y., Q. Zhan, B. Wang, S. Mao et R. Li. « Modulation of magnetization direction in flexible multiferroic heterostructures towards flexible spintronics ». Dans 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156524.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Atulasimha, Jayasimha, et Supriyo Bandyopadhyay. « Hybrid spintronic/straintronics : A super energy efficient computing scheme based on interacting multiferroic nanomagnets ». Dans 2012 IEEE 12th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2012. http://dx.doi.org/10.1109/nano.2012.6321958.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rebelo, L. M. « Towards Using Multiferroism in Optoelectronics and Spintronics : Tunneling, Confinement and Optical Properties of Si/BiMnO3 Systems ». Dans PHYSICS OF SEMICONDUCTORS : 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994615.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie